Integrin α6: A potential target for cancer molecular imaging and targeting therapy
Xin-Ling Li, Zhuo-Lun Shen, Qiao-Li Wang, Jia-Cong Ye, Wen-Biao Zhang, Ying-He Li, Guo-Kai Feng, Mu-Sheng Zeng
Integrin α6: A potential target for cancer molecular imaging and targeting therapy
As a major kind of cell surface adhesion molecules with signal transduction function, integrins play a major role in tumorigenesis and tumor progression. The role of integrins in tumor cells and the tumor microenvironment has been extensively revealed. Among the integrin family, integrin αvβ3 is the most studied integrin in the past 20 years. Plenty of preclinical and clinical studies have been conducted, which showed clinical benefits of targeting integrin αvβ3 in tumor imaging and treatment. Currently, the focus of interest is gradually shifting from integrin αvβ3 toward other integrin subtypes. Integrin α6 is expressed in many malignant tumors, such as colorectal cancer, head and neck squamous cell carcinoma, breast cancer, pancreatic cancer, and liver cancer, and its expression is correlated with poor survival of the patients. Recent studies have shown that tumor molecular imaging agents and therapeutic drugs targeting integrin α6 have excellent safety and efficacy in preclinical mouse models, encouraging clinical translation of this promising target. In this review, we briefly overview the physiological and pathological function of integrin α6 and highlight the recent advances in integrin α6-targeted imaging and therapeutics in tumors.
tumor imaging / tumor therapy / tumor microenvironment / molecular imaging / integrin
[1] |
Tamkun JW, DeSimone DW, Fonda D, et al. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell. 1986; 46 (2): 271- 282.
|
[2] |
Bianchini F, Portioli E, Ferlenghi F, et al. Cell-targeted c (AmpRGD)-sunitinib molecular conjugates impair tumor growth of melanoma. Cancer Lett. 2019; 446: 25- 37.
|
[3] |
De Franceschi N, Hamidi H, Alanko J, Sahgal P, Ivaska J. Integrin traffic—the update. J Cell Sci. 2015; 128 (5): 839- 852.
|
[4] |
Cabodi S, Di Stefano P, Leal Mdel P, et al. Integrins and signal transduction. Adv Exp Med Biol. 2010; 674: 43- 54.
|
[5] |
Humphries JD, Byron A, Humphries MJ. Integrin ligands at a glance. J Cell Sci. 2006; 119 (19): 3901- 3903.
|
[6] |
Takada Y, Ye X, Simon S. The integrins. Genome Biol. 2007; 8 (5): 215.
|
[7] |
Gomes AM, Pinto TS, da Costa Fernandes CJ, da Silva RA, Zambuzzi WF. Wortmannin targeting phosphatidylinositol 3-kinase suppresses angiogenic factors in shear-stressed endothelial cells. J Cell Physiol. 2020; 235 (6): 5256- 5269.
|
[8] |
Guo K, Pan P, Wu M, Ma Y, Lu J, Chen H. Hyposialylated angiopoietin-like-4 induces apoptosis of podocytes via β1 Integrin/FAK signaling in diabetic nephropathy. Mol Cell Endocrinol. 2020; 505: 110730.
|
[9] |
Slack RJ, Macdonald SJF, Roper JA, Jenkins RG, Hatley RJD. Emerging therapeutic opportunities for integrin inhibitors. Nat Rev Drug Discovery. 2022; 21 (1): 60- 78.
|
[10] |
Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol. 2019; 20 (8): 457- 473.
|
[11] |
Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002; 2 (2): 91- 100.
|
[12] |
Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015; 25 (4): 234- 240.
|
[13] |
Niu G, Chen X. Why integrin as a primary target for imaging and therapy. Theranostics. 2011; 1: 30- 47.
|
[14] |
Hemler ME, Crouse C, Takada Y, Sonnenberg A. Multiple very late antigen (VLA) heterodimers on platelets. Evidence for distinct VLA‐2, VLA‐5 (fibronectin receptor), and VLA‐6 structures. J Biol Chem. 1988; 263 (16): 7660- 7665.
