Two birds with one stone: Multifunctional controlled- release formulations of pesticides

Chunli Xu, Huiping Chen, Wenjie Shangguan, Manli Yu, Pengyue Zhao, Chong Cao, Mingming Yin, Qiliang Huang, Lidong Cao

PDF
New Plant Protection ›› 2024, Vol. 1 ›› Issue (1) : 13. DOI: 10.1002/npp2.13
COMPREHENSIVE REVIEW

Two birds with one stone: Multifunctional controlled- release formulations of pesticides

Author information +
History +

Abstract

Controlled release and nanotechnology techniques hold promising potential for propelling the pesticide industry toward the goals of green revolution. This study introduces the concept of atom economy into the multifunctionality of controlled-release formulations (CRFs) of pesticides from both economic and sustainable perspectives. In addition to their core function of controlling the release of active ingredient, carriers also provide additional benefits, including enhanced foliar adhesion and pesticide translocation, nutritional function, synergistic bioactivity, safety for nontarget organisms, crop stress alleviation, reduced soil leaching, soil remediation, and fluorescence visualization. These additional functions are highlighted and taken seriously. Through ingenious excogitation, the multifunctional CRFs of pesticides can achieve multiple objectives, enhancing input efficiency while minimizing environmental impacts. We tentatively blazed a trail by reviewing the recent advances in multifunctional CRFs of pesticides from the perspective of green chemistry. Additionally, potential development and implementation barriers of CRFs were discussed, emphasizing the necessity for robust field trials and comprehensive systems- level efficacy/biosafety evaluations to substantially boost the technical readiness and performance of multifunctional CRFs of pesticides. Our goal is to expand the multifunctional concept for pesticide formulations, thereby accelerating the development of global sustainable agrochemical products.

Keywords

controlled release / crop protection / multifunctionality / pesticide / sustainable agriculture

Cite this article

Download citation ▾
Chunli Xu, Huiping Chen, Wenjie Shangguan, Manli Yu, Pengyue Zhao, Chong Cao, Mingming Yin, Qiliang Huang, Lidong Cao. Two birds with one stone: Multifunctional controlled- release formulations of pesticides. New Plant Protection, 2024, 1(1): 13 https://doi.org/10.1002/npp2.13

