Better preparedness for invasive crop pests in changing climate: Assessing the risk of western corn rootworm (Coleoptera: Chrysomelidae) colonization in global maize growing regions and future spread dynamics

Zhenan Jin, Xiaoqing Xian, Haoxiang Zhao, Ming Li, Jianyang Guo, Nianwan Yang, Fanghao Wan, Stefan Toepfer, Wanxue Liu

PDF
New Plant Protection ›› 2024, Vol. 1 ›› Issue (1) : 12. DOI: 10.1002/npp2.12
ORIGINAL PAPER

Better preparedness for invasive crop pests in changing climate: Assessing the risk of western corn rootworm (Coleoptera: Chrysomelidae) colonization in global maize growing regions and future spread dynamics

Author information +
History +

Abstract

The establishment and spread of alien species in new areas pose a potential threat to global food security. Diabrotica virgifera virgifera LeConte is an invasive maize pest originally from Mexico, causing substantial economic damage to maize production across extensive areas of the United States and Europe. However, it has not yet invaded Asia or other regions. We used the Ensemble Model and Cellular Automaton to analyze the establishment and spread risk of this pest. The pest has not explored novel climates during past invasions, and the climatic ecological niche it occupied in Europe constitutes only a fraction of that in North America, indicating that the species still possesses the potential to spread further in Europe in the future. Currently, approximately 34% of global maize-growing areas are at risk, with 25.5% facing a high establishment risk. By 2060, a significant northward spread is projected to occur in North America and Europe, while only a sporadic spread is expected in South America, Asia, Africa, or Oceania. Therefore, the adaptation of transnational management strategies may be necessary to prevent and control the risk of introduction and spread of this important maize pest into new areas of global maize production.

Keywords

climate change / Diabrotica virgifera virgifera / global maize-growing areas / potential geographical distribution / spread reconstruction and prediction

Cite this article

Download citation ▾
Zhenan Jin, Xiaoqing Xian, Haoxiang Zhao, Ming Li, Jianyang Guo, Nianwan Yang, Fanghao Wan, Stefan Toepfer, Wanxue Liu. Better preparedness for invasive crop pests in changing climate: Assessing the risk of western corn rootworm (Coleoptera: Chrysomelidae) colonization in global maize growing regions and future spread dynamics. New Plant Protection, 2024, 1(1): 12 https://doi.org/10.1002/npp2.12