|
[15] |
Hogervorst F, Admiraal LG, Niessen C, et al. Biochemical characterization and tissue distribution of the A and B variants of the integrin α6 subunit. J Cell Biol. 1993; 121 (1): 179- 191.
|
[16] |
Kikkawa Y, Sanzen N, Fujiwara H, Sonnenberg A, Sekiguchi K. Integrin binding specificity of laminin‐10/11: laminin‐10/11 are recognized by α3β1, α6β1 and α6β4 integrins. J Cell Sci. 2000; 113 (Pt 5): 869- 876.
|
[17] |
Niessen CM, Cremona O, Daams H, Ferraresi S, Sonnenberg A, Marchisio PC. Expression of the integrin α6β4 in peripheral nerves: localization in Schwann and perineural cells and different variants of the β4 subunit. J Cell Sci. 1994; 107 (Pt 2): 543- 552.
|
[18] |
Sonnenberg A, Modderman PW, Hogervorst F. Laminin receptor on platelets is the integrin VLA-6. Nature. 1988; 336 (6198): 487- 489.
|
[19] |
Sorokin L, Sonnenberg A, Aumailley M, Timpl R, Ekblom P. Recognition of the laminin E8 cell-binding site by an integrin possessing the α6 subunit is essential for epithelial polarization in developing kidney tubules. J Cell Biol. 1990; 111 (3): 1265- 1273.
|
[20] |
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017; 45 (W1): W98- W102.
|
[21] |
Feng GK, Zhang MQ, Wang HX, et al. Identification of an integrin α6-targeted peptide for nasopharyngeal carcinoma-specific nanotherapeutics. Advanced Therapeutics. 2019; 2 (7): 1900018.
|
[22] |
Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015; 527 (7578): 329- 335.
|
[23] |
Li A, Simmons PJ, Kaur P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA. 1998; 95 (7): 3902- 3907.
|
[24] |
Krebsbach PH, Villa-Diaz LG. The role of integrin α6 (CD49f) in stem cells: more than a conserved biomarker. Stem Cells Dev. 2017; 26 (15): 1090- 1099.
|
[25] |
Tamura RN, Rozzo C, Starr L, et al. Epithelial integrin α6β4: complete primary structure of α6 and variant forms of β4. J Cell Biol. 1990; 111 (4): 1593- 1604.
|
[26] |
Hogervorst F, Kuikman I, KESSEL AG, Sonnenberg A. Molecular cloning of the human α6 integrin subunit alternative splicing of α6 mRNA and chromosomal localization of the α6 and β4 genes. Eur J Biochem. 1991; 199 (2): 425- 433.
|
[27] |
Tamura RN, Cooper HM, Collo G, Quaranta V. Cell type-specific integrin variants with alternative α chain cytoplasmic domains. Proc Natl Acad Sci USA. 1991; 88 (22): 10183- 10187.
|
[28] |
Ziober BL, Vu MP, Waleh N, Crawford J, Lin CS, Kramer RH. Alternative extracellular and cytoplasmic domains of the integrin α7 subunit are differentially expressed during development. J Biol Chem. 1993; 268 (35): 26773- 26783.
|
[29] |
Davis TL, Rabinovitz I, Futscher BW, et al. Identification of a novel structural variant of the α6 integrin. J Biol Chem. 2001; 276 (28): 26099- 26106.
|
[30] |
Borland G, Cushley W. Positioning the immune system: unexpected roles for α6-integrins. Immunology. 2004; 111 (4): 381- 383.
|
[31] |
Stepp MA, Spurr-Michaud S, Tisdale A, Elwell J, Gipson IK. α6β4 integrin heterodimer is a component of hemidesmosomes. Proc Natl Acad Sci USA. 1990; 87 (22): 8970- 8974.
|
[32] |
Schaff M, Tang C, Maurer E, et al. Integrin α6β1 is the main receptor for vascular laminins and plays a role in platelet adhesion, activation, and arterial thrombosis. Circulation. 2013; 128 (5): 541- 552.