References

[1.]
FAO, IFAD, UNICEF, WFP and WHO. (2023). The state of food security and nutrition in the world 2023. FAO. https://doi.org/10.4060/cc3017en
[2.]
United Nations Department of Economic and Social Affairs, P. D. (2022). World population prospects 2022: Summary of results. https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022
[3.]
Horton P., Long S. P., Smith P., Banwart S. A., & Beerling D. J. (2021). Technologies to deliver food and climate security through agriculture. Nature Plants, 7(3), 250-255. https://doi.org/10.1038/s41477-021-00877-2
[4.]
Verger P. J. P., & Boobis A. R. (2013). Reevaluate pesticides for food security and safety. Science, 341(6147), 717-718. https://doi.org/10.1126/science.1241572
[5.]
Tang F. H. M., Malik A., Li M., Lenzen M., & Maggi F. (2022). International demand for food and services drives environmental footprints of pesticide use. Communications Earth & Environment, 3(1), 272. https://doi.org/10.1038/s43247-022-00601-8
[6.]
Wang D., Saleh N. B., Byro A., Zepp R., Sahle-Demessie E., Luxton T. P., Su C., Burgess R. M., Flury M., & White J. C. (2022). Nano-enabled pesticides for sustainable agriculture and global food security. Nature Nanotechnology, 17(4), 347-360. https://doi.org/10.1038/s41565-022-01082-8
[7.]
Roy A., Singh S. K., Bajpai J., & Bajpai A. K. (2014). Controlled pesticide release from biodegradable polymers. Central European Journal of Chemistry, 12(4), 453-469. https://doi.org/10.2478/s11532-013-0405-2
[8.]
Xiao D., Wu H., Zhang Y., Kang J., Dong A., & Liang W. (2022). Advances in stimuli-responsive systems for pesticides delivery: Recent efforts and future outlook. Journal of Controlled Release, 352, 288-312. https://doi.org/10.1016/j.jconrel.2022.10.028
[9.]
Li N., Sun C., Jiang J., Wang A., Shen Y., Huang B., Wang Y., Cui B., Zhao X., Wang C., Gao F., Zhan S., Guo L., Zeng Z., Zhang L., & Cui H. (2021). Advances in controlled- release pesticide formulations with improved efficacy and targetability. Journal of Agricultural and Food Chemistry, 69(43), 12579-12597. https://doi.org/10.1021/acs.jafc.0c05431
[10.]
Singh A., Dhiman N., Kar A. K., Singh D., Purohit M. P., Ghosh D., & Patnaik S. (2020). Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. Journal of Hazardous Materials, 385, 121525. https://doi.org/10.1016/j.jhazmat.2019.121525
[11.]
Trost B. (1991). The atom economy-a search for synthetic efficiency. Science, 254(5037), 1471-1477. https://doi.org/10.1126/science.1962206
[12.]
Freund R., Lächelt U., Gruber T., Rühle B., & Wuttke S. (2018). Multifunctional efficiency: Extending the concept of atom economy to functional nanomaterials. ACS Nano, 12(3), 2094-2105. https://doi.org/10.1021/acsnano.8b00932
[13.]
Khandelwal N., Barbole R. S., Banerjee S. S., Chate G. P., Biradar A. V., Khandare J. J., & Giri A. P. (2016). Budding trends in integrated pest management using advanced micro- and nano-materials: Challenges and perspectives. Journal of Environmental Management, 184, 157-169. https://doi.org/10.1016/j.jenvman.2016.09.071
[14.]
Mattos B. D., Tardy B. L., Magalhães W. L. E., & Rojas O. J. (2017). Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems. Journal of Controlled Release, 262, 139-150. https://doi.org/10.1016/j.jconrel.2017.07.025
[15.]
Jain H. V., Dhiman S., & Ansari N. G. (2024). Recent trends in techniques, process and sustainability of slow-release formulation for pesticides. Industrial Crops and Products, 216, 118764. https://doi.org/10.1016/j.indcrop.2024.118764
[16.]
Chen H., Li T., Bilal M., Cao C., Zhao P., Zhou X., Cao L., & Huang Q. (2023). Multifunctional borax cross-linked hydroxypropyl guar gum hydrogels with crop nutritional function as carriers for dual-responsive acaricide release. Journal of Agricultural and Food Chemistry, 71(44), 16521-16532. https://doi.org/10.1021/acs.jafc.3c05241
[17.]
Chen H., Shan Y., Xu C., Bilal M., Zhao P., Cao C., Cao L., & Huang Q. (2023). Multifunctional γ-cyclodextrin-based metal-organic frameworks as avermectins carriers for controlled release and enhanced acaricidal activity. ACS Agricultural Science & Technology, 3(2), 190-202. https://doi.org/10.1021/acsagscitech.2c00295
[18.]
Chen G., Shangguan W., Chen H., Xu C., Bilal M., Zhao P., Cao L., Yu M., & Huang Q. (2024). Chitooligosaccharide modified pesticide-loaded polyurethane microcapsules to mitigate drought stress in wheat. Chemical Engineering Journal, 479, 147688. https://doi.org/10.1016/j.cej.2023.147688
[19.]
Liu T., Xu C., Ma D., Ge S., & Li Y. (2024). Glycine-doped metal-organic frameworks as intelligent nanocarriers to enhance pesticide delivery and provide micronutrient in plants. Chemical Engineering Journal, 495, 153287. https://doi.org/10.1016/j.cej.2024.153287
[20.]
Xu C., Cao L., Cao C., Chen H., Zhang H., Li Y., & Huang Q. (2023). Fungicide itself as a trigger to facilely construct hymexazol-encapsulated polysaccharide supramolecular hydrogels with controllable rheological properties and reduced environmental risks. Chemical Engineering Journal, 452, 139195. https://doi.org/10.1016/j.cej.2022.139195
[21.]
Xu C., Cao L., Bilal M., Cao C., Zhao P., Zhang H., & Huang Q. (2021). Multifunctional manganese-based carboxymethyl chitosan hydrogels for pH-triggered pesticide release and enhanced fungicidal activity. Carbohydrate Polymers, 262, 117933. https://doi.org/10.1016/j.carbpol.2021.117933
[22.]
Bilal M., Xu C., Cao L., Zhao P., Cao C., Li F., & Huang Q. (2020). Indoxacarb-loaded fluorescent mesoporous silica nanoparticles for effective control of Plutella xylostella L. With decreased detoxification enzymes activities. Pest Management Science, 76(11), 3749-3758. https://doi.org/10.1002/ps.5924
[23.]
Shan Y., Cao L., Muhammad B., Xu B., Zhao P., Cao C., & Huang Q. (2020). Iron-based porous metal-organic frameworks with crop nutritional function as carriers for controlled fungicide release. Journal of Colloid and Interface Science, 566, 383-393. https://doi.org/10.1016/j.jcis.2020.01.112
[24.]
Cao L., Zhou Z., Niu S., Cao C., Li X., Shan Y., & Huang Q. (2018). Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2,4-dichlorophenoxy acetic acid sodium salt release. Journal of Agricultural and Food Chemistry, 66(26), 6594-6603. https://doi.org/10.1021/acs.jafc.7b01957
[25.]
Cao L., Zhang H., Zhou Z., Xu C., Shan Y., Lin Y., & Huang Q. (2018). Fluorophore-free luminescent double- shelled hollow mesoporous silica nanoparticles as pesticide delivery vehicles. Nanoscale, 10(43), 20354-20365. https://doi.org/10.1039/C8NR04626C
[26.]
