The necessary role of an efficient tumor immunotherapy by MHC II expression on amateur APCs
Jiaxin Zhong, Xiaorong Lin, Hai Hu
The necessary role of an efficient tumor immunotherapy by MHC II expression on amateur APCs
Antigen presentation, as the initial step in inducing the activation of T lymphocytes, plays a crucial role in antitumor response. Studies concentrating on major histocompatibility complex class II (MHC II) molecules and the activated CD4+ helper T (Th) cells have gained popularity in light of the past limited efficacy of MHC I-activated CD8+ T cells alone. In general, MHC II is canonically expressed by professional antigen-presenting cells (pAPCs), yet attempts to increase antigen presentation by dendritic cell (DC) activation have mostly been unsuccessful. In recent years, a number of studies have found that a variety of cells, including cancer cells, fibroblasts, vascular endothelial cells (VECs), and lymphoid stromal cells (LSCs), are considered amateur APCs (aAPCs) and can express MHC II molecules, which have piqued the interest of researchers. These groups vastly outnumber DCs or macrophages, and it has been confirmed that they also qualify as antigen-presenting complexes that are functionally related to conventional pAPCs. Herein, we will review current research regarding the antigen presentation process of MHC II, its advances in APC surfaces, especially for aAPCs, the special mechanisms of regulation of MHC II on aAPCs, and combination therapy targeting MHC II as a possible treatment strategy in cancer.
antigen presentation / MHC II / aAPCs / CD4+ Th cells
[1] |
Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open. 2019;2(5):e192535.
CrossRef
Google scholar
|
[2] |
Alspach E, Lussier DM, Miceli AP, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature. 2019;574(7780):696-701.
CrossRef
Google scholar
|
[3] |
Rock KL, Reits E, Neefjes J. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol. 2016;37(11):724-737.
CrossRef
Google scholar
|
[4] |
Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577-581.
CrossRef
Google scholar
|
[5] |
Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344(6184):641-645.
CrossRef
Google scholar
|
[6] |
Kreiter S, Vormehr M, van de Roemer N, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520(7549):692-696.
CrossRef
Google scholar
|
[7] |
Darragh LB, Karam SD. Amateur antigen-presenting cells in the tumor microenvironment. Mol Carcinog. 2022;61(2):153-164.
CrossRef
Google scholar
|
[8] |
Harryvan TJ, de Lange S, Hawinkels LJAC, Verdegaal EME. The ABCs of antigen presentation by stromal non-professional antigen-presenting cells. Int J Mol Sci. 2021;23(1):137.
CrossRef
Google scholar
|
[9] |
Yang Y, Sun J, Wang Z, et al. Updated overall survival data and predictive biomarkers of sintilimab plus pemetrexed and platinum as first-line treatment for locally advanced or metastatic nonsquamous NSCLC in the phase 3 ORIENT-11 study. J Thorac Oncol. 2021;16(12):2109-2120.
CrossRef
Google scholar
|
[10] |
Terasaki PI. A brief history of HLA. Immunol Res. 2007;38(1-3):139-148.
CrossRef
Google scholar
|
[11] |
Klein J, Sato A. The HLA system. N Engl J Med. 2000;343(11):782-786.
CrossRef
Google scholar
|
[12] |
Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet. 2009;54(1):15-39.
CrossRef
Google scholar
|
[13] |
Santambrogio L. Molecular determinants regulating the plasticity of the MHC class II immunopeptidome. Front Immunol. 2022;13:878271.
CrossRef
Google scholar
|
[14] |
Trowsdale J. Genomic structure and function in the MHC. Trends Genet. 1993;9(4):117-122.
CrossRef
Google scholar
|
[15] |
Unanue ER, Turk V, Neefjes J. Variations in MHC class II antigen processing and presentation in health and disease. Annu Rev Immunol. 2016;34:265-297.
CrossRef
Google scholar
|
[16] |
Arnold PY, La Gruta NL, Miller T, et al. The majority of immunogenic epitopes generate CD4+ T cells that are dependent on MHC class II-bound peptide-flanking residues. J Immunol. 2002;169(2):739-749.
CrossRef
Google scholar
|
[17] |
Southwood S, Sidney J, Kondo A, et al. Several common HLADR types share largely overlapping peptide binding repertoires. J Immunol. 1998;160(7):3363-3373.
