Enantioselective differentiation of chiral succinate dehydrogenase inhibitor fungicides

Peilin Guo, Xinglu Pan, Jun Xu, Xiaohu Wu, Yongquan Zheng, Fengshou Dong

PDF
New Plant Protection ›› 2024, Vol. 1 ›› Issue (1) : 14. DOI: 10.1002/npp2.14
COMPREHENSIVE REVIEW

Enantioselective differentiation of chiral succinate dehydrogenase inhibitor fungicides

Author information +
History +

Abstract

Chiral succinate dehydrogenase inhibitor (SDHI) fungicides have undergone rapid development and extensive application in plant protection. Due to the common existing differences in bioactivity, toxicity, and environmental behavior between the enantiomers of chiral pesticides, a comprehensive evaluation of chiral SDHI fungicides at the enantiomeric level is crucial for gaining a deeper understanding of the behavior of chiral pesticides and facilitating their rational application. This review summarizes the research advancements in analytical methods for chiral SDHI fungicides, and explores enantioselective differences in their bioactivity, toxicity, and enantioselective environmental behavior. These insights are intended to enhance the efficient utilization and risk management of these chiral fungicides.

Keywords

chirality / enantioselective differences / pesticides / succinate dehydrogenase inhibitor fungicides

Cite this article

Download citation ▾
Peilin Guo, Xinglu Pan, Jun Xu, Xiaohu Wu, Yongquan Zheng, Fengshou Dong. Enantioselective differentiation of chiral succinate dehydrogenase inhibitor fungicides. New Plant Protection, 2024, 1(1): 14 https://doi.org/10.1002/npp2.14