Zhang Q., Du Y., Yu M., Ren L., Guo Y., Li Q., Chen F., & Li X. (2022). Controlled release of dinotefuran with temperature/pH-responsive chitosan-gelatin microspheres to reduce leaching risk during application. Carbohydrate Polymers, 277, 118880. https://doi.org/10.1016/j.carbpol.2021.118880
[27.]
Du Y., Zhang Q., Yu M., Jiao B., Chen F., & Yin M. (2023). Sodium alginate-based composite microspheres for controlled release of pesticides and reduction of adverse effects of copper in agricultural soils. Chemosphere, 313, 137539. https://doi.org/10.1016/j.chemosphere.2022.137539
[28.]
Du Y., Zhang Q., Yu M., Yin M., & Chen F. (2023). Effect of sodium alginate-gelatin-polyvinyl pyrrolidone microspheres on cucumber plants, soil, and microbial communities under lead stress. International Journal of Biological Macromolecules, 247, 125688. https://doi.org/10.1016/j.ijbiomac.2023.125688
[29.]
Grillo R., Mattos B. D., Antunes D. R., Forini M. M. L., Monikh F. A., & Rojas O. J. (2021). Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today, 37, 101078. https://doi.org/10.1016/j.nantod.2021.101078
[30.]
Su H., Liang Y., Gao A., & Yang P. (2023). Tackling pesticide overusing through foliar deposition and retention: Frontiers and challenges. Advanced Agrochem, 2(4), 298-305. https://doi.org/10.1016/j.aac.2023.05.005
[31.]
Jia X., Sheng W., Li W., Tong Y., Liu Z., & Zhou F. (2014). Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention. ACS Applied Materials & Interfaces, 6(22), 19552-19558. https://doi.org/10.1021/am506458t
[32.]
Mai K., Yang S., Zhao X., Huang R., Huang S., Xu C., Li J., & Feng Y. (2024). Multi-bioinspired alginate-based gel coatings formed by dynamic metal-ligand assembly for enhancing foliar affinity and rain-fastness of pesticides. Chemical Engineering Journal, 479, 147357. https://doi.org/10.1016/j.cej.2023.147357
[33.]
Yu M., Sun C., Xue Y., Liu C., Qiu D., Cui B., Zeng Z., & Cui H. (2019). Tannic acid-based nanopesticides coating with highly improved foliage adhesion to enhance foliar retention. RSC Advances, 9(46), 27096-27104. https://doi.org/10.1039/C9RA05843E
[34.]
Ma Y., Li L., Zhao R., Sun Z., Wang Y., Yu M., Wu X., Guo X., Xu Y., Wang H., & Wang P. (2023). Nanoencapsulation- based fabrication of eco-friendly pH-responsive pyraclostrobin formulations with enhanced photostability and adhesion to leaves. Journal of Environmental Chemical Engineering, 11(3), 109688. https://doi.org/10.1016/j.jece.2023.109688
[35.]
Qu H., Wu S., & Gong J. (2023). A sustainable and smart fungicide release platform through cocrystal nanocapsules for improved utilization rate and environmental safety. Chemical Engineering Journal, 473, 145284. https://doi.org/10.1016/j.cej.2023.145284
[36.]
Li D., Zhang S., Sheng W., Zhang Q., Liu Z., Li R., Jia X., Meng C., & Li M. (2023). Versatile pickering emulsions stabilized by polyphenolic 2D Janus nanosheets enhance foliar deposition of agrochemicals. ACS Applied Nano Materials, 6(10), 8290-8301. https://doi.org/10.1021/acsanm.3c00513
[37.]
Liang J., Yu M., Guo L., Cui B., Zhao X., Sun C., Zeng Z., Liu G., & Cui H. (2018). Bioinspired development of P(ST- MAA)-avermectin nanoparticles with high affinity for foliage to enhance folia retention. Journal of Agricultural and Food Chemistry, 66(26), 6578-6584. https://doi.org/10.1021/acs.jafc.7b01998
[38.]
You C., Ning L., Jia Y., Xu P., Lu J., Huang C., & Wang F. (2022). Bio-based mesh-like pesticide carriers via copper ions chelation for prolonging pesticide retention and flush resistance on foliage. Industrial Crops and Products, 183, 114938. https://doi.org/10.1016/j.indcrop.2022.114938
[39.]
Wu T., Fang X., Yang Y., Meng W., Yao P., Liu Q., Cheng J., Liu F., & Zou A. (2020). Eco-friendly water-based λ- cyhalothrin polydopamine microcapsule suspension with high adhesion on leaf for reducing pesticides loss. Journal of Agricultural and Food Chemistry, 68(45), 12549-12557. https://doi.org/10.1021/acs.jafc.0c02245
[40.]
Ma N., Lin H., Ning L., Ji X., Wang F., Shi C., & You C. (2023). Temperature and pH-dependent nanogel for smart pesticide delivery with enhanced foliar dispersion and washout resistance can effectively control multiple plant diseases. Journal of Cleaner Production, 429, 139536. https://doi.org/10.1016/j.jclepro.2023.139536
[41.]
Yu M., Yao J., Liang J., Zeng Z., Cui B., Zhao X., Cui H., Wang Y., & Liu G. (2017). Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Advances, 7(19), 11271-11280. https://doi.org/10.1039/C6RA27345A
[42.]
Xiao D., Liang W., Li Z., Cheng J., Du Y., & Zhao J. (2020). High foliar affinity cellulose for the preparation of efficient and safe fipronil formulation. Journal of Hazardous Materials, 384, 121408. https://doi.org/10.1016/j.jhazmat.2019.121408
[43.]
Zhang C., Yang X., Yang S., Liu Z., & Wang L. (2022). Eco- friendly and multifunctional lignocellulosic nanofibre additives for enhancing pesticide deposition and retention. Chemical Engineering Journal, 430, 133011. https://doi.org/10.1016/j.cej.2021.133011
[44.]
Pirzada T., Sohail M., Tripathi A., Farias B. V., Mathew R., Li C., & Khan S. A. (2022). Toward sustainable crop protection: Aqueous dispersions of biodegradable particles with tunable release and rainfastness. Advanced Functional Materials, 32(18), 2108046. https://doi.org/10.1002/adfm.202108046
[45.]
Tang J., Tong X., Chen Y., Wu Y., Zheng Z., Kayitmazer A. B., Xu Y., Ramzan N., Yang J., & Huang Q. (2023). Deposition and water repelling of temperature-responsive nanopesticides on leaves. Nature Communications, 14(1), 6401. https://doi.org/10.1038/s41467-023-41878-3
[46.]
Luo J., Gao Y., Liu Y., Huang X., Zhang D.-X., Cao H., Li B., & Liu F. (2021). Self-assembled degradable nanogels provide foliar affinity and pinning for pesticide delivery by flexibility and adhesiveness adjustment. ACS Nano, 15(9), 14598-14609. https://doi.org/10.1021/acsnano.1c04317
[47.]
Sharma S., Sahu B. K., Cao L., Bindra P., Kaur K., Chandel M., Shanmugam V., & Huang Q. (2021). Porous nanomaterials: Main vein of agricultural nanotechnology. Progress in Materials Science, 121, 100812. https://doi.org/10.1016/j.pmatsci.2021.100812
[48.]
Tong Y., Shao L., Li X., Lu J., Sun H., Xiang S., Wu X., & Wu Y. (2018). Adhesive and stimulus-responsive polydopamine-coated graphene oxide system for pesticide-loss control. Journal of Agricultural and Food Chemistry, 66(11), 2616-2622. https://doi.org/10.1021/acs.jafc.7b05500
[49.]
Song S., Wan M., Luo Y., Shen H., & Shen J. (2022). Carboxymethyl chitosan-modified graphene oxide as a multifunctional vector for deltamethrin delivery and pH-responsive controlled release, enhanced leaf affinity, and improved mosquito-killing activity. Langmuir, 38(40), 12148-12156. https://doi.org/10.1021/acs.langmuir.2c01669