References

[1.]
FAO. (2023). World food and agriculture - Statistical yearbook. https://doi.org/10.4060/cc8166en
[2.]
Tefera T. (2012). Post-harvest losses in African maize in the face of increasing food shortage. Food Security, 4(2), 267-277. https://doi.org/10.1007/s12571-012-0182-3
[3.]
Ranum P., Peña-Rosas J. P., & Garcia-Casal M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 105-112. https://doi.org/10.1111/nyas.12396
[4.]
Corin F. P., Kate L. C., & Sean T. M. (2017). Economic impacts of invasive alien species on African smallholder livelihoods. Global Food Security, 14, 31-37. https://doi.org/10.1016/j.gfs.2017.01.011
[5.]
Savary S., Willocquet L., Pethybridge S. J., Esker P., McRoberts N., & Nelson A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3(3), 430-439. https://doi.org/10.1038/s41559-018-0793-y
[6.]
Day R., Abrahams P., Bateman M., Beale T., Clottey V., Cock M., Colmenarez Y., Corniani N., Early R., Godwin J., Gomez J., Moreno P. G., Murphy S. T., Oppong-Mensah B., Phiri N., Pratt C., Silvestri S., & Witt A. (2017). Fall armyworm: Impacts and implications for Africa. Outlooks on Pest Management, 28(5), 196-201. https://doi.org/10.1564/v28_oct_02
[7.]
Ward N. L., & Masters G. J. (2007). Linking climate change and species invasion: An illustration using insect herbivores. Global Change Biology, 13(8), 1605-1615. https://doi.org/10.1111/j.1365-2486.2007.01399.x
[8.]
Seebens H., Blackburn T. M., Dyer E. E., Genovesi P., Hulme P. E., Jeschke J. M., Pagad S., Pyšek P., Winter M., Arianoutsou M., Bacher S., Blasius B., Brundu G., Capinha C., Celesti-Grapow L., Dawson W., Dullinger S., Fuentes N., Jäger H., … Essl F. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8(1), 14435. https://doi.org/10.1038/ncomms14435
[9.]
Roques A. (2010). Taxonomy, time and geographic patterns. Chapter 2.BioRisk, 4, 11-26. https://doi.org/10.3897/biorisk.4.70
[10.]
David R., Laparie M., McCauley S. J., & Dries B. (2018). Environmental adaptations, ecological filtering, and dispersal spread central to insect invasions. Annual Review of Entomology, 63(1), 345-368. https://doi.org/10.1146/annurev-ento-020117-043315
[11.]
Crozier L., & Dwyer G. (2006). Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. The American Naturalist, 167(6), 853-866. https://doi.org/10.2307/3844742
[12.]
Davis M. B., & Shaw R. G. (2001). Range shifts and adaptive responses to quaternary climate change. Science, 292(5517), 673-679. https://doi.org/10.1126/science.292.5517.673
[13.]
Engler R., & Guisan A. (2009). MigClim: Predicting plant distribution and dispersal spread in a changing climate. Diversity and Distributions, 15(4), 590-601. https://doi.org/10.1111/j.1472-4642.2009.00566.x
[14.]
Jaksons R., Falkner K., & Moltchanova E. (2022). Modelling the emergence dynamics of the western corn rootworm beetle (Diabrotica virgifera virgifera). Scientific Reports, 12(1), 2340. https://doi.org/10.1038/s41598-022-05032-1
[15.]
David M. L., Simonin P. W., Burgiel S. W., Keller R. P., Bossenbroek J. M., Jerde C. L., Kramer A. M., Rutherford E. S., Barnes M.A., Wittmann M.E., Chadderton W. L., Apriesnig J. L., Beletsky D., Cooke R. M., Drake J. M., Egan S. P., Finnoff D. C., Gantz C. A., Grey E. K., … Zhang H. (2016). Risk analysis and bioeconomics of invasive species to inform policy and management. Annual Review of Environment and Resources, 41(1), 453-488. https://doi.org/10.1146/annurev-environ-110615-085532
[16.]
Branson T. F., & Krysan J. L. (1981). Feeding and oviposition behavior and life cycle strategies of Diabrotica: An evolutionary view with implications for pest management. Environmental Entomology, 10(6), 826-831. https://doi.org/10.1093/ee/10.6.826
[17.]