References

[1.]
Matsson M., & Hederstedt L. (2001). The carboxin-binding site on Paracoccus denitrificans succinate: Quinone reductase identified by mutations. Journal of Bioenergetics and Biomembranes, 33(2), 99-105. https://doi.org/10.1023/a:1010744330092
[2.]
Avenot H. F., & Michailides T. J. (2010). Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection, 29(7), 643-651. https://doi.org/10.1016/j.cropro.2010.02.019
[3.]
Umetsu N., & Shirai Y. (2020). Development of novel pesticides in the 21st century. Journal of Pesticide Science, 45(1-2), 54-74. https://doi.org/10.1584/jpestics.D20-201
[4.]
Luo B., & Ning Y. L. (2022). Comprehensive overview of carboxamide derivatives as succinate dehydrogenase inhibitors. Journal of Agricultural and Food Chemistry, 70(4), 957-975. https://doi.org/10.1021/acs.jafc.1c06654
[5.]
Liu N., Dong F., Xu J., Liu X., Chen Z., Tao Y., Pan X., Chen X., & Zheng Y. (2015). Stereoselective determination of tebuconazole in water and zebrafish by supercritical fluid chromatography tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 63(28), 6297-6303. https://doi.org/10.1021/acs.jafc.5b02450
[6.]
Carrão D. B., Perovani I. S., de Albuquerque N. C. P., & de Oliveira A. R. M. (2020). Enantioseparation of pesticides: A critical review. TrAC, Trends in Analytical Chemistry, 122, 115719. https://doi.org/10.1016/j.trac.2019.115719
[7.]
Desbordes P., Essigmann B., Gary S., Gutbrod O., Maue M., & Schwarz H. G. (2020). Isoflucypram, the first representative of a new succinate dehydrogenase inhibitor fungicide subclass: Its chemical discovery and unusual binding mode. Pest Management Science, 76(10), 3340-3347. https://doi.org/10.1002/ps.5951
[8.]
Musarurwa H., & Tavengwa N. T. (2020). Green aspects during synthesis, application and chromatographic analysis of chiral pesticides. Trends in Environmental Analytical Chemistry, 27, e00093. https://doi.org/10.1016/j.teac.2020.e00093
[9.]
Xie H. (2017). Stereoselective degradation behavior of chiral fungicide penthiopyrad in soil[Master's thesis, Inner Mongolia University]. https://kns.cnki.net/kcms2/article/abstract? v=hyVvMdIOuYCdr2LWTAhhFljyoAdEwWNCLHsfE0Z7r5Q_fLn4B08GixLKo3fecYSzWvdKBhwgksuBlRN35TO8lNHQmsj1qSFRQTrzfx-g_bM5t3FraBoL9ONn29WaWUsyAOhF4Xg5Ewr4cKRYjOJKe0qTO0fxq-ECABSgxBTxZTk=&uniplatform=NZKPT
[10.]
Zhao T. T., Liu Y., Liang H. W., Li L., Shi K. W., Wang J., Zhu Y., & Ma C. (2022). Simultaneous determination of penthiopyrad enantiomers and its metabolite in vegetables, fruits, and cereals using ultra-high performance liquid chromatography-tandem mass spectrometry. Journal of Separation Science, 45(2), 441-455. https://doi.org/10.1002/jssc.202100446
[11.]
Wu X., Dong F., Xu J., Liu X., Wu X., & Zheng Y. (2020). Enantioselective separation and dissipation of pydiflumetofen enantiomers in grape and soil by supercritical fluid chromatography-tandem mass spectrometry. Journal of Separation Science, 43(11), 2217-2227. https://doi.org/10.1002/jssc.201901332
[12.]
Guo P., An X., Chen W., Pan X., Li R., Xu J., Wu X., Zheng Y., & Dong F. (2022). Separation and determination of fluindapyr enantiomers in cucumber and tomato and by supercritical fluid chromatography tandem mass spectrometry. Food Chemistry, 395, 133571. https://doi.org/10.1016/j.foodchem.2022.133571
[13.]
Tong Z., Dong X., Meng D. D., Yi X. T., Sun M. N., Chu Y., & Duan J. S. (2023). Enantioselective degradation and bioactivity mechanism of a new chiral fungicide fluindapyr in paddy ecosystems. Journal of Agricultural and Food Chemistry, 71(3), 1426-1433. https://doi.org/10.1021/acs.jafc.2c07924
[14.]
West C. (2019). Recent trends in chiral supercritical fluid chromatography. TrAC, Trends in Analytical Chemistry, 120, 115648. https://doi.org/10.1016/j.trac.2019.115648
[15.]
Bajtai A., Németi G., Le T. M., Szakonyi Z., Péter A., & Ilisz I. (2022). Enantiomeric separation of newly synthesized amino, thio, and oxy derivatives of monoterpene lactones, amides, and ester applying polysaccharide-based chiral stationary phases in normal-phase mode. Journal of Chromatography A, 1672, 463050. https://doi.org/10.1016/j.chroma.2022.463050