[50.]
Teng G., Chen C., Jing N., Chen C., Duan Y., Zhang L., & Zhang J. (2023). Halloysite nanotubes-based composite material with acid/alkali dual pH response and foliar adhesion for smart delivery of hydrophobic pesticide. Chemical Engineering Journal, 451, 139052. https://doi.org/10.1016/j.cej.2022.139052
[51.]
Qin Y., An T., Cheng H., Su W., Meng G., Wu J., & Liu Z. (2022). Functionalized halloysite nanotubes as chlorpyrifos carriers with high adhesion and temperature response for controlling of beet armyworm. Applied Clay Science, 222, 106488. https://doi.org/10.1016/j.clay.2022.106488
[52.]
Sharma S., Prinz Setter O., Abu Hamad H., & Segal E. (2024). Multifunctional halloysite nanotube-polydopamine agro-carriers for controlling bacterial soft rot disease. Environmental Science: Nano, 11(3), 1114-1128. https://doi.org/10.1039/D3EN00934C
[53.]
Qin Y., Su W., Meng G., Cui L., Wu J., Yang S., Liu Z., Liu J., & Guo X. (2023). Polymer-modified halloysite nanotubes with high adhesion and UV-shielding properties for chlopyrifos application on cotton leaves. Applied Clay Science, 234, 106811. https://doi.org/10.1016/j.clay.2022.106811
[54.]
Wang K., Li J. Q., He S., Lu J., Wang D., Wang J. X., & Chen J. (2023). Redox/near-infrared dual-responsive hollow mesoporous organosilica nanoparticles for pesticide smart delivery. Langmuir, 39(50), 18466-18475. https://doi.org/10.1021/acs.langmuir.3c02752
[55.]
Wan M., Zhao Y., Li H., Zou X., & Sun L. (2023). pH and NIR responsive polydopamine-doped dendritic silica carriers for pesticide delivery. Journal of Colloid and Interface Science, 632, 19-34. https://doi.org/10.1016/j.jcis.2022.11.009
[56.]
Lv S., Hong T., Wan M., Peng L., Zhao Y., Sun L., & Zou X. (2023). Multifunctional mesoporous silica nanosheets for smart pesticide delivery and enhancing pesticide deposition. Langmuir, 39(36), 12807-12816. https://doi.org/10.1021/acs.langmuir.3c01661
[57.]
Liang W., Xie Z., Cheng J., Xiao D., Xiong Q., Wang Q., & Gui W. (2021). A light-triggered pH-responsive metal-organic framework for smart delivery of fungicide to control sclerotinia diseases of oilseed rape. ACS Nano, 15(4), 6987-6997. https://doi.org/10.1021/acsnano.0c10877
[58.]
Xiao D., Cheng J., Liang W., Sun L., & Zhao J. (2021). Metal-phenolic coated and prochloraz-loaded calcium carbonate carriers with pH responsiveness for environmentally- safe fungicide delivery. Chemical Engineering Journal, 418, 129274. https://doi.org/10.1016/j.cej.2021.129274
[59.]
Zhi H., Chen H., Yu M., Wang C., Cui B., Zhao X., Zeng Z., Cui H., & Zhang B. (2022). Layered double hydroxide nanosheets improve the adhesion of fungicides to leaves and the antifungal performance. ACS Applied Nano Materials, 5(4), 5316-5325. https://doi.org/10.1021/acsanm.2c00318
[60.]
Kong F., Zhang Q., Xie Y., Ding J., Zhao H., Zhang Z., Meng Z., & Cong H. (2023). Controlled release of herbicides through glyphosate intercalated layered double hydroxides and enhancement of anti-scouring ability via poly-L-aspartic acid and chitosan modification. International Journal of Biological Macromolecules, 253, 126750. https://doi.org/10.1016/j.ijbiomac.2023.126750
[61.]
Chen H., Zhan J., Man L., Deng H., Zhou H., Hao L., & Zhou X. (2023). High foliar retention tannic acid/Fe3þ functionalized Ti-pillared montmorillonite pesticide formulation with pH- responsibility and high UV stability. Applied Surface Science, 620, 156838. https://doi.org/10.1016/j.apsusc.2023.156838
[62.]
Zhao K., Hu J., Ma Y., Wu T., Gao Y., & Du F. (2019). Topology-regulated pesticide retention on plant leaves through concave Janus carriers. ACS Sustainable Chemistry & Engineering, 7(15), 13148-13156. https://doi.org/10.1021/acssuschemeng.9b02319
[63.]
Zhao K., Wang B., Zhang C., Guo Y., Ma Y., Li Z., Du F., Bao Z., & Gao Y. (2021). Catechol functionalized hat-shape carriers for prolonging pesticide retention and flush resistance on foliage. Chemical Engineering Journal, 420, 127689. https://doi.org/10.1016/j.cej.2020.127689
[64.]
Lv S., Hong T., Wan M., Peng L., Zhao Y., Sun L., & Zou X. (2023). Polydopamine-encapsulated cap-like mesoporous silica based delivery system for responsive pesticide release and high retention. Colloids and Surfaces B: Biointerfaces, 224, 113213. https://doi.org/10.1016/j.colsurfb.2023.113213
[65.]
Wan M., Hong T., He G., Zhao Y., & Sun L. (2023). Multifunctional hollow silica carriers with spiny structure for enhanced foliar adhesion and triple-responsive pesticide delivery. Chemical Engineering Journal, 475, 146461. https://doi.org/10.1016/j.cej.2023.146461
[66.]
Cao H., Chen Y., Qian Z., Huang T., Zou N., Zhang D., Liu F., & Liu F. (2023). Amphiphilicity-driven small alcohols regulate the flexibility of pesticide-loaded microcapsules for better foliar adhesion and utilization. ACS Applied Materials & Interfaces, 15(17), 21444-21456. https://doi.org/10.1021/acsami.3c01221
[67.]
Li M., Xu G., Huang F., Hou S., Liu B., & Yu Y. (2021). Influence of nano CuO on uptake and translocation of bifenthrin in rape (Brassica napus L.). Food Control, 130, 108333. https://doi.org/10.1016/j.foodcont.2021.108333
[68.]
De La Torre-Roche R., Hawthorne J., Deng Y., Xing B., Cai W., Newman L. A., White J. C., Ma X., & Hamdi H. (2013). Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environmental Science & Technology, 47(21), 12539-12547. https://doi.org/10.1021/es4034809
[69.]
Rico C. M., Majumdar S., Duarte-Gardea M., Peralta-Videa J. R., & Gardea-Torresdey J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8), 3485-3498. https://doi.org/10.1021/jf104517j
[70.]
Pan X., Guo X., Zhai T., Zhang D., Rao W., Cao F., & Guan X. (2023). Nanobiopesticides in sustainable agriculture: Developments, challenges, and perspectives. Environmental Science: Nano, 10(1), 41-61. https://doi.org/10.1039/D2EN00605G
[71.]
Bueno V., Gao X., Abdul Rahim A., Wang P., Bayen S., & Ghoshal S. (2022). Uptake and translocation of a silica nanocarrier and an encapsulated organic pesticide following foliar application in tomato plants. Environmental Science & Technology, 56(10), 6722-6732. https://doi.org/10.1021/acs.est.1c08185
[72.]
Pérez-de-Luque A. (2017). Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Frontiers in Environmental Science, 5, 12. https://doi.org/10.3389/fenvs.2017.00012
[73.]
Bouyahya A., El Omari N., Hakkour M., El Menyiy N., Benali T., Kulikov D., Chamkhi I., Shariati M. A., Venkidasamy B., & Thiruvengadam M. (2022). A review on transcriptomic and metabolomic responses of plants to nanopollution. Environmental Science and Pollution Research, 29(16), 22913-22929. https://doi.org/10.1007/s11356-022-18659-4