Meinke L. J., Souza D., & Siegfried B. D. (2021). The use of insecticides to manage the western corn rootworm, Diabrotica virgifera virgifera, LeConte: History, field-evolved resistance, and associated mechanisms. Insects, 12(2), 112. https://doi.org/10.3390/insects12020112
[18.]
Boiça Júnior A. L., Costa E. N., Nogueira L., & Ribeiro Z. A. (2022). Evaluation of maize genotypes on oviposition preference of Diabrotica speciosa (Germar). Arthropod-Plant Interactions, 16(6), 691-698. https://doi.org/10.1007/s11829-022-09928-7
[19.]
Spencer J. L., Hibbard B. E., Moeser J., & Onstad D. W. (2009). Behaviour and ecology of the western corn rootworm (Diabrotica virgifera virgifera LeConte). Agricultural and Forest Entomology, 11(1), 9-27. https://doi.org/10.1111/j.1461-9563.2008.00399.x
[20.]
Godfrey L. D., Meinke L. J., Wright R. J., & Hein G. L. (1995). Environmental and edaphic effects on western corn root worm (Coleoptera: Chrysomelidae) overwintering egg survival. Journal of Economic Entomology, 88(5), 1445-1454. https://doi.org/10.1093/jee/88.5.1445
[21.]
Susan A. C., Jon J. T., & John A. M. (1986). Study of migratory flight in the western corn rootworm (Coleoptera: Chrysomelidae). Environmental Entomology, 15(3), 620-625. https://doi.org/10.1093/ee/15.3.620
[22.]
Moeser J., & Vidal S. (2005). Nutritional resources used by the invasive maize pest Diabrotica virgifera virgifera in its new South-east-European distribution range. Entomologia Experimentalis et Applicata, 114(1), 55-63. https://doi.org/10.1111/j.0013-8703.2005.00228.x
[23.]
Gray M. E., Sappington T. W., Miller N. J., Moeser J., & Bohn M. O. (2009). Adaptation and invasiveness of western corn rootworm: Intensifying research on a worsening pest. Annual Review of Entomology, 54(1), 303-321. https://doi.org/10.1146/annurev.ento.54.110807.090434
[24.]
Fishilevich E., Vélez A. M., Storer N. P., Li H., Bowling A. J., Rangasamy M., Worden S. E., Narva K. E., & Siegfried B. D. (2016). RNAi as a management tool for the western corn rootworm, Diabrotica virgifera virgifera. Pest Management Science, 72(9), 1652-1663. https://doi.org/10.1002/ps.4324
[25.]
Jepsen J. U., Hagen S. B., Ims R. A., & Yoccoz N. G. (2008). Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: Evidence of a recent outbreak range expansion. Journal of Animal Ecology, 77(2), 257-264. https://doi.org/10.1111/j.1365-2656.2007.01339.x
[26.]
Aragón P., & Lobo J. M. (2012). Predicted effect of climate change on the invasibility and distribution of the Western corn root-worm. Agricultural and Forest Entomology, 14(1), 13-18. https://doi.org/10.1111/j.1461-9563.2011.00532.x
[27.]
Jin Z. A., Zhao H. X., Xian X. Q., Li M., Qi Y. H., Guo J. Y., Yang N. W., Z. C., & Liu W. X. (2024). Early warning and management of invasive crop pests under global warming: Estimating the global geographical distribution patterns and ecological niche overlap of three Diabrotica beetles. Environmental Science and Pollution Research, 31(9), 13575-13590. https://doi.org/10.1007/s11356-024-32076-9
[28.]
Marchioro C. A., & Krechemer F. S. (2018). Potential global distribution of Diabrotica species and the risks for agricultural production. Pest Management Science, 74(9), 2100-2109. https://doi.org/10.1002/ps.4906
[29.]
Aragón P., Baselga A.,& Lobo J. M. (2010). Global estimation of invasion risk zones for the western corn rootworm Diabrotica virgifera virgifera: Integrating distribution models and physiological thresholds to assess climatic favourability. Journal of Applied Ecology, 47(5), 1026-1035. https://doi.org/10.1111/j.1365-2664.2010.01847.x
[30.]
Liu C., Wolter C., Xian W., & Jeschke J. M. (2020). Species distribution models have limited spatial transferability for invasive species. Ecology Letters, 23(11), 1682-1692. https://doi.org/10.1111/ele.13577
[31.]