CrossRef
Google scholar
|
[18] |
Linnemann C, van Buuren MM, Bies L, et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med. 2015;21(1):81-85.
CrossRef
Google scholar
|
[19] |
Accolla RS, De Lerma Barbaro A, Mazza S, Casoli C, De Maria A, Tosi G. The MHC class II transactivator: prey and hunter in infectious diseases. Trends Immunol. 2001;22(10):560-563.
CrossRef
Google scholar
|
[20] |
Accolla RS, Scarpellino L, Carra G, Guardiola J. Trans-acting element(s) operating across species barriers positively regulate expression of major histocompatibility complex class II genes. J Exp Med. 1985;162(4):1117-1133.
CrossRef
Google scholar
|
[21] |
Accolla RS, Jotterand-Bellomo M, Scarpellino L, Maffei A, Carra G, Guardiola J. aIr-1, a newly found locus on mouse chromosome 16 encoding a trans-acting activator factor for MHC class II gene expression. J Exp Med. 1986;164(1):369-374.
CrossRef
Google scholar
|
[22] |
Guardiola J, Scarpellino L, Carra G, Accolla RS. Stable integration of mouse DNA into Ia-negative human B-lymphoma cells causes reexpression of the human Ia-positive phenotype. Proc Natl Acad Sci USA. 1986;83(19):7415-7418.
CrossRef
Google scholar
|
[23] |
Steimle V, Otten LA, Zufferey M, Mach B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell. 1993;75(1):135-146.
CrossRef
Google scholar
|
[24] |
Muhlethaler-Mottet A. Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J. 1997;16(10):2851-2860.
CrossRef
Google scholar
|
[25] |
Harton JA, Ting JP. Class II transactivator: mastering the art of major histocompatibility complex expression. Mol Cell Biol. 2000;20(17):6185-6194.
CrossRef
Google scholar
|
[26] |
Muhlethaler-Mottet A, Di Berardino W, Otten LA, Mach B. Activation of the MHC class II transactivator CIITA by interferon-γ requires cooperative interaction between Stat1 and USF-1. Immunity. 1998;8(2):157-166.
CrossRef
Google scholar
|
[27] |
van der Stoep N, Quinten E, van den Elsen PJ. Transcriptional regulation of the MHC class II trans-activator (CIITA) promoter III: identification of a novel regulatory region in the 5’-untranslated region and an important role for cAMP-responsive element binding protein 1 and activating transcription factor-1 in CIITA-promoter III transcriptional activation in B lymphocytes. J Immunol. 2002;169(9):5061-5071.
CrossRef
Google scholar
|
[28] |
Piskurich JF, Linhoff MW, Wang Y, Ting JP. Two distinct gamma interferon-inducible promoters of the major histocompatibility complex class II transactivator gene are differentially regulated by STAT1, interferon regulatory factor 1, and transforming growth factor β. Mol Cell Biol. 1999;19(1):431-440.
CrossRef
Google scholar
|
[29] |
Sartoris S, Valle MT, Barbaro ADL, et al. HLA class II expression in uninducible hepatocarcinoma cells after transfection of AIR-1 gene product CIITA: acquisition of antigen processing and presentation capacity. J Immunol. 1998;161(2):814-820.
CrossRef
Google scholar
|
[30] |
Armstrong TD, Clements VK, Martin BK, Ting JP, Ostrand-Rosenberg S. Major histocompatibility complex class II-transfected tumor cells present endogenous antigen and are potent inducers of tumor-specific immunity. Proc Natl Acad Sci USA. 1997;94(13):6886-6891.
CrossRef
Google scholar
|
[31] |
Steimle V, Siegrist CA, Mottet A, Lisowska-Grospierre B, Mach B. Regulation of MHC class II expression by interferon-γ mediated by the transactivator gene CIITA. Science. 1994;265(5168):106-109.
CrossRef
Google scholar
|
[32] |
Beresford GW, Boss JM. CIITA coordinates multiple histone acetylation modifications at the HLA-DRA promoter. Nat Immunol. 2001;2(7):652-657.
CrossRef
Google scholar
|
[33] |
Tzortzakaki E, Spilianakis C, Zika E, Kretsovali A, Papamatheakis J. Steroid receptor coactivator 1 links the steroid and interferon γ response pathways. Mol Endocrinol. 2003;17(12):2509-2518.