[74.]
Zhao P., Cao L., Ma D., Zhou Z., Huang Q., & Pan C. (2018). Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants. Nanoscale, 10(4), 1798-1806. https://doi.org/10.1039/C7NR08107C
[75.]
Kaziem A. E., Yang L., Lin Y., Kazem A. E., Xu H., & Zhang Z. X. (2021). Pathogenic invasion-responsive carrier based on mesoporous silica/β-glucan nanoparticles for smart delivery of fungicides. ACS Sustainable Chemistry & Engineering, 9(27), 9126-9138. https://doi.org/10.1021/acssuschemeng.1c02962
[76.]
Ma S., Ji Y., Dong Y., Chen S., Wang Y., & S. (2021). An environmental-friendly pesticide-fertilizer combination fabricated by in-situ synthesis of ZIF-8. Science of the Total Environment, 789, 147845. https://doi.org/10.1016/j.scitotenv.2021.147845
[77.]
Chen J., Xia X., Chu S., Wang H., Zhang Z., Xi N., & Gan J. (2020). Cation-π interactions with coexisting heavy metals enhanced the uptake and accumulation of polycyclic aromatic hydrocarbons in spinach. Environmental Science & Technology, 54(12), 7261-7270. https://doi.org/10.1021/acs.est.0c00363
[78.]
Xiong Q., Liang W., Shang W., Xie Z., Cheng J., Yu B., Zhao J., & Sun L. (2023). Bidirectional uptake, transfer, and transport of dextran-based nanoparticles in plants for multidimensional enhancement of pesticide utilization. Small, 20(8), 2305693. https://doi.org/10.1002/smll.202305693
[79.]
Wu X., Qin R., Wu H., Yao G., Zhang Y., Li P., Xu H., Zhang Z., & Yin Z. (2020). Nanoparticle-immersed paper imprinting mass spectrometry imaging reveals uptake and translocation mechanism of pesticides in plants. Nano Research, 13(3), 611-620. https://doi.org/10.1007/s12274-020-2700-5
[80.]
Zhang Y., Yan J., Avellan A., Gao X., Matyjaszewski K., Tilton R. D., & Lowry G. V. (2020). Temperature- and pH- responsive star polymers as nanocarriers with potential for in vivo agrochemical delivery. ACS Nano, 14(9), 10954-10965. https://doi.org/10.1021/acsnano.0c03140
[81.]
Wu T., Zhao K., Liu S., Bao Z., Zhang C., Wu Y., Du F., Gu Y., & Gao Y. (2023). Promising nanocarriers endowing non-systemic pesticides with upward translocation ability and microbial community enrichment effects in soil. Chemical Engineering Journal, 474, 145570. https://doi.org/10.1016/j.cej.2023.145570
[82.]
Hanna E. A., Mendez Lopez O. E., Salinas F., Astete C. E., Tamez C., Wang Y., Sabliov C. M., Eitzer B. D., Elmer W. H., Louie S., & White J. C. (2022). Zein nanoparticles for enhanced translocation of pesticide in soybean (Glycine max). ACS Agricultural Science & Technology, 2(5), 1013-1022. https://doi.org/10.1021/acsagscitech.2c00160
[83.]
Fischer J., Beckers S. J., Yiamsawas D., Thines E., Landfester K., & Wurm F. R. (2019). Targeted drug delivery in plants: Enzyme-responsive lignin nanocarriers for the curative treatment of the worldwide Grapevine Trunk Disease Esca. Advanced Science, 6(15), 1802315. https://doi.org/10.1002/advs.201802315
[84.]
Xu C., Shan Y., Bilal M., Xu B., Cao L., & Huang Q. (2020). Copper ions chelated mesoporous silica nanoparticles via dopamine chemistry for controlled pesticide release regulated by coordination bonding. Chemical Engineering Journal, 395, 125093. https://doi.org/10.1016/j.cej.2020.125093
[85.]
Bocca B., Barone F., Petrucci F., Benetti F., Picardo V., Prota V., & Amendola G. (2020). Nanopesticides: Physico- chemical characterization by a combination of advanced analytical techniques. Food and Chemical Toxicology, 146, 111816. https://doi.org/10.1016/j.fct.2020.111816
[86.]
Zhao P., Yuan W., Xu C., Li F., Cao L., & Huang Q. (2018). Enhancement of spirotetramat transfer in cucumber plant using mesoporous silica nanoparticles as carriers. Journal of Agricultural and Food Chemistry, 66(44), 11592-11600. https://doi.org/10.1021/acs.jafc.8b04415
[87.]
Dan Y., Zhang W., Xue R., Ma X., Stephan C., & Shi H. (2015). Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis. Environmental Science & Technology, 49(5), 3007-3014. https://doi.org/10.1021/es506179e
[88.]
Grimm J. B., & Lavis L. D. (2022). Caveat fluorophore: An insiders’ guide to small-molecule fluorescent labels. Nature Methods, 19(2), 149-158. https://doi.org/10.1038/s41592-021-01338-6
[89.]
Ashoka A. H., Aparin I. O., Reisch A., & Klymchenko A. S. (2023). Brightness of fluorescent organic nanomaterials. Chemical Society Reviews, 52(14), 4525-4548. https://doi.org/10.1039/D2CS00464J
[90.]
Futai K. (2008). Pine wilt in Japan:From first incidence to the present. In B. G. Zhao, K. Futai, J. R. Sutherland, & Y. Takeuchi (Eds.), Pine wilt disease (pp. 5-12). Springer. https://doi.org/10.1007/978-4-431-75655-2_2
[91.]
Atta S., Bera M., Chattopadhyay T., Paul A., Ikbal M., Maiti M. K., & Singh N. D. P. (2015). Nano-pesticide formulation based on fluorescent organic photoresponsive nanoparticles: For controlled release of 2,4-D and real time monitoring of morphological changes induced by 2,4-D in plant systems. RSC Advances, 5(106), 86990-86996. https://doi.org/10.1039/C5RA17121K
[92.]
Liu H., Zhong X., Pan Q., Zhang Y., Deng W., Zou G., & Ji X. (2024). A review of carbon dots in synthesis strategy. Coordination Chemistry Reviews, 498, 215468. https://doi.org/10.1016/j.ccr.2023.215468
[93.]
Wang Z., Li Y., Zhang B., Gao X., Shi M., Zhang S., Liu X., & Zheng Y. (2023). Functionalized carbon dot-delivered RNA nano fungicides as superior tools to control phytophthora pathogens through plant RDRP1 mediated spray- induced gene silencing. Advanced Functional Materials, 33(22), 2213143. https://doi.org/10.1002/adfm.202213143
[94.]
Ren L., Li W., Zhang D., Fang W., Yan D., Wang Q., Cao A., & Li Y. (2023). Silica modified copper-based alginate/chitosan hybrid hydrogel to control soil fumigant release, reduce emission and enhance bioactivity. International Journal of Biological Macromolecules, 244, 125132. https://doi.org/10.1016/j.ijbiomac.2023.125132
[95.]
Gan W., Kong X., Fang J., Shi X., Zhang S., Li Y., Zhang X., Liu F., Zhang Z., & Zhang F. (2023). A pH-responsive fluorescent nanopesticide for selective delivery and visualization in pine wood nematode control. Chemical Engineering Journal, 463, 142353. https://doi.org/10.1016/j.cej.2023.142353
[96.]
Chen S., Liu H., Yangzong Z., Gardea-Torresdey J. L., White J. C., & Zhao L. (2023). Seed priming with reactive oxygen species-generating nanoparticles enhanced maize tolerance to multiple abiotic stresses. Environmental Science & Technology, 57(48), 19932-19941. https://doi.org/10.1021/acs.est.3c07339
[97.]