Venette R. C., Kriticos D. J., Magarey R. D., Koch F. H., Baker R. H. A., Worner S. P., Gómez Raboteaux N. N., McKenney D. W., Dobesberger E. J., Yemshanov D., De Barro P. J., Hutchison W. D., Fowler G., Kalaris T. M., & Pedlar J. (2010). Pest risk maps for invasive alien species: A roadmap for improvement. BioScience, 60(5), 349-362. https://doi.org/10.1525/bio.2010.60.5.5
[32.]
Hastie T., Tibshirani R., & Buja A. (1994). Flexible discriminant analysis by optimal scoring. Journal of the American Statistical Association, 89(428), 1255-1270. https://doi.org/10.2307/2290989
[33.]
Stohlgren T. J., Ma P., Kumar S., Rocca M., Morisette J. T., Jarnevich C. S., & Benson N. (2010). Ensemble habitat mapping of invasive plant species. Risk Analysis, 30(2), 224-235. https://doi.org/10.1111/j.1539-6924.2009.01343.x
[34.]
Thuiller W., Georges D., Engler R., & Breiner F. (2016). ‘biomod2’: Ensemble platform for species distribution modeling. Retrieved from https://CRAN.R-project.org/package=biomod2
[35.]
Thuiller W. (2004). Patterns and uncertainties of species' range shifts under climate change. Global Change Biology, 10(12), 2020-2027. https://doi.org/10.1111/j.1365-2486.2004.00859.x
[36.]
Müller-Schärer H., Schaffner U., & Steinger T. (2004). Evolution in invasive plants: Implications for biological control. Trends in Ecology & Evolution, 19(8), 417-422. https://doi.org/10.1016/j.tree.2004.05.010
[37.]
Wang Y. S., Xie B. Y., Wan F. H., Xiao Q. M., & Dai L. Y. (2008). Application of ecologic niche models in explanation of niche shift of invasive alien species. Acta Ecologica Sinica, 28(10), 4974-4981. Retrieved from https://api.semanticscholar.org/CorpusID:87121348
[38.]
Di Cola V., Broennimann O., Petitpierre B., Breiner F. T., D'Amen M., Randin C., Engler R., Pottier J., Pio D., Dubuis A., Pellissier L., Mateo R. G., Hordijk W., Salamin N., & Guisan A. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774-787. https://doi.org/10.1111/ecog.02671
[39.]
Engler R., Hordijk W., & Guisan A. (2012). The MIGCLIM R package - Seamless integration of dispersal constraints into projections of species distribution models. Ecography, 35(10), 872-878. https://doi.org/10.1111/j.1600-0587.2012.07608.x
[40.]
Warren D. L., Glor R. E., & Turelli M. (2010). ENMTools: A toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607-611. https://doi.org/10.1111/j.1600-0587.2009.06142.x
[41.]
Rödder D., & Lötters S. (2009). Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of the Mediterranean house gecko (Hemidactylus turcicus). Global Ecology and Biogeography, 18(6), 674-687. https://doi.org/10.1111/j.1466-8238.2009.00477.x
[42.]
De Meyer M., Robertson M. P., Mansell M. W., Ekesi S., Tsuruta K., Mwaiko W., Vayssières J.-F., & Peterson A. T. (2010). Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera, Tephritidae). Bulletin of Entomological Research, 100(1), 35-48. https://doi.org/10.1017/S0007485309006713
[43.]
Hill M. P., & Terblanche J. S. (2014). Niche overlap of congeneric invaders supports a single-species hypothesis and provides insight into future invasion risk: Implications for global management of the Bactrocera dorsalis complex. PLoS One, 9(2), e90121. https://doi.org/10.1371/journal.pone.0090121
[44.]
Hill M. P., Gallardo B., & Terblanche J. S. (2017). A global assessment of climatic niche shifts and human influence in insect invasions. Global Ecology and Biogeography, 26(6), 679-689. https://doi.org/10.1111/geb.12578
[45.]
Hordijk W., & Broennimann O. (2012). Dispersal spread routes reconstruction and the minimum cost arborescence problem. Journal of Theoretical Biology, 308, 115-122. https://doi.org/10.1016/j.jtbi.2012.06.007
[46.]
Elith J., Kearney M., & Phillips S. (2010). The art of modelling range shifting species. Methods in Ecology and Evolution, 1(4), 330-342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