CrossRef
Google scholar
|
[34] |
Busch R, Cloutier I, Sékaly RP, Hämmerling GJ. Invariant chain protects class II histocompatibility antigens from binding intact polypeptides in the endoplasmic reticulum. EMBO J. 1996;15(2):418-428.
CrossRef
Google scholar
|
[35] |
Jiang Y, Arase N, Kohyama M, et al. Transport of misfolded endoplasmic reticulum proteins to the cell surface by MHC class II molecules. Int Immunol. 2013;25(4):235-246.
CrossRef
Google scholar
|
[36] |
Hiltbold EM, Roche PA. Trafficking of MHC class II molecules in the late secretory pathway. Curr Opin Immunol. 2002;14(1):30-35.
CrossRef
Google scholar
|
[37] |
Bikoff EK, Huang LY, Episkopou V, van Meerwijk J, Germain RN, Robertson EJ. Defective major histocompatibility complex class II assembly, transport, peptide acquisition, and CD4+ T cell selection in mice lacking invariant chain expression. J Exp Med. 1993;177(6):1699-1712.
CrossRef
Google scholar
|
[38] |
Valečka J, Almeida CR, Su B, Pierre P, Gatti E. Autophagy and MHC-restricted antigen presentation. Mol Immunol. 2018;99:163-170.
CrossRef
Google scholar
|
[39] |
Ting JP, Trowsdale J. Genetic control of MHC class II expression. Cell. 2002;109 suppl:S21-S33.
CrossRef
Google scholar
|
[40] |
Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological consequences of MHC-II expression by tumor cells in cancer. Clin Cancer Res. 2019;25(8):2392-2402.
CrossRef
Google scholar
|
[41] |
Poluektov YO, Kim A, Sadegh-Nasseri S. HLA-DO and its role in MHC class II antigen presentation. Front Immunol. 2013;4:260.
CrossRef
Google scholar
|
[42] |
Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015;15(4):203-216.
CrossRef
Google scholar
|
[43] |
Schmid D, Pypaert M, Münz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity. 2007;26(1):79-92.
CrossRef
Google scholar
|
[44] |
Rudensky AY, Preston-Hurlburt P, Hong SC, Barlow A, Janeway, Jr. CA Sequence analysis of peptides bound to MHC class II molecules. Nature. 1991;353(6345):622-627.
CrossRef
Google scholar
|
[45] |
Lundin KU, Screpanti V, Omholt H, et al. CD4+ T cells kill Id+ B-lymphoma cells: FasLigand-Fas interaction is dominant in vitro but is redundant in vivo. Cancer Immunol Immunother. 2004;53(12):1135-1145.
CrossRef
Google scholar
|
[46] |
Xie Y, Akpinarli A, Maris C, et al. Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma. J Exp Med. 2010;207(3):651-667.
CrossRef
Google scholar
|
[47] |
Lundin KU, Hofgaard PO, Omholt H, Munthe LA, Corthay A, Bogen B. Therapeutic effect of idiotype-specific CD4+ T cells against B-cell lymphoma in the absence of anti-idiotypic antibodies. Blood. 2003;102(2):605-612.
CrossRef
Google scholar
|
[48] |
Quezada SA, Simpson TR, Peggs KS, et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J Exp Med. 2010;207(3):637-650.
CrossRef
Google scholar
|
[49] |
Accolla RS, Lombardo L, Abdallah R, Raval G, Forlani G, Tosi G. Boosting the MHC class II-restricted tumor antigen presentation to CD4+ T helper cells: a critical issue for triggering protective immunity and re-orienting the tumor microenvironment toward an anti-tumor state. Front Oncol. 2014;4:32.
CrossRef
Google scholar
|
[50] |
Mortara L, Castellani P, Meazza R, et al. CIITA-induced MHC class II expression in mammary adenocarcinoma leads to a TH1 polarization of the tumor microenvironment, tumor rejection, and specific antitumor memory. Clin Cancer Res. 2006;12(11 Pt 1):3435-3443.
CrossRef
Google scholar
|
[51] |
Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol. 2006;6(3):205-217.
CrossRef
Google scholar
|
[52] |
Haabeth OAW, Fauskanger M, Manzke M, et al. CD4+ T-cell-mediated rejection of MHC class II-positive tumor cells is dependent on antigen secretion and indirect presentation on host APCs. Cancer Res. 2018;78(16):4573-4585.