|
[33] |
Lee TH, Seng S, Li H, Kennel SJ, Avraham HK, Avraham S. Integrin regulation by vascular endothelial growth factor in human brain microvascular endothelial cells. J Biol Chem. 2006; 281 (52): 40450- 40460.
|
[34] |
Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002; 110 (6): 673- 687.
|
[35] |
Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harbor Perspect Biol. 2011; 3 (3): a004994.
|
[36] |
Cooper J, Giancotti FG. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019; 35 (3): 347- 367.
|
[37] |
Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 2004; 5 (10): 816- 826.
|
[38] |
Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010; 10 (1): 9- 22.
|
[39] |
Feng GK, Zhang MQ, Wang HX, et al. Identification of an integrin α6-targeted peptide for nasopharyngeal carcinoma-specific nanotherapeutics. Adv Therap. 2019; 2 (7): 1900018.
|
[40] |
Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. 2018; 18 (9): 533- 548.
|
[41] |
Lo PK, Kanojia D, Liu X, et al. CD49f and CD61 identify Her2/ neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin-TGFβ signaling. Oncogene. 2012; 31 (21): 2614- 2626.
|
[42] |
Goel HL, Pursell B, Chang C, et al. GLI1 regulates a novel neuropilin-2/α6β1 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med. 2013; 5 (4): 488- 508.
|
[43] |
Goel HL, Pursell B, Standley C, Fogarty K, Mercurio AM. Neuropilin-2 regulates α6β1 integrin in the formation of focal adhesions and signaling. J Cell Sci. 2012; 125 (2): 497- 506.
|
[44] |
Chang C, Goel HL, Gao H, et al. A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells. Genes Dev. 2015; 29 (1): 1- 6.
|
[45] |
Goel HL, Gritsko T, Pursell B, et al. Regulated splicing of the α6 integrin cytoplasmic domain determines the fate of breast cancer stem cells. Cell Rep. 2014; 7 (3): 747- 761.
|
[46] |
Lathia JD, Gallagher J, Heddleston JM, et al. Integrin α6 regulates glioblastoma stem cells. Cell Stem Cell. 2010; 6 (5): 421- 432.
|
[47] |
Schober M, Fuchs E. Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling. Proc Natl Acad Sci USA. 2011; 108 (26): 10544- 10549.
|
[48] |
Lawson DA, Witte ON. Stem cells in prostate cancer initiation and progression. J Clin Invest. 2007; 117 (8): 2044- 2050.
|
[49] |
Yoshioka T, Otero J, Chen Y, et al. β4 integrin signaling induces expansion of prostate tumor progenitors. J Clin Invest. 2013; 123 (2): 682- 699.
|
[50] |
Mariotti A, Kedeshian PA, Dans M, Curatola AM, Gagnoux-Palacios L, Giancotti FG. EGF-R signaling through Fyn kinase disrupts the function of integrin α6β4 at hemidesmosomes. J Cell Biol. 2001; 155 (3): 447- 458.
|
[51] |
Trusolino L, Bertotti A, Comoglio PM. A signaling adapter function for α6β4 integrin in the control of HGF-dependent invasive growth. Cell. 2001; 107 (5): 643- 654.
|
[52] |
Guo W, Pylayeva Y, Pepe A, et al. β4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell. 2006; 126 (3): 489- 502.
|
[53] |
Zheng Y, de la Cruz CC, Sayles LC, et al. A rare population of CD24+ITGB4+Notchhi cells drives tumor propagation in NSCLC and requires Notch3 for self-renewal. Cancer Cell. 2013; 24 (1): 59- 74.
|
[54] |
Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell. 1994; 77 (4): 477- 478.
|
[55] |
Bachelder RE, Marchetti A, Falcioni R, Soddu S, Mercurio AM. Activation of p53 function in carcinoma cells by the α6β4 integrin. J Biol Chem. 1999; 274 (29): 20733- 20737.