[47.]
Elith J., Graham C. H., Anderson R. P., Dudı́ k M., Ferrier S., Guisan A., Hijmans R. J., Huettmann F., Leathwick J. R., Lehmann A., Li J., Lohmann L. G., Loiselle B. A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J. M., Peterson A. T., … Zimmermann N. E. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
[48.]
Heikkinen R. K., Marmion M., & Luoto M. (2012). Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography, 35(3), 276-288. https://doi.org/10.1111/j.1600-0587.2011.06999
[49.]
Xian X. Q., Zhao H. X., Wang R., Huang H. K., Chen B. X., Zhang G. F., Liu W. X., & Wan F. H. (2023). Climate change has increased the global threats posed by three ragweeds (Ambrosia L.) in the Anthropocene. Science of the Total Environment, 859(2), 160252. https://doi.org/10.1016/j.scitotenv.2022.160252
[50.]
Barbet-Massin M., Jiguet F., Albert C. H., & Thuiller W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x
[51.]
Coetzee B. W. T., Roberston M. P., Erasmus B. F. N., van Rensburg B. J., & Thuiller W. (2009). Ensemble models predict important bird areas in southern Africa will become less
[]
effective for conserving endemic birds under climate change. Global Ecology and Biogeography, 18(6), 701-710. https://doi.org/10.1111/j.1466-8238.2009.00485.x
[52.]
Phillips S. J., Anderson R. P., & Schapire R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
[53.]
Guisan A., Petitpierre B., Broennimann O., Daehler C., & Kueffer C. (2014). Unifying niche shift studies: Insights from biological invasions. Trends in Ecology and Evolution, 29(5), 260-269. https://doi.org/10.1016/j.tree.2014.02.009
[54.]
Pearson R. G., & Dawson T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361-371. https://doi.org/10.1046/j.1466-822X.2003.00042.x
[55.]
Miller N., Estoup A., Toepfer S., Bourguet D., Lapchin L., Derridj S., Kim K. S., Reynaud P., Furlan L., & Guillemaud T. (2005). Multiple transatlantic introductions of the western corn rootworm. Science, 310(5750), 992. https://doi.org/10.1126/science.1115871
[56.]
Warren D. L., Glor R. E., & Turelli M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868-2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
[57.]
Isard S. A., Spencer J. L., Mabry T. R., & Levine E. (2004). Influence of atmospheric conditions on high-elevation flight of western corn rootworm (Coleoptera: Chrysomelidae). Environmental Entomology, 33(3), 650-656. https://doi.org/10.1603/0046-225X-33.3.650
[58.]
Di Febbraro M., Bosso L., Fasola M., Santicchia F., Aloise G., Lioy S., Tricarico E., Ruggieri L., Bovero S., Mori E., & Bertolino S. (2023). Different facets of the same niche: Integrating citizen science and scientific survey data to predict biological invasion risk under multiple global change drivers. Global Change Biology, 29(19), 5509-5523. https://doi.org/10.1111/gcb.16901
[59.]
Thuiller W., Lafourcade B., Engler R., & Araújo M. B. (2009). BIOMOD - A platform for ensemble forecasting of species distributions. Ecography, 32(3), 369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.x
[60.]
Aalto J., & Luoto M. (2014). Integrating climate and local factors for geomorphological distribution models. Earth Surface Processes and Landforms, 39(13), 1729-1740. https://doi.org/10.1002/esp.3554
[61.]
Zhao H. X., Xian X. Q., Yang N. W., Zhang Y. J., Liu H., Wan F. H., Guo J. Y., & Liu W. X. (2023). Insights from the biogeographic approach for biocontrol of invasive alien pests: Estimating the ecological niche overlap of three egg parasitoids against Spodoptera frugiperda in China. Science of the Total Environment, 862, 160785. https://doi.org/10.1016/j.scitotenv.2022.160785
[62.]