CrossRef
Google scholar
|
[53] |
Darragh LB, Karam SD. Amateur antigen-presenting cells in the tumor microenvironment. Mol Carcinog. 2022;61(2):153-164.
CrossRef
Google scholar
|
[54] |
Johnson DB, Estrada MV, Salgado R, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582.
CrossRef
Google scholar
|
[55] |
Park IA, Hwang SH, Song IH, et al. Expression of the MHC class II in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and interferon signaling. PLoS One. 2017;12(8):e0182786.
CrossRef
Google scholar
|
[56] |
Oldford SA, Robb JD, Codner D, Gadag V, Watson PH, Drover S. Tumor cell expression of HLA-DM associates with a TH1 profile and predicts improved survival in breast carcinoma patients. Int Immunol. 2006;18(11):1591-1602.
CrossRef
Google scholar
|
[57] |
Oldford SA, Robb JD, Watson PH, Drover S. HLA-DRB alleles are differentially expressed by tumor cells in breast carcinoma. Int J Cancer. 2004;112(3):399-406.
CrossRef
Google scholar
|
[58] |
da Silva GB, Silva TG, Duarte RA, et al. Expression of the classical and nonclassical HLA molecules in breast cancer. Int J Breast Cancer. 2013;2013:250435.
CrossRef
Google scholar
|
[59] |
Feinmesser M. HLA-DR and β2 microglobulin expression in medullary and atypical medullary carcinoma of the breast: histopathologically similar but biologically distinct entities. J Clin Pathol. 2000;53(4):286-291.
CrossRef
Google scholar
|
[60] |
Michel S, Linnebacher M, Alcaniz J, et al. Lack of HLA class II antigen expression in microsatellite unstable colorectal carcinomas is caused by mutations in HLA class II regulatory genes. Int J Cancer. 2010;127(4):889-898.
CrossRef
Google scholar
|
[61] |
Bustin SA, Li SR, Phillips S, Dorudi S. Expression of HLA class II in colorectal cancer: evidence for enhanced immunogenicity of microsatellite-instability-positive tumours. Tumor Biol. 2001;22(5):294-298.
CrossRef
Google scholar
|
[62] |
Callahan MJ, Nagymanyoki Z, Bonome T, et al. Increased HLA-DMB expression in the tumor epithelium is associated with increased CTL infiltration and improved prognosis in advanced-stage serous ovarian cancer. Clin Cancer Res. 2008;14(23):7667-7673.
CrossRef
Google scholar
|
[63] |
Turner TB, Meza-Perez S, Londoño A, et al. Epigenetic modifiers upregulate MHC II and impede ovarian cancer tumor growth. Oncotarget. 2017;8(27):44159-44170.
CrossRef
Google scholar
|
[64] |
Ghasemi F, Tessier TM, Gameiro SF, Maciver AH, Cecchini MJ, Mymryk JS. High MHC-II expression in Epstein-Barr virus-associated gastric cancers suggests that tumor cells serve an important role in antigen presentation. Sci Rep. 2020;10(1):14786.
CrossRef
Google scholar
|
[65] |
Roemer MGM, Redd RA, Cader FZ, et al. Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic hodgkin lymphoma. J Clin Oncol. 2018;36(10):942-950.
CrossRef
Google scholar
|
[66] |
Rodig SJ, Gusenleitner D, Jackson DG, et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci Transl Med. 2018;10(450):eaar3342.
CrossRef
Google scholar
|
[67] |
Johnson DB, Bordeaux J, Kim JY, et al. Quantitative spatial profiling of PD-1/PD-L1 interaction and HLA-DR/IDO-1 predicts improved outcomes of anti-PD-1 therapies in metastatic melanoma. Clin Cancer Res. 2018;24(21):5250-5260.
CrossRef
Google scholar
|
[68] |
Johnson AM, Bullock BL, Neuwelt AJ, et al. Cancer cell-intrinsic expression of MHC class II regulates the immune microenvironment and response to anti-PD-1 therapy in lung adenocarcinoma. J Immunol. 2020;204(8):2295-2307.
CrossRef
Google scholar
|
[69] |
Park IA, Hwang SH, Song IH, et al. Expression of the MHC class II in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and interferon signaling. PLoS One. 2017;12(8):e0182786.
CrossRef
Google scholar
|
[70] |
Forero A, Li Y, Chen D, et al. Expression of the MHC class II pathway in triple-negative breast cancer tumor cells is associated with a good prognosis and infiltrating lymphocytes. Cancer Immunol Res. 2016;4(5):390-399.