Sirelkhatim A., Mahmud S., Seeni A., Kaus N. H. M., Ann L. C., Bakhori S. K. M., & Mohamad D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219-242. https://doi.org/10.1007/s40820-015-0040-x
[98.]
Marqus S., Ahmed H., Rezk A. R., Huynh T., Lawrie A., Nguyen D., Yeo L. Y., & Dekiwadia C. (2021). Enhanced antimicrobial activity and low phytotoxicity of acoustically synthesized large aspect ratio Cu-BTC metal-organic frameworks with exposed metal sites. ACS Applied Materials & Interfaces, 13(49), 58309-58318. https://doi.org/10.1021/acsami.1c16479
[99.]
Singbumrung K., Motina K., Inprasit W., Pisitsak P., & Inprasit T. (2023). A green functionalized method of Cu-BTC on poly(vinyl alcohol)/chitosan composite mat and its antibacterial potential. South African Journal of Chemical Engineering, 44, 257-264. https://doi.org/10.1016/j.sajce.2023.01.013
[100.]
Ebadollahi A., Valizadeh B., Panahandeh S., Mirhosseini H., Zolfaghari M., & Changbunjong T. (2022). Nanoencapsulation of acetamiprid by sodium alginate and polyethylene glycol enhanced its insecticidal efficiency. Nanomaterials, 12(17), 2971. https://doi.org/10.3390/nano12172971
[101.]
Liang W., Cheng J., Zhang J., Xiong Q., Jin M., & Zhao J. (2022). pH-responsive on-demand alkaloids release from core- shell ZnO@ZIF-8 nanosphere for synergistic control of bacterial wilt disease. ACS Nano, 16(2), 2762-2773. https://doi.org/10.1021/acsnano.1c09724
[102.]
Xu C., Cao L., Liu T., Chen H., & Li Y. (2023). pH- responsive copper doped ZIF-8 MOF nanoparticle for enhancing pesticide delivery and translocation in wheat plants. Environmental Science: Nano, 10(9), 2578-2590. https://doi.org/10.1039/D3EN00300K
[103.]
Wang X., Yan M., Zhou J., Song W., Xiao Y., Cui C., Hou R., Ke F., Zhu J., & Gu Z. (2021). Delivery of acetamiprid to tea leaves enabled by porous silica nanoparticles: Efficiency, distribution and metabolism of acetamiprid in tea plants. BMC Plant Biology, 21(1), 337. https://doi.org/10.1186/s12870-021-03120-4
[104.]
Zong M., Yu C., Li J., Sun D., Wang J., Mo Z., He S., Yang D., Zhang Z., Zeng Q., Ma K., Wan H., & He S. (2023). Redox and near-infrared light-responsive nanoplatform for enhanced pesticide delivery and pest control in rice: Construction, efficacy, and potential mechanisms. ACS Applied Materials & Interfaces, 15(35), 41351-41361. https://doi.org/10.1021/acsami.3c08413
[105.]
Hu P., Zhu L., Zheng F., Lai J., Xu H., & Jia J. (2021). Graphene oxide as a pesticide carrier for enhancing fungicide activity against Magnaporthe oryzae. New Journal of Chemistry, 45(5), 2649-2658. https://doi.org/10.1039/D0NJ04721J
[106.]
Hu P., Zhu L., Deng W., Huang W., Xu H., & Jia J. (2023). ConA-loaded PEGylated graphene oxide for targeted nanopesticide carriers against Magnaporthe oryzae. ACS Applied Nano Materials, 6(11), 9484-9494. https://doi.org/10.1021/acsanm.3c01170
[107.]
Barik T. K., Sahu B., & Swain V. (2008). Nanosilica-from medicine to pest control. Parasitology Research, 103(2), 253-258. https://doi.org/10.1007/s00436-008-0975-7
[108.]
Li X., Wang Q., Wang X., & Wang Z. (2022). Synergistic effects of graphene oxide and pesticides on fall armyworm, Spodoptera frugiperda. Nanomaterials, 12(22), 3985. https://doi.org/10.3390/nano12223985
[109.]
Wang X., Xie H., Wang Z., He K., & Jing D. (2019). Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environmental Science: Nano, 6(1), 75-84. https://doi.org/10.1039/C8EN00902C
[110.]
Tu Y., Lv M., Xiu P., Huynh T., Zhang M., Castelli M., Zhou R., Huang Q., Fan C., & Fang H. (2013). Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotechnology, 8(8), 594-601. https://doi.org/10.1038/nnano.2013.125
[111.]
Tian Y., Huang Y., Zhang X., Tang G., Gao Y., Zhou Z., Cao Y., Wang H., Yu X., Li X., Liu Y., Yan G., & Wang J. (2022). Self-assembled nanoparticles of a prodrug conjugate based on pyrimethanil for efficient plant disease management. Journal of Agricultural and Food Chemistry, 70(38), 11901-11910. https://doi.org/10.1021/acs.jafc.2c04489
[112.]
Tian Y., Tang G., Gao Y., Chen X., Zhou Z., Li Y., Cao Y., Wang H., Yu X., & Luo L. (2022). Carrier-free small molecular self-assembly based on berberine and curcumin incorporated in submicron particles for improving antimicrobial activity. ACS Applied Materials & Interfaces, 14(8), 10055-10067. https://doi.org/10.1021/acsami.1c22900
[113.]
Zhou Z., Gao Y., Tang G., Tian Y., Li Y., Wang H., Cao Y., Yu X., Zhang Z., & Liu Y. (2022). Facile preparation of pH/ pectinase responsive microcapsules based on CaCO3 using fungicidal ionic liquid as a nucleating agent for sustainable plant disease management. Chemical Engineering Journal, 446, 137073. https://doi.org/10.1016/j.cej.2022.137073
[114.]
Anstoetz M., Sharma N., Clark M., & Yee L. H. (2016). Characterization of an oxalate-phosphate-amine metal-organic framework (OPA-MOF) exhibiting properties suited for innovative applications in agriculture. Journal of Materials Science, 51(20), 9239-9252. https://doi.org/10.1007/s10853-016-0171-6
[115.]
Lv X., Yuan M., Pei Y., Liu C., Wang X., Wu L., Sun X., & Ma X. (2021). The enhancement of antiviral activity of chloroinconazide by aglinate-based nanogel and its plant growth promotion effect. Journal of Agricultural and Food Chemistry, 69(17), 4992-5002. https://doi.org/10.1021/acs.jafc.1c00941
[116.]
Ji Y., Ma S., Lv S., Wang Y., S., & Liu M. (2021). Nanomaterials for targeted delivery of agrochemicals by an all- in-one combination strategy and deep learning. ACS Applied Materials & Interfaces, 13(36), 43374-43386. https://doi.org/10.1021/acsami.1c11914
[117.]
Pan H., Huang W., Wu L., Hong Q., Hu Z., Wang M., & Zhang F. (2022). A pH dual-responsive multifunctional nanoparticle based on mesoporous silica with metal- polymethacrylic acid gatekeeper for improving plant protection and nutrition. Nanomaterials, 12(4), 687. com/2079-4991/12/4/687
[118.]
Xu W., Zhu Q., & Hu C. (2017). The structure of glycine dihydrate:Implications for the crystallization of glycine from solution and its structure in outer space. Angewandte Chemie International Edition, 56(8), 2030- 2034. https://doi.org/10.1002/anie.201610977
[119.]
Plohl O., Gyergyek S., & Zemljič L. F. (2021). Mesoporous silica nanoparticles modified with N-rich polymer as a potentially environmentally-friendly delivery system for pesticides. Microporous and Mesoporous Materials, 310, 110663. https://doi.org/10.1016/j.micromeso.2020.110663
[120.]
Shamshina J. L., Kelly A., Oldham T., & Rogers R. D. (2020). Agricultural uses of chitin polymers. Environmental Chemistry Letters, 18(1), 53-60. https://doi.org/10.1007/s10311-019-00934-5
[121.]