Wang H. R., Zhang Q. Z., Liu R. F., Sun Y., Xiao J. H., Gao L., Gao X., & Wang H. B. (2022). Impacts of changing climate on the distribution of Solenopsis invicta Buren in Mainland China: Exposed urban population distribution and suitable habitat change. Ecological Indicators, 139, 108944. https://doi.org/10.1016/j.ecolind.2022.108944
[63.]
Schaafsma A. W., Fuentes J. D., Gillespie T. J., Whitfield G. H., & Ellis C. R. (1993). Performance of a model for egg hatching of the western corn rootworm, Diabrotica virgifera virgifera LeConte, using measured and modeled soil temperatures as input. International Journal of Biometeorology, 37(1), 11-18. https://doi.org/10.1007/BF01212761
[64.]
Levine E., Oloumi-Sadeghi H., & Ellis C. R. (1992). Thermal requirements, hatching patterns, and prolonged diapause in western corn rootworm (Coleoptera: Chrysomelidae) eggs. Journal of Economic Entomology, 85(6), 2425-2432. https://doi.org/10.1093/jee/85.6.2425
[65.]
Grant R. H., & Seevers K. P. (1989). Local and long-range movement of adult western corn rootworm (Coleoptera: Chrysomelidae) as evidenced by washup along southern lake Michigan shores. Environmental Entomology, 18(2), 266-272. https://doi.org/10.1093/ee/18.2.266
[66.]
Jackson J. J., & Elliott N. C. (1988). Temperature-dependent development of immature stages of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Environmental Entomology, 17(2), 166-171. https://doi.org/10.1093/ee/17.2.166
[67.]
Fisher J. R. (1986). Development and survival of pupae of Diabrotica virgifera virgifera and D. undecimpunctata howardi (Coleoptera: Chrysomelidae) at constant temperatures and humidities. Environmental Entomology, 15(3), 626-630. https://doi.org/10.1093/ee/15.3.626
[68.]
Estoup A., & Guillemaud T. (2010). Reconstructing routes of invasion using genetic data: Why, how and so what? Molecular Ecology, 19, 4113-4130. https://doi.org/10.1111/j.1365-294X.2010.04773.x
[69.]
Broennimann O., Fitzpatrick M. C., Pearman P. B., Petipiette B., Pellissier L., Yoccoz N. G., Thuiller W., Fortin M. J., Randin C., Zimmermann N. E., Graham C. H., & Guisan A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481-497. https://doi.org/10.1111/j.1466-8238.2011.00698.x
[70.]
Blonder B., Lamanna C., Violle C., & Enquist B. J. (2014). The n-dimensional hypervolume. Global Ecology and Biogeography, 23(5), 595-609. https://doi.org/10.1111/geb.12146
[71.]
Liu C., Wolter C., Xian W., & Jeschke J. M. (2020). Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23643-23651. https://doi.org/10.1073/pnas.2004289117
[72.]
Broennimann O., Mráz P., Petitpierre B., Guisan A., & Müller- Schärer H. (2014). Contrasting spatio-temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America. Journal of Biogeography, 41(6), 1126-1136. https://doi.org/10.1111/jbi.12274
[73.]
Petitpierre B., Kueffer C., Broennimann O., Randin C., Daehler C., & Guisan A. (2012). Climatic niche shifts are rare among terrestrial plant invaders. Science, 335(6074), 1344-1348. https://doi.org/10.1126/science.1215933
[74.]
Ellstrand N. C., & Schierenbeck K. A. (2000). Hybridization as a stimulus forthe evolution of invasiveness in plants? Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7043-7050. https://doi.org/10.1073/pnas.97.13.7043
[75.]
Kim K. S., & Sappington T. W. (2005). Genetic structuring of western corn rootworm (Coleoptera: Chrysomelidae) populations in the United States based on microsatellite loci analysis. Environmental Entomology, 34(2), 494-503. https://doi.org/10.1603/0046-225X-34.2.494
[76.]
Ciosi M., Miller N. J., Toepfer S., Estoup A., & Guillemaud T. (2011). Stratified dispersal spread and increasing genetic variation during the invasion of Central Europe by the western corn rootworm, Diabrotica virgifera virgifera. EvolutionaryApplications, 4(1), 54-70. https://doi.org/10.1111/j.1752-4571.2010.00133.x