CrossRef
Google scholar
|
[71] |
Chan KL, Gomez J, Cardinez C, et al. Inhibition of the CtBP complex and FBXO11 enhances MHC class II expression and anti-cancer immune responses. Cancer Cell. 2022;40(10):1190-1206.e9.
CrossRef
Google scholar
|
[72] |
Johnson AM, Bullock BL, Neuwelt AJ, et al. Cancer cell-intrinsic expression of MHC class II regulates the immune microenvironment and response to anti-PD-1 therapy in lung adenocarcinoma. J Immunol. 2020;204(8):2295-2307.
CrossRef
Google scholar
|
[73] |
Steimle V, Siegrist CA, Mottet A, Lisowska-Grospierre B, Mach B. Regulation of MHC class II expression by interferon-γ mediated by the transactivator gene CIITA. Science. 1994;265(5168):106-109.
CrossRef
Google scholar
|
[74] |
Accolla RS, De Lerma Barbaro A, Mazza S, Casoli C, De Maria A, Tosi G. The MHC class II transactivator: prey and hunter in infectious diseases. Trends Immunol. 2001;22(10):560-563.
CrossRef
Google scholar
|
[75] |
Magner WJ, Kazim AL, Stewart C, et al. Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol. 2000;165(12):7017-7024.
CrossRef
Google scholar
|
[76] |
Meazza R, Comes A, Orengo AM, Ferrini S, Accolla RS. Tumor rejection by gene transfer of the MHC class II transactivator in murine mammary adenocarcinoma cells. Eur J Immunol. 2003;33(5):1183-1192.
CrossRef
Google scholar
|
[77] |
Frangione V, Mortara L, Castellani P, De Lerma Barbaro A, Accolla RS. CIITA-driven MHC-II positive tumor cells: preventive vaccines and superior generators of antitumor CD4+ T lymphocytes for immunotherapy. Int J Cancer. 2010;127(7):1614-1624.
CrossRef
Google scholar
|
[78] |
Mortara L, Castellani P, Meazza R, et al. CIITA-induced MHC class II expression in mammary adenocarcinoma leads to a TH1 polarization of the tumor microenvironment, tumor rejection, and specific antitumor memory. Clin Cancer Res. 2006;12(11 Pt 1):3435-3443.
CrossRef
Google scholar
|
[79] |
Mortara L, Frangione V, Castellani P, De Lerma Barbaro A, Accolla RS. Irradiated CIITA-positive mammary adenocarcinoma cells act as a potent anti-tumor-preventive vaccine by inducing tumor-specific CD4+ T cell priming and CD8+ T cell effector functions. Int Immunol. 2009;21(6):655-665.
CrossRef
Google scholar
|
[80] |
Bou Nasser Eddine F, Forlani G, Lombardo L, Tedeschi A, Tosi G, Accolla RS. CIITA-driven MHC class II expressing tumor cells can efficiently prime naive CD4+ TH cells in vivo and vaccinate the host against parental MHC-II-negative tumor cells. Oncoimmunology. 2016;6(1):e1261777.
CrossRef
Google scholar
|
[81] |
Hochweller K, Striegler J, Hämmerling GJ, Garbi N. A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells. Eur J Immunol. 2008;38(10):2776-2783.
CrossRef
Google scholar
|
[82] |
Baleeiro RB, Bouwens CJ, Liu P, et al. MHC class II molecules on pancreatic cancer cells indicate a potential for neo-antigen-based immunotherapy. Oncoimmunology. 2022;11(1):2080329.
CrossRef
Google scholar
|
[83] |
Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227-242.
CrossRef
Google scholar
|
[84] |
Driessens G, Kline J, Gajewski TF. Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol Rev. 2009;229(1):126-144.
CrossRef
Google scholar
|
[85] |
Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4+ T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther. 2021;28(1-2):5-17.
CrossRef
Google scholar
|
[86] |
Jilaveanu LB, Sznol J, Aziz SA, Duchen D, Kluger HM, Camp RL. CD70 expression patterns in renal cell carcinoma. Hum Pathol. 2012;43(9):1394-1399.
CrossRef
Google scholar
|
[87] |
Shibahara I, Saito R, Zhang R, et al. OX40 ligand expressed in glioblastoma modulates adaptive immunity depending on the microenvironment: a clue for successful immunotherapy. Mol Cancer. 2015;14:41.