Zhao M., Zhou H., Hao L., Chen H., & Zhou X. (2022). A high-efficient nano pesticide-fertilizer combination fabricated by amino acid-modified cellulose based carriers. Pest Management Science, 78(2), 506-520. https://doi.org/10.1002/ps.6655
[122.]
Hou R., Zhou J., Song Z., Zhang N., Huang S., Kaziem A. E., & Zhang Z. (2023). pH-responsive λ-cyhalothrin nanopesticides for effective pest control and reduced toxicity to Harmonia axyridis. Carbohydrate Polymers, 302, 120373. https://doi.org/10.1016/j.carbpol.2022.120373
[123.]
Ma C., Li Q., Jia W., Shang H., Zhao J., Hao Y., Xing B., Tomko M., Zuverza-Mena N., Elmer W., & White J. C. (2021). Role of nanoscale hydroxyapatite in disease suppression of Fusarium-infected tomato. Environmental Science & Technology, 55(20), 13465-13476. https://doi.org/10.1021/acs.est.1c00901
[124.]
Abeywardana L., de Silva M., Sandaruwan C., Dahanayake D., Priyadarshana G., Chathurika S., & Kottegoda N. (2021). Zinc-doped hydroxyapatite-urea nanoseed coating as an efficient macro-micro plant nutrient delivery agent. ACS Agricultural Science & Technology, 1(3), 230-239. https://doi.org/10.1021/acsagscitech.1c00033
[125.]
Milner A. M., & Boyd I. L. (2017). Toward pesticidovigilance. Science, 357(6357), 1232-1234. https://doi.org/10.1126/science.aan2683
[126.]
Jepson P. C., Murray K., Bach O., Bonilla M. A., & Neumeister L. (2020). Selection of pesticides to reduce human and environmental health risks: A global guideline and minimum pesticides list. The Lancet Planetary Health, 4(2), 56-63. https://doi.org/10.1016/S2542-5196(19)30266-9
[127.]
Yu G., Zhou X., Zhang Z., Han C., Mao Z., Gao C., & Huang F. (2012). Pillar[6]arene/paraquat molecular recognition in water: High binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning. Journal of the American Chemical Society, 134(47), 19489-19497. https://doi.org/10.1021/ja3099905
[128.]
Tang M., Bian Q., Zhang Y.-M., Arif M., Luo Q., Men S., & Liu Y. (2020). Sequestration of pyridinium herbicides in plants by carboxylated pillararenes possessing different alkyl chains. RSC Advances, 10(58), 35136-35140. https://doi.org/10.1039/D0RA06657E
[129.]
Gao C., Huang Q., Lan Q., Feng Y., Tang F., Hoi M. P. M., Wang R., & Lee S. M. Y. (2018). A user-friendly herbicide derived from photo-responsive supramolecular vesicles. Nature Communications, 9(1), 2967. https://doi.org/10.1038/s41467-018-05437-5
[130.]
Zhao K., Xu G., Wang L., Wu T., Zhang X., Zhang C., Du F., & Gao Y. (2023). Using a dynamic hydrophilization strategy to achieve nanodispersion, full wetting, and precise delivery of hydrophobic pesticide. ACS Applied Materials & Interfaces, 15(30), 37093-37106. https://doi.org/10.1021/acsami.3c07530
[131.]
Neumann M., Schulz R., Schäfer K., Müller W., Mannheller W., & Liess M. (2002). The significance of entry routes as point and non-point sources of pesticides in small streams. Water Research, 36(4), 835-842. https://doi.org/10.1016/S0043-1354(01)00310-4
[132.]
Chakraborty U., Kaur G., Rubahn H. G., Kaushik A., Chaudhary G. R., & Mishra Y. K. (2023). Advanced metal oxides nanostructures to recognize and eradicate water pollutants. Progress in Materials Science, 139, 101169. https://doi.org/10.1016/j.pmatsci.2023.101169
[133.]
Hoover C. M., Rumschlag S. L., Strgar L., Arakala A., Gambhir M., de Leo G. A., Remais J. V., & Rohr J. R. (2020). Effects of agrochemical pollution on schistosomiasis transmission: A systematic review and modelling analysis. The Lancet Planetary Health, 4(7), 280-291. https://doi.org/10.1016/S2542-5196(20)30105-4
[134.]
Xiang Y., Han J., Zhang G., Zhan F., Cai D., & Wu Z. (2018). Efficient synthesis of starch-regulated porous calcium carbonate microspheres as a carrier for slow-release herbicide. ACS Sustainable Chemistry & Engineering, 6(3), 3649-3658. https://doi.org/10.1021/acssuschemeng.7b03973
[135.]
Taverna M. E., Busatto C. A., Lescano M. R., Nicolau V. V., Zalazar C. S., Meira G. R., & Estenoz D. A. (2018). Microparticles based on ionic and organosolv lignins for the controlled release of atrazine. Journal of Hazardous Materials, 359, 139-147. https://doi.org/10.1016/j.jhazmat.2018.07.010
[136.]
Xiao Y., Wu C., Zhou L., Yin Q., & Yang J. (2022). Cocrystal engineering strategy for sustained release and leaching reduction of herbicides: A case study of metamitron. Green Chemistry, 24(20), 8088-8099. https://doi.org/10.1039/D2GC02949A
[137.]
Zhang T., Sun H., Yang L., Zhang P., Zhang Y., Bai J., & Zhang D.-X. (2023). Interfacial polymerization depth mediated by the shuttle effect regulating the application performance of pesticide-loaded microcapsules. ACS Nano, 17(20), 20654-20665. https://doi.org/10.1021/acsnano.3c07915
[138.]
Wei J., Wang X., Tu C., Long T., Bu Y., Wang H., Deng S., & Jiang J. (2023). Remediation technologies for neonicotinoids in contaminated environments: Current state and future prospects. Environment International, 178, 108044. https://doi.org/10.1016/j.envint.2023.108044
[139.]
Flores-Céspedes F., Daza-Fernández I., Villafranca-Sánchez M., Fernández-Pérez M., Morillo E., & Undabeytia T. (2018). Lignin and ethylcellulose in controlled release formulations to reduce leaching of chloridazon and metribuzin in light-textured soils. Journal of Hazardous Materials, 343, 227-234. https://doi.org/10.1016/j.jhazmat.2017.09.012
[140.]
Xiao Y., Wu C., Feng S., Chen M., Cao H., Chen K., & Yin Q. (2023). Green and efficient delivery of pesticides throughout their life cycle via cooperative solid and solution self-assembly. Chemical Engineering Journal, 475, 146037. https://doi.org/10.1016/j.cej.2023.146037
[141.]
Dugan S. T., Muhammetoglu A., & Uslu A. (2023). A combined approach for the estimation of groundwater leaching potential and environmental impacts of pesticides for agricultural lands. Science of the Total Environment, 901, 165892. https://doi.org/10.1016/j.scitotenv.2023.165892
[142.]
Lipper L., Thornton P., Campbell B. M., Baedeker T., Braimoh A., Bwalya M., Torquebiau E. F., Cattaneo A., Garrity D., Henry K., Hottle R., Jackson L., Jarvis A., Kossam F., Mann W., McCarthy N., Meybeck A., Neufeldt H., Remington T, … Tibu A. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068-1072. https://doi.org/10.1038/nclimate2437
[143.]
Zhu J. K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313-324. https://doi.org/10.1016/j.cell.2016.08.029
[144.]
Zhao W., Wu Z., Amde M., Zhu G., Wei Y., Zhou P., Lynch I., Song M., Tan Z., Zhang P., & Rui Y. (2023). Nanoenabled enhancement of plant tolerance to heat and drought stress on molecular response. Journal of Agricultural and Food Chemistry, 71(51), 20405-20418. https://doi.org/10.1021/acs.jafc.3c04838