|
[56] |
Lipscomb EA, Simpson KJ, Lyle SR, Ring JE, Dugan AS, Mercurio AM. The α6β4 integrin maintains the survival of human breast carcinoma cells in vivo. Cancer Res. 2005; 65 (23): 10970- 10976.
|
[57] |
Lu S, Simin K, Khan A, Mercurio AM. Analysis of integrin β4 expression in human breast cancer: association with basal-like tumors and prognostic significance. Clin Cancer Res. 2008; 14 (4): 1050- 1058.
|
[58] |
Skubitz AP, Bast Jr. RC, Wayner EA, Letourneau PC, Wilke MS. Expression of α6 and β4 integrins in serous ovarian carcinoma correlates with expression of the basement membrane protein laminin. Am J Pathol. 1996; 148 (5): 1445- 1461.
|
[59] |
Cruz-Monserrate Z, Qiu S, Evers BM, O'Connor KL. Upregulation and redistribution of integrin α6β4 expression occurs at an early stage in pancreatic adenocarcinoma progression. Mod Pathol. 2007; 20 (6): 656- 667.
|
[60] |
Shaw LM, Rabinovitz I, Wang HH, Toker A, Mercurio AM. Activation of phosphoinositide 3-OH kinase by the α6β4 integrin promotes carcinoma invasion. Cell. 1997; 91 (7): 949- 960.
|
[61] |
Werner ME, Chen F, Moyano JV, Yehiely F, Jones JCR, Cryns VL. Caspase proteolysis of the integrin β4 subunit disrupts hemidesmosome assembly, promotes apoptosis, and inhibits cell migration. J Biol Chem. 2007; 282 (8): 5560- 5569.
|
[62] |
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014; 15 (12): 786- 801.
|
[63] |
Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell. 2013; 155 (4): 750- 764.
|
[64] |
Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015; 17 (6): 816- 826.
|
[65] |
Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Med. 2012; 18 (6): 883- 891.
|
[66] |
Wang L, Dong Z, Zhang Y, Miao J. The roles of integrin β4 in vascular endothelial cells. J Cell Physiol. 2012; 227 (2): 474- 478.
|
[67] |
Nikolopoulos SN, Blaikie P, Yoshioka T, Guo W, Giancotti FG. Integrin β4 signaling promotes tumor angiogenesis. Cancer Cell. 2004; 6 (5): 471- 483.
|
[68] |
Stewart RL, O'Connor KL. Clinical significance of the integrin α6β4 in human malignancies. Lab Invest. 2015; 95 (9): 976- 986.
|
[69] |
Jauliac S, López-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol. 2002; 4 (7): 540- 544.
|
[70] |
Müller MR, Rao A. NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol. 2010; 10 (9): 645- 656.
|
[71] |
Yoon SO, Shin S, Lipscomb EA. A novel mechanism for integrin-mediated ras activation in breast carcinoma cells: the α6β4 integrin regulates ErbB2 translation and transactivates epidermal growth factor receptor/ErbB2 signaling. Cancer Res. 2006; 66 (5): 2732- 2739.
|
[72] |
Chen M, Sinha M, Luxon BA, Bresnick AR, O'Connor KL. Integrin α6β4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/ metastasin. J Biol Chem. 2009; 284 (3): 1484- 1494.
|
[73] |
Marquardt JU, Thorgeirsson SS. SnapShot: hepatocellular carcinoma. Cancer Cell. 2014; 25 (4): 550.
|
[74] |
Khan MA, Combs CS, Brunt EM, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol. 2000; 32 (5): 792- 797.
|
[75] |
Jiang HY, Chen J, Xia CC, Cao LK, Duan T, Song B. Noninvasive imaging of hepatocellular carcinoma: from diagnosis to prognosis. World J Gastroenterol. 2018; 24 (22): 2348- 2362.
|
[76] |
Francica G, Borzio M. Status of, and strategies for improving, adherence to HCC screening and surveillance. J Hepatocell Carcinoma. 2019; 6: 131- 141.
|
[77] |
Tzartzeva K, Obi J, Rich NE, et al. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Gastroenterology. 2018; 154 (6): 1706- 1718.