CrossRef
Google scholar
|
[88] |
Kambayashi T, Laufer TM. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol. 2014;14(11):719-730.
CrossRef
Google scholar
|
[89] |
Haabeth OAW, Tveita AA, Fauskanger M, et al. How do CD4+ T cells detect and eliminate tumor cells that either lack or express MHC class II molecules? Front Immunol. 2014;5:174.
CrossRef
Google scholar
|
[90] |
Boots AM, Wimmers-Bertens AJ, Rijnders AW. Antigen-presenting capacity of rheumatoid synovial fibroblasts. Immunology. 1994;82(2):268-274.
|
[91] |
Barnhoorn MC, Hakuno SK, Bruckner RS, Rogler G, Hawinkels LJAC, Scharl M. Stromal cells in the pathogenesis of inflammatory bowel disease. J Crohns Colitis. 2020;14(7):995-1009.
CrossRef
Google scholar
|
[92] |
Elyada E, Bolisetty M, Laise P, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9(8):1102-1123.
CrossRef
Google scholar
|
[93] |
Friedman G, Levi-Galibov O, David E, et al. Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4+ and PDPN+ CAFs to clinical outcome. Nat Cancer. 2020;1(7):692-708.
CrossRef
Google scholar
|
[94] |
Harryvan TJ, Verdegaal EME, Hardwick JCH, Hawinkels LJAC, van der Burg SH. Targeting of the cancer-associated fibroblast-T-cell axis in solid malignancies. J Clin Med. 2019;8(11):1989.
CrossRef
Google scholar
|
[95] |
Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 2018;33(3):463-479.e10.
CrossRef
Google scholar
|
[96] |
Kerdidani D, Aerakis E, Verrou K, et al. Tumor MHCII immunity requires in situ antigen presentation by cancer-associated fibroblasts. bioRxiv. 2020.
CrossRef
Google scholar
|
[97] |
Kerdidani D, Aerakis E, Verrou KM, et al. Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts. J Exp Med. 2022;219(2):e20210815.
CrossRef
Google scholar
|
[98] |
Lavie D, Ben-Shmuel A, Erez N, Scherz-Shouval R. Cancer-associated fibroblasts in the single-cell era. Nat Cancer. 2022;3(7):793-807.
CrossRef
Google scholar
|
[99] |
Öhlund D, Handly-Santana A, Biffi G, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214(3):579-596.
CrossRef
Google scholar
|
[100] |
Su S, Chen J, Yao H, et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 2018;172(4):841-856.e16.
CrossRef
Google scholar
|
[101] |
Kinchen J, Chen HH, Parikh K, et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell. 2018;175(2):372-386.e17.
CrossRef
Google scholar
|
[102] |
Smillie CS, Biton M, Ordovas-Montanes J, et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell. 2019;178(3):714-730.e22
CrossRef
Google scholar
|
[103] |
Hofheinz RD, al-Batran SE, Hartmann F, et al. Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie. 2003;26(1):44-48.
CrossRef
Google scholar
|
[104] |
Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 2021;18(12):792-804.
CrossRef
Google scholar
|
[105] |
Geng X, Chen H, Zhao L, et al. Cancer-associated fibroblast (CAF) heterogeneity and targeting therapy of CAFs in pancreatic cancer. Front Cell Dev Biol. 2021;9:655152.
CrossRef
Google scholar
|
[106] |
Huang H, Wang Z, Zhang Y, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 2022;40(6):656-673.e7.
CrossRef
Google scholar
|
[107] |
Hutton C, Heider F, Blanco-Gomez A, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;39(9):1227-1244.e20.
CrossRef
Google scholar
|
[108] |
Limmer A, Ohl J, Kurts C, et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med. 2000;6(12):1348-1354.
CrossRef
Google scholar
|
[109] |
Diehl L, Schurich A, Grochtmann R, Hegenbarth S, Chen L, Knolle PA. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology. 2008;47(1):296-305.
CrossRef
Google scholar
|
[110] |
Schurich A, Berg M, Stabenow D, et al. Dynamic regulation of CD8 T cell tolerance induction by liver sinusoidal endothelial cells. J Immunol. 2010;184(8):4107-4114.