[145.]
Wu H., Tito N., & Giraldo J. P. (2017). Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano, 11(11), 11283-11297. https://doi.org/10.1021/acsnano.7b05723
[146.]
Zhang Y., Fu L., Martinez M. R., Sun H., Nava V., Yan J., Lowry G. V., Averick S. E., Marelli B., Giraldo J. P., Matyjaszewski K., & Tilton R. D. (2023). Temperature-responsive bottlebrush polymers deliver a stress-regulating agent in vivo for prolonged plant heat stress mitigation. ACS Sustainable Chemistry & Engineering, 11(8), 3346-3358. https://doi.org/10.1021/acssuschemeng.2c06461
[147.]
Wang K., Wang Y., Wu Y., Jiang J., Zhang Y., Yu N., & Liu Z. (2023). A novel dual stimuli-responsive and double-loaded insecticidal nanoformulation for efficient control of insect pest. Chemical Engineering Journal, 474, 146012. https://doi.org/10.1016/j.cej.2023.146012
[148.]
Zhong X., Su G., Zeng Q., Li G., Xu H., Wu H., & Zhou X. (2023). Preparation of salicylic acid-functionalized nanopesticides and their applications in enhancing salt stress resistance. ACS Applied Materials & Interfaces, 15(37), 43282-43293. https://doi.org/10.1021/acsami.3c06398
[149.]
Maggi F., Tang F. H. M., & Tubiello F. N. (2023). Agricultural pesticide land budget and river discharge to oceans. Nature, 620(7976), 1013-1017. https://doi.org/10.1038/s41586-023-06296-x
[150.]
Su Y., Zhou X., Meng H., Xia T., Liu H., Rolshausen P., Jassby D., McLean J. E., Zhang Y., & Keller A. A. (2022). Cost-benefit analysis of nanofertilizers and nanopesticides emphasizes the need to improve the efficiency of nanoformulations for widescale adoption. Nature Food, 3(12), 1020-1030. https://doi.org/10.1038/s43016-022-00647-z
[151.]
Liu Y., Wu T., White J. C., & Lin D. (2021). A new strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil. Nature Nanotechnology, 16(2), 197-205. https://doi.org/10.1038/s41565-020-00803-1
[152.]
Dhiman A., Sharma A. K., Bhardwaj D., & Agrawal G. (2023). Biodegradable dual stimuli responsive alginate based microgels for controlled agrochemicals release and soil remediation. International Journal of Biological Macromolecules, 228, 323-332. https://doi.org/10.1016/j.ijbiomac.2022.12.225
[153.]
Hou X., Pan Y., Xiao H., & Liu J. (2019). Controlled release of agrochemicals using pH and redox dual-responsive cellulose nanogels. Journal of Agricultural and Food Chemistry, 67(24), 6700-6707. https://doi.org/10.1021/acs.jafc.9b00536
[154.]
Dhiman A., Bhardwaj D., Goswami K., Deepika & Agrawal, G. (2023). Biodegradable redox sensitive chitosan based microgels for potential agriculture application. Carbohydrate Polymers, 313, 120893. https://doi.org/10.1016/j.carbpol.2023.120893
[155.]
Torres-Figueroa A. V., de los Santos-Villalobos S., Rodríguez- Félix D. E., Moreno-Salazar S. F., Pérez-Martínez C. J., Chan-Chan L. H., & del Castillo-Castro T. (2023). Physically and chemically cross-linked poly(vinyl alcohol)/humic acid hydrogels for agricultural applications. ACS Omega, 8(47), 44784-44795. https://doi.org/10.1021/acsomega.3c05868
[156.]
Wu T., Zhao K., Zhang C., Zhong T., Li Z., Bao Z., & Du F. (2022). Promising delivery platform for smart pest control with high water-retaining capacity. ACS Applied Materials & Interfaces, 14(49), 55062-55074. https://doi.org/10.1021/acsami.2c15737
[157.]
di Santo N., Russo I., & Sisto R. (2022). Climate change and natural resource scarcity: A literature review on dry farming. Land, 11(12), 2102. https://doi.org/10.3390/land11122102
[158.]
Kah M., Kookana R. S., Gogos A., & Bucheli T. D. (2018). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology, 13(8), 677-684. https://doi.org/10.1038/s41565-018-0131-1
[159.]
Hofmann T., Lowry G. V., Ghoshal S., Tufenkji N., Brambilla D., Dutcher J. R., Wilkinson K. J., Giraldo J. P., Kinsella J. M., Landry M. P., Lovell W., Naccache R., Paret M., Pedersen J. A., Unrine J. M., & White J. C. (2020). Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food, 1(7), 416-425. https://doi.org/10.1038/s43016-020-0110-1
[160.]
Raemdonck K., & De Smedt S. C. (2015). Lessons in simplicity that should shape the future of drug delivery. Nature Biotechnology, 33(10), 1026-1027. https://doi.org/10.1038/nbt.3366
[161.]
Shangguan W., Huang Q., Chen H., Zheng Y., Zhao P., Cao C., Cao L., & Cao Y. (2024). Making the complicated simple: A minimizing carrier strategy on innovative nanopesticides. Nano-Micro Letters, 16(1), 193. https://doi.org/10.1007/s40820-024-01413-5
[162.]
Lowry G. V., Avellan A., & Gilbertson L. M. (2019). Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnology, 14(6), 517-522. https://doi.org/10.1038/s41565-019-0461-7
[163.]
Yan X., Yuan H., Chen Y., Shi X., Liu X., Wang Z., & Yang D. (2022). Broadcasting of tiny granules by drone to mimic liquid spraying for the control of fall armyworm (Spodoptera frugiperda). Pest Management Science, 78(1), 43-51. https://doi.org/10.1002/ps.6604
[164.]
Memarizadeh N., Ghadamyari M., Adeli M., & Talebi K. (2014). Linear-dendritic copolymers/indoxacarb supramolecular systems: Biodegradable and efficient nano-pesticides. Environmental Science: Processes & Impacts, 16(10), 2380-2389. https://doi.org/10.1039/C4EM00321G
[165.]
Cheng J., Li M., Zhu R., Li J., Yin J., & Xiao W. (2023) (in press). A timing self-cleaning nanoherbicide: Design of triple- structure nanovectors for weed control and pesticide residues treatment. Advanced Agrochem. https://doi.org/10.1016/j.aac.2023.10.002
[166.]
Kah M., Tufenkji N., & White J. C. (2019). Nano-enabled strategies to enhance crop nutrition and protection. Nature Nanotechnology, 14(6), 532-540. https://doi.org/10.1038/s41565-019-0439-5
[167.]
Kato-Namba A., Iida T., Ohta K., Suzuki M., Saito K., Takeuchi K., Nakagawa T., & Kazama H. (2023). Surfactants alter mosquito’s flight and physical condition. Scientific Reports, 13(1), 2355. https://doi.org/10.1038/s41598-023-29455-6
[168.]
WHO, FAO. (2022). Manual on the development and use of FAO and WHO specifications for chemical pesticides-second edition. https://doi.org/10.4060/cb8401en
[169.]
The European Commission. (2023). Amending annex XVII to regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the registration, evaluation, authorisation and restriction of chemicals (REACH) as regards synthetic polymer microparticles. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R2055
Funding
Beijing Natural Science Foundation(6232033); National Natural Science Foundation of China(32202368); National Key Research and Development Program of China(2022YFD1700500); Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)
PDF

Accesses

Citations

Detail

Sections
Recommended

/