[16.]
Dallocchio R., Dessì A., Sechi B., & Peluso P. (2023). Molecular dynamics simulations of amylose- and cellulose-based selectors and related enantioseparations in liquid phase chromatography. Molecules, 28(21), 7419. https://doi.org/10.3390/molecules28217419
[17.]
Wang Z., Li R., Zhang J., Liu S., He Z., & Wang M. (2021). Evaluation of exploitive potential for higher bioactivity and lower residue risk enantiomer of chiral fungicide pydiflumetofen. Pest Management Science, 77(7), 3419-3426. https://doi.org/10.1002/ps.6389
[18.]
Wang X. P., Li H., Quan K. J., Zhao L., Qiu H. D., & Li Z. G. (2021). Preparation and applications of cellulose-functionalized chiral stationary phases: A review. Talanta, 225, 121987. https://doi.org/10.1016/j.talanta.2020.121987
[19.]
Wang Z., Liu S. L., Zhao X. J., Tian B. H., Sun X. F., Zhang J., Gao Y., Shi H., & Wang M. H. (2021). Enantioseparation and stereoselective dissipation of the novel chiral fungicide pydiflumetofen by ultra-high-performance liquid chromatography tandem mass spectrometry. Ecotoxicology and Environmental Safety, 207, 111221. https://doi.org/10.1016/j.ecoenv.2020.111221
[20.]
Di S. S., Cang T., Liu Z. Y., Xie Y. Y., Zhao H. Y., Qi P. P., Wang Z. W., Xu H., & Wang X. Q. (2022). Comprehensive evaluation of chiral pydiflumetofen from the perspective of reducing environmental risks. Science of the Total Environment, 826, 154033. https://doi.org/10.1016/j.scitotenv.2022.154033
[21.]
Di S. S., Wang Z. W., Cang T., Xie Y. Y., Zhao H., Qi P. P., Wang X. Y., Xu H., & Wang X. Q. (2021). Enantioselective toxicity and mechanism of chiral fungicide penflufen based on experiments and computational chemistry. Ecotoxicology and Environmental Safety, 222, 112534. https://doi.org/10.1016/j.ecoenv.2021.112534
[22.]
Liu R. (2020). Studies on stereoselective determination method and stereoselective biological effect of chiral fungicide furamepter [Master's thesis, Anhui Agricultural University]. https://kns.cnki.net/kcms2/article/abstract?v=hyVvMdIOuYDgzTHEhaUhE0ggnBH5DnzUGqB50YxQ_R4NLUiuvATpzX7PJApCxgVOsQUM8jlDPK24zZrjkVUsLSOWZ7S9v02FnfLa2GPyK3iCVtB8 E30VzJJOYcmYg5dxcMqVkxslKQSnmnuBU6CIc6M1OZBbm NqQXvFzKtS-mn0=&uniplatform=NZKPT
[23.]
An X. K., Pan X. L., Li R. A., Dong F. S., Zhu W. T., Xu J., Wu X. H., & Zheng Y. Q. (2023). Comprehensive evaluation of novel fungicide benzovindiflupyr at the enantiomeric level: Bioactivity, toxicity, mechanism, and dissipation behavior. Science of the Total Environment, 860, 160535. https://doi.org/10.1016/j.scitotenv.2022.160535
[24.]
Chen Y., Yu X., Yuan T., Wang F., Hu D., & Lu P. (2023). Absolute configuration, enantioselective bioactivity, and mechanism study of the novel chiral fungicide benzovindiflupyr. Journal of Agricultural and Food Chemistry, 71(23), 8808-8815. https://doi.org/10.1021/acs.jafc.3c00893
[25.]
Wang X. Q., Diao Z. Y., Liu Z. Z., Qi P. P., Wang Z. W., Cang T., Chu Y. Y., Zhao H. Y., Zhang C. H., Xu H., & Di S. S. (2023). Development of s-penthiopyrad for bioactivity improvement and risk reduction from the systemic evaluation at the enantiomeric level. Environmental Pollution, 333, 122012. https://doi.org/10.1016/j.envpol.2023.122012
[26.]
Liu R., Deng Y., Wu D., Liu Y. P., Wang Z. K., Yu S. M., Nie Y. F., Zhu W. T., Zhou Z. Q., & Diao J. L. (2023). Systemic enantioselectivity study of penthiopyrad: Enantioselective bioactivity, acute toxicity, degradation and influence on tomato. Pest Management Science, 79(6), 2107-2116. https://doi.org/10.1002/ps.7388
[27.]
Li B. (2022). The stereoselectivity degradation, bioactivity and toxicology of chiral fungicide sedaxane [Master's thesis, Anhui Agricultural University]. https://kns.cnki.net/kcms2/article/abstract?v=hyVvMdIOuYDfEHeEOP8UCdKF7-QaJ_ZJcSQXS3xoq0SHG9QaqhF8793y2x8nSL25kUyM9PEw5s4 mk7tpI62OlN-Yvu2YDcnh6NVfdZIb_eyxNTFoEF fhfF1YRynrKHKm1shnFBWx1p8Q7q0EUkvUsieSIYiGBkCgyn96BOpRXDU=&uniplatform=NZKPT
[28.]
