Realization of 16 Gbit/s all-optical Toggle memory utilizing change in polarization state of light in single-mode optical fiber

Dipti Bansal, Lovkesh

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (2) : 76-82. DOI: 10.1007/s11801-024-3001-0
Article

Realization of 16 Gbit/s all-optical Toggle memory utilizing change in polarization state of light in single-mode optical fiber

Author information +
History +

Abstract

In this investigation, all-optical Toggle flip-flop event-driven memory is explored with data rate of 16 Gbit/s. Single mode optical fiber model is used as a nonlinear medium to generate the output set and reset pulses of a Toggle flip-flop, and the model is based on the bidirectional optical transmission principle, considering the fundamental effects of cross phase modulation and self-phase modulation with change in polarization state. The performance of a flip-flop is evaluated using truth table conditions and performance parameters such as Q factor, which is obtained as 380.92 dB for Q and 272.9 dB for

Q ¯
, and rising and falling times of 7.304 ps and 5.79 ps, respectively are obtained, which makes flip-flop design fast as compared to earlier design techniques.

Cite this article

Download citation ▾
Dipti Bansal, Lovkesh. Realization of 16 Gbit/s all-optical Toggle memory utilizing change in polarization state of light in single-mode optical fiber. Optoelectronics Letters, 2024, 20(2): 76‒82 https://doi.org/10.1007/s11801-024-3001-0

References

[[1]]
Reis C, Maziotis A, Kouloumentas C, et al.. All-optical clocked D flip-flop memory using a hybrid integrated S-R latch[J]. Microwave and optical technology letters, 2011, 23(12): 262-270
[[2]]
Tsubone K, Wakana H, Tarutani Y, et al.. Operation of HTS Toggle-flip-flop circuit with improved layout design[J]. IEEE transactions on applied superconductivity, 2006, 16(4): 2011-2017,
CrossRef Google scholar
[[3]]
Kaur S, Kaler R. All optical SR and D flip-flop employing XGM effect in semiconductor optical amplifiers[J]. Optik-international journal of light and electron optics, 2014, 125(2): 865-869,
CrossRef Google scholar
[[4]]
Tangdiongga E, Yang X, Liu Y, et al.. Optical flip-flop based on two-coupled mode locked ring lasers[J]. IEEE photonics technology letter, 2005, 17(1): 208-210,
CrossRef Google scholar
[[5]]
Clavero R, Rames F, Martinez J, et al.. All-optical flip-flop based on a single SOA-MZI[J]. IEEE photonic technology letters, 2005, 17(4): 843-845,
CrossRef Google scholar
[[6]]
Kotb A, Zoiros K, Guo C. All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach-Zehnder interferometer modules[J]. Optics & laser technology, 2018, 108: 426-433,
CrossRef Google scholar
[[7]]
Kotb A, Zoiros K, Guo C. Numerical investigation of an all-optical logic OR gate at 80 Gb/s with a dual pump-probe semiconductor optical amplifier SOA-assisted Mach-Zehnder interferometer (MZI)[J]. Journal of computational electronics, 2019, 18(1): 271-278,
CrossRef Google scholar
[[8]]
Kotb A, Zoiros K, Guo C. 320 Gb/s all-optical XOR gate using semiconductor optical amplifier Mach-Zehnder interferometer and delayed interferometer[J]. Photonic network communications, 2019, 38(1): 177-184,
CrossRef Google scholar
[[9]]
Bansal D, Lovkesh. Design of all-optical XOR/XNOR gate at 200Gb/s with semiconductor optical amplifier Mach-Zender interferometer (MZI) and delayed interferometer schemes (DI)[J]. Journal material today: proceedings, 2022, 71(2): 287-292
[[10]]
SUKHENDER, NAIR N, MITTAL P, et al. Design of all-optical D flip flop using SOA-MZI architecture[C]//International Conference on Artificial Intelligence and Smart Systems (ICAIS), March 25–27, 2021, Coimbatore, India. 2021: 1657–1662.
[[11]]
Huybrechts K, Morthierk G, Baets R. Fast all-optical flip-flop based on a single distributed feedback laser diode[J]. Optics express, 2008, 16(15): 11405-11410,
CrossRef Google scholar
[[12]]
Malacarne A, Bogoni P L. A erbium-ytterbium doped fiber-based optical flip-flop[J]. IEEE photonic technology letter, 2007, 19(12): 904-906,
CrossRef Google scholar
[[13]]
Liu Y, Mcdougall Y, Hill M, et al.. Packaged and hybrid integrated all-optical flip-flop memory[J]. Electronics letter, 2006, 42(24): 1399-1400,
CrossRef Google scholar
[[14]]
Hill M, Dorren H, Smit M. A fast low-power optical memory based on coupled micro-ring lasers[J]. Nature, 2004, 432(11): 206-208,
CrossRef Google scholar
[[15]]
Jiang H, Chaen Y, Hagio T, et al.. All-optical flip-flop operation based on asymmetric active multimode interferometer bi-stable laser diodes[J]. Optics express, 2011, 19(26): 119-124,
CrossRef Google scholar
[[16]]
Hill M, Warrdt H, Khoe G, et al.. All-optical flip-flop based on coupled laser diodes[J]. IEEE journal of quantum electronics, 2001, 37(3): 405-413,
CrossRef Google scholar
[[17]]
Kim J, Kim Y, Byun Y, et al.. All-optical logic gates using semiconductor optical-amplifier-based devices and their applications[J]. Journal of the Korean physical society, 2004, 45(5): 1158-1161
[[18]]
Reis C, Maziotis A, Kouloumentas C, et al.. All-optical synchronous S-R flip-flop based on active interferometric devices[J]. Electronics letters, 2010, 46(10): 709-710,
CrossRef Google scholar
[[19]]
Bogoni A, Berrettini G, Ghelfi P, et al.. Memory based on two coupled polarization switches[J]. Electronics letters, 2002, 38(16): 904-906,
CrossRef Google scholar
[[20]]
Anusooya M, Kanagaselvi G. Design of all-optical Toggle flip-flop using bi-directional optical fiber[J]. International journal of advanced research trends in engineering and technology, 2016, 13(3): 48-52
[[21]]
Maruthi K, Ramchandran M, Prince S. . Design of all optical JK flip flop[C], 2016 Berlin, Heidelberg Springer-Verlag,
CrossRef Google scholar
[[22]]
Ramos R, Marti J. All optical flip-flop based on active Mach-Zehnder interferometer with a feedback loop[J]. Optics letters, 2005, 30(21): 2861-2863,
CrossRef Google scholar
[[23]]
Malacarne A, Jing W, Yuancheng Z, et al.. A 20ps transition time all-optical SOA-based flip-flop used for photonic 10 Gb/s switching operation without any bit loss[J]. IEEE journal of selected topics in quantum electronics, 2008, 14(3): 808-814,
CrossRef Google scholar
[[24]]
Bansal D, Lovkesh. Design and simulation of optical logic gates at ultra high speed of 200 Gb/s employing single SOA[J]. Journal material today: proceedings, 2022, 71(2): 394-401
[[25]]
Bansal D, Lovkesh. 7 Gb/s optical JK flip flop design with two optical AND gates and NOR gates[J]. Optoelectronics letters, 2021, 18(7): 408-414,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/