CrossRef
Google scholar
|
[111] |
Knolle PA, Böttcher J, Huang LR. The role of hepatic immune regulation in systemic immunity to viral infection. Med Microbiol Immunol. 2015;204(1):21-27.
CrossRef
Google scholar
|
[112] |
Böttcher JP, Schanz O, Wohlleber D, et al. Liver-primed memory T cells generated under noninflammatory conditions provide anti-infectious immunity. Cell Rep. 2013;3(3):779-795.
CrossRef
Google scholar
|
[113] |
Höchst B, Schildberg FA, Böttcher J, et al. Liver sinusoidal endothelial cells contribute to CD8 T cell tolerance toward circulating carcinoembryonic antigen in mice. Hepatology. 2012;56(5):1924-1933.
CrossRef
Google scholar
|
[114] |
Manes TD, Pober JS. Antigen presentation by human microvascular endothelial cells triggers ICAM-1-dependent transendothelial protrusion by, and fractalkine-dependent transendothelial migration of, effector memory CD4+ T cells. J Immunol. 2008;180(12):8386-8392.
CrossRef
Google scholar
|
[115] |
Marelli-Berg FM, Frasca L, Weng L, Lombardi G, Lechler RI. Antigen recognition influences transendothelial migration of CD4+ T cells. J Immunol. 1999;162(2):696-703.
CrossRef
Google scholar
|
[116] |
Tewalt EF, Cohen JN, Rouhani SJ, Engelhard VH. Lymphatic endothelial cells—key players in regulation of tolerance and immunity. Front Immunol. 2012;3:305.
CrossRef
Google scholar
|
[117] |
Cohen JN, Guidi CJ, Tewalt EF, et al. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med. 2010;207(4):681-688.
CrossRef
Google scholar
|
[118] |
Hirosue S, Vokali E, Raghavan VR, et al. Steady-state antigen scavenging, cross-presentation, and CD8+ T cell priming: a new role for lymphatic endothelial cells. J Immunol. 2014;192(11):5002-5011.
CrossRef
Google scholar
|
[119] |
Li CY, Park HJ, Shin J, Baik JE, Mehrara BJ, Kataru RP. Tumor-associated lymphatics upregulate MHC-II to suppress tumor-infiltrating lymphocytes. Int J Mol Sci. 2022;23(21):13470.
CrossRef
Google scholar
|
[120] |
Vokali E, Yu SS, Hirosue S, et al. Lymphatic endothelial cells prime naïve CD8+ T cells into memory cells under steady-state conditions. Nat Commun. 2020;11(1):538.
CrossRef
Google scholar
|
[121] |
Triebel F, Jitsukawa S, Baixeras E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med. 1990;171(5):1393-1405.
CrossRef
Google scholar
|
[122] |
Maruhashi T, Sugiura D, Okazaki I, et al. Binding of LAG-3 to stable peptide-MHC class II limits T cell function and suppresses autoimmunity and anti-cancer immunity. Immunity. 2022;55(5):912-924.e8.
CrossRef
Google scholar
|
[123] |
Lecocq Q, Keyaerts M, Devoogdt N, Breckpot K. The next-generation immune checkpoint LAG-3 and its therapeutic potential in oncology: third time’s a charm. Int J Mol Sci. 2020;22(1):75.
CrossRef
Google scholar
|
[124] |
Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019;18(1):155.
CrossRef
Google scholar
|
[125] |
Chocarro L, Blanco E, Zuazo M, et al. Understanding LAG-3 signaling. Int J Mol Sci. 2021;22(10):5282.
CrossRef
Google scholar
|
[126] |
Workman CJ, Vignali DAA. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur J Immunol. 2003;33(4):970-979.
CrossRef
Google scholar
|
[127] |
Buisson S, Triebel F. LAG-3 (CD223) reduces macrophage and dendritic cell differentiation from monocyte precursors. Immunology. 2005;114(3):369-374.
CrossRef
Google scholar
|
[128] |
Lipson EJ, Tawbi HAH, Schadendorf D, et al. Relatlimab (RELA) plus nivolumab (NIVO) versus NIVO in first-line advanced melanoma: primary phase III results from RELATIVITY-047 (CA224-047). J Clin Oncol. 2021;39(15 suppl):9503.
CrossRef
Google scholar
|
[129] |
Tawbi HA, Schadendorf D, Lipson EJ, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386(1):24-34.