Yanicostas C., & Soussi-Yanicostas N. (2021). SDHI fungicide toxicity and associated adverse outcome pathways: What can zebrafish tell us? International Journal of Molecular Sciences, 22(22), 12362. https://doi.org/10.3390/ijms222212362
[29.]
Wang X., Zhang J. B., He K. J., Wang F., & Liu C. F. (2021). Advances of zebrafish in neurodegenerative disease: From models to drug discovery. Frontiers in Pharmacology, 12, 713963. https://doi.org/10.3389/fphar.2021.713963
[30.]
Ren B., Zhao T. T., Li Y. H., Liang H. L., Zhao Y. X., Chen H. Y., Li L., & Liang H. W. (2021). Enantioselective bioaccumulation and toxicity of the novel chiral antifungal agrochemical penthiopyrad in zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 228, 113010. https://doi.org/10.1016/j.ecoenv.2021.113010
[31.]
Guo P., An X., Pan X., Xu J., Wu X., Zheng Y., & Dong F. (2023). Rational understanding of chiral fungicide penthiopyrad stereoselectivity: Bioactivity, aquatic toxicity and cytotoxicity. The Science of the Total Environment, 905, 166969. https://doi.org/10.1016/j.scitotenv.2023.166969
[32.]
Ou Y. J., Yan Z. Y., Shi G. F., Yu Z. L., Cai Y. X., & Ma R. X. (2022). Enantioselective toxicity, degradation and transformation of the chiral insecticide fipronil in two algae culture. Ecotoxicology and Environmental Safety, 235, 113424. https://doi.org/10.1016/j.ecoenv.2022.113424
[33.]
Qu H., Ma R. X., Liu D. H., Wang P., Huang L. D., Qiu X. X., & Zhou Z. Q. (2014). Enantioselective toxicity and degradation of the chiral insecticide fipronil in Scenedesmus obliguus suspension system. Environmental Toxicology and Chemistry, 33(11), 2516-2521. https://doi.org/10.1002/etc.2702
[34.]
Fang K., Fang J., Han L., Yin J., Liu T., & Wang X. (2022). Systematic evaluation of chiral fungicide penflufen for the bioactivity improvement and input reduction using alphafold2 models and transcriptome sequencing. Journal of Hazardous Materials, 440, 129729. https://doi.org/10.1016/j.jhazmat.2022.129729
[35.]
Yang G. Q., Li J. M., Lan T. T., Dou L., & Zhang K. K. (2022). Dissipation, residue, stereoselectivity and dietary risk assessment of penthiopyrad and metabolite pam on cucumber and tomato in greenhouse and field. Food Chemistry, 387, 132875. https://doi.org/10.1016/j.foodchem.2022.132875
[36.]
Sun M., Tong Z., Dong X., Chu Y., Wang M., Gao T., & Duan J. (2019). Stereoselective analysis of the chiral fungicide penflufen in wheat plants, spinach, and Chinese cabbage. RSC Advances, 9(18), 9887-9892. https://doi.org/10.1039/c8ra10455g
[37.]
Wang H. Y., Yang Z., Liu R. Y., Fu Q. G., Zhang S. F., Cai Z. Q., Li J., Zhao X., Ye Q., Wang W., & Li Z. (2013). Stereoselective uptake and distribution of the chiral neonicotinoid insecticide, paichongding, in Chinese pak choi (Brassica campestris ssp chinenesis). Journal of Hazardous Materials, 262, 862-869. https://doi.org/10.1016/j.jhazmat.2013.09.054
[38.]
Lewis D. L., Garrison A. W., Wommack K. E., Whittemore A., Steudler P., & Melillo J. (1999). Influence of environmental changes on degradation of chiral pollutants in soils. Nature, 401(6756), 898-901. https://doi.org/10.1038/44801
[39.]
Liu Z. Y., Chen D., Han J. H., Chen Y., & Zhang K. K. (2021). Stereoselective degradation behavior of the novel chiral antifungal agrochemical penthiopyrad in soil. Environmental Research, 194, 110680. https://doi.org/10.1016/j.envres.2020.110680
[40.]
Han L. X., Liu Y. L., Nie J. Y., You X. W., Li Y. Q., Wang X. G., & Wang J. (2022). Indigenous functional microbial degradation of the chiral fungicide mandipropamid in repeatedly treated soils: Preferential changes in the R-enantiomer. Journal of Hazardous Materials, 435, 128961. https://doi.org/10.1016/j.jhazmat.2022.128961
[41.]
Wu H., He X. L., Dong H. F., Zhou Q. Y., & Zhang Y. S. (2017). Impact of microorganisms, humidity, and temperature on the enantioselective degradation of imazethapyr in two soils. Chirality, 29(7), 348-357. https://doi.org/10.1002/chir.22695
Funding
National Key Research and Development Program of China(2023YFD1400904)
PDF

Accesses

Citations

Detail

Sections
Recommended

/