[77.]
Spencer J. L., Levine E., Isard S. A., & Mabry T. R. (2005). Movement, dispersal and behaviour of western corn rootworm adults in rotated maize and soybean fields (pp.121-144). CABI Publishing. https://doi.org/10.1079/9780851998176.0121
[78.]
Liebhold A. M., & Tobin P. C. (2008). Population ecology of insect invasions and their management. Annual Review of Entomology, 53(1), 387-408. https://doi.org/10.1146/annurev.ento.52.110405.091401
[79.]
Mitchell P. D., Gray M. E., & Steffey K. L. (2004). A composed- error model for estimating pest-damage functions and the impact of the western corn rootworm soybean variant in Illinois. American Journal of Agricultural Economics, 86(2), 332-344. https://doi.org/10.1111/j.0092-5853.2004.00582.x
[80.]
Kaster L. V., & Gray M. E. (2005). European corn borers and western corn rootworms: Old and new invasive maize pests challenge farmers on European and North American continents. Maydica, 50, 235-245. Retrieved from https://api.semanticscholar.orgCorpusID:41115618
[81.]
Kriticos D. J., Reynaud P., Baker R. H. A., & Eyre D. (2012). Estimating the global area of potential establishment for the western corn rootworm (Diabrotica virgifera virgifera) under rain-fed and irrigated agriculture. EPPO Bulletin, 42(1), 56-64. https://doi.org/10.1111/j.1365-2338.2012.02540.x
[82.]
Meinke L. J., Siegfried B. D., Wright R. J., & Chandler L. D. (1998). Adult susceptibility of Nebraska western corn rootworm (Coleoptera: Chrysomelidae) populations to selected insecticides. Journal of Economic Entomology, 91(3), 594-600. https://doi.org/10.1093/jee/91.3.594
[83.]
Wang R., & Wang Y. Z. (2006). Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Diversity and Distributions, 12(4), 397-408. https://doi.org/10.1111/j.1366-9516.2006.00250.x
[84.]
Rezaei E. E., Webber H., Asseng S., Boote K., Durand J. L., Ewert F., Martre P., & MacCarthy D. S. (2023). Climate change impacts on crop yields. Nature Reviews Earth & Environment, 4(12), 831-846. https://doi.org/10.1038/s43017-023-00491-0
[85.]
Larson C. D., Pollnac F. W., Schmitz K., & Rew L. J. (2021). Climate change and microtopography are facilitating the mountain invasion by a non-native perennial plant species. NeoBiota, 65, 23-45. https://doi.org/10.3897/neobiota.65.61673
[86.]
Lehmann P., Lyytinen A., Piiroinen S., & Lindström L. (2015). Latitudinal differences in diapause related photoperiodic responses of European Colorado potato beetles (Leptinotarsa decemlineata). Evolutionary Ecology, 29(2), 269-282. https://doi.org/10.1007/s10682-015-9755-x
[87.]
Diagne C., Leroy B., Vaissière A. C., Gozlan R. E., Roiz D., Jarić I., Salles J. M., Bradshaw C. J. A., & Courchamp F. (2021). High and rising economic costs of biological invasions worldwide. Nature, 592(7855), 571-576. https://doi.org/10.1038/s41586-021-03405-6
[88.]
Sappington T. W., Siegfried B. D., & Guillemaud T. G. (2006). Coordinated Diabrotica genetics research: Accelerating progress on an urgent insect pest problem. American Entomologist, 52(2), 90-97. https://doi.org/10.1093/ae/52.2.90
[89.]
Prischmann-Voldseth D. A., Stephanie J. S., & Robert B. (2021). Pollen feeding reduces predation of northern corn rootworm eggs (Coleoptera: Chrysomelidae, Diabrotica barberi) by a soil-dwelling mite (Acari: Laelapidae: Stratiolaelaps scimitus). Insects, 12(11), 979. https://doi.org/10.3390/insects12110979
Funding
National Key Research and Development Program of China(2023YFC2605200); National Key Research and Development Program of China(2021YFC2600400); Tian-Shan Talent Program(2022TSYCCX0084); Technology Innovation Program of Chinese Academy of Agricultural Sciences(caascx-2022-2025-IAS); CABI Development Fund(IOS-2207677)
PDF

Accesses

Citations

Detail

Sections
Recommended

/