CrossRef
Google scholar
|
[130] |
Maruhashi T, Sugiura D, Okazaki I, Okazaki T. LAG-3: from molecular functions to clinical applications. J ImmunoTher Cancer. 2020;8:e001014.
CrossRef
Google scholar
|
[131] |
Abbott M, Ustoyev Y. Cancer and the immune system: the history and background of immunotherapy. Semin Oncol Nurs. 2019;35(5):150923.
CrossRef
Google scholar
|
[132] |
Kote S, Pirog A, Bedran G, Alfaro J, Dapic I. Mass spectrometry-based identification of MHC-associated peptides. Cancers. 2020;12(3):535.
CrossRef
Google scholar
|
[133] |
Hunt DF, Henderson RA, Shabanowitz J, et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science. 1992;255(5049):1261-1263.
CrossRef
Google scholar
|
[134] |
Yewdell JW. MHC class I immunopeptidome: past, present, and future. Mol Cell Proteomics. 2022;21(7):100230.
CrossRef
Google scholar
|
[135] |
Nielsen M, Ternette N, Barra C. The interdependence of machine learning and LC-MS approaches for an unbiased understanding of the cellular immunopeptidome. Expert Rev Proteomics. 2022;19(2):77-88.
CrossRef
Google scholar
|
[136] |
Leko V, Rosenberg SA. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. Cancer Cell. 2020;38(4):454-472.
CrossRef
Google scholar
|
[137] |
Katayama H, Kobayashi M, Irajizad E, et al. Protein citrullination as a source of cancer neoantigens. J Immunother Cancer. 2021;9(6):e002549.
CrossRef
Google scholar
|
[138] |
Sidney J, Vela JL, Friedrich D, et al. Low HLA binding of diabetes-associated CD8+ T-cell epitopes is increased by post translational modifications. BMC Immunol. 2018;19(1):12.
CrossRef
Google scholar
|
[139] |
Petersen J, Purcell AW, Rossjohn J. Post-translationally modified T cell epitopes: immune recognition and immunotherapy. J Mol Med. 2009;87(11):1045-1051.
CrossRef
Google scholar
|
[140] |
Kacen A, Javitt A, Kramer MP, et al. Post-translational modifications reshape the antigenic landscape of the MHC I immunopeptidome in tumors. Nat Biotechnol. 2022;41:239-251.
CrossRef
Google scholar
|
[141] |
Sellars MC, Wu CJ, Fritsch EF. Cancer vaccines: building a bridge over troubled waters. Cell. 2022;185(15):2770-2788.
CrossRef
Google scholar
|
[142] |
León-Letelier RA, Katayama H, Hanash S. Mining the immunopeptidome for antigenic peptides in cancer. Cancers. 2022;14(20):4968.
CrossRef
Google scholar
|
[143] |
Yuzhalin AE. Citrullination in cancer. Cancer Res. 2019;79(7):1274-1284.
CrossRef
Google scholar
|
[144] |
Turunen S, Koivula MK, Risteli L, Risteli J. Ureido group-specific antibodies are induced in rabbits immunized with citrulline-or homocitrulline-containing antigens. Autoimmunity. 2016;49(7):459-465.
CrossRef
Google scholar
|
[145] |
Ireland JM, Unanue ER. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J Exp Med. 2011;208(13):2625-2632.
CrossRef
Google scholar
|
[146] |
Ravanan P, Srikumar IF, Talwar P. Autophagy: the spotlight for cellular stress responses. Life Sci. 2017;188:53-67.
CrossRef
Google scholar
|
[147] |
Sase T, Arito M, Onodera H, et al. Hypoxia-induced production of peptidylarginine deiminases and citrullinated proteins in malignant glioma cells. Biochem Biophys Res Commun. 2017;482(1):50-56.
CrossRef
Google scholar
|
[148] |
Symonds P, Marcu A, Cook KW, Metheringham RL, Durrant LG, Brentville VA. Citrullinated epitopes identified on tumour MHC class II by peptide elution stimulate both regulatory and TH1 responses and require careful selection for optimal anti-tumour responses. Front Immunol. 2021;12:764462.
CrossRef
Google scholar
|
[149] |
Feola S, Chiaro J, Martins B, et al. A novel immunopeptidomic-based pipeline for the generation of personalized oncolytic cancer vaccines. eLife. 2022;11:e71156.
CrossRef
Google scholar
|
/
〈 | 〉 |