|
[78] |
Sangiovanni A, Manini MA, Iavarone M, et al. The diagnostic and economic impact of contrast imaging techniques in the diagnosis of small hepatocellular carcinoma in cirrhosis. Gut. 2010; 59 (5): 638- 644.
|
[79] |
Hennedige T. Advances in computed tomography and magnetic resonance imaging of hepatocellular carcinoma. World J Gastroenterol. 2016; 22 (1): 205- 220.
|
[80] |
Yang JD, Kim WR. Surveillance for hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012; 10 (1): 16- 21.
|
[81] |
Ronot M, Clift AK, Vilgrain V, Frilling A. Functional imaging in liver tumours. J Hepatol. 2016; 65 (5): 1017- 1030.
|
[82] |
Feng GK, Ye JC, Zhang WG, et al. Integrin α6 targeted positron emission tomography imaging of hepatocellular carcinoma in mouse models. J Controlled Release. 2019; 310: 11- 21.
|
[83] |
Luo Q, Yang G, Gao H, et al. An integrin α6-targeted radiotracer with improved receptor binding affinity and tumor uptake. Bioconjug Chem. 2020; 31 (5): 1510- 1521.
|
[84] |
Kudo M. Gd-EOB-DTPA-MRI could predict WNT/β-Catenin mutation and resistance to immune checkpoint inhibitor therapy in hepatocellular carcinoma. Liver Cancer. 2020; 9 (5): 479- 490.
|
[85] |
Xue S, Yang H, Qiao J, et al. Protein MRI contrast agent with unprecedented metal selectivity and sensitivity for liver cancer imaging. Proc Natl Acad Sci USA. 2015; 112 (21): 6607- 6612.
|
[86] |
Ke AW, Shi GM, Zhou J, et al. CD151 amplifies signaling by integrin α6β1 to PI3K and induces the epithelial-mesenchymal transition in HCC cells. Gastroenterology. 2011; 140 (5): 1629- 1641.
|
[87] |
Begum NA, Mori M, Matsumata T, Takenaka K, Sugimachi K, Barnard GF. Differential display and integrin α6 messenger RNA overexpression in hepatocellular carcinoma. Hepatology. 1995; 22 (5): 1447- 1455.
|
[88] |
Bergamini C, Sgarra C, Trerotoli P, et al. Laminin-5 stimulates hepatocellular carcinoma growth through a different function of α6β4 and α3β1 integrins. Hepatology. 2007; 46 (6): 1801- 1809.
|
[89] |
Torimura T, Ueno T, Kin M, et al. Coordinated expression of integrin α6β1 and laminin in hepatocellular carcinoma. Hum Pathol. 1997; 28 (10): 1131- 1138.
|
[90] |
Ozaki I, Yamamoto K, Mizuta T, et al. Differential expression of laminin receptors in human hepatocellular carcinoma. Gut. 1998; 43 (6): 837- 842.
|
[91] |
Carloni V, Romanelli RG, Mercurio AM, et al. Knockout of α6β1-integrin expression reverses the transformed phenotype of hepatocarcinoma cells. Gastroenterology. 1998; 115 (2): 433- 442.
|
[92] |
Torimura T, Ueno T, Kin M, et al. Integrin α6β1 plays a significant role in the attachment of hepatoma cells to laminin. J Hepatol. 1999; 31 (4): 734- 740.
|
[93] |
Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999; 99 (9): 2293- 2352.
|
[94] |
Yao VJ, D'Angelo S, Butler KS, et al. Ligand-targeted theranostic nanomedicines against cancer. J Controlled Release. 2016; 240: 267- 286.
|
[95] |
Araste F, Abnous K, Hashemi M, Taghdisi SM, Ramezani M, Alibolandi M. Peptide-based targeted therapeutics: focus on cancer treatment. J Controlled Release. 2018; 292: 141- 162.
|
[96] |
Zhang Y, Zhao J, Cai J, et al. Integrin α6-targeted magnetic resonance imaging of hepatocellular carcinoma in mice. Mol Imaging Biol. 2020; 22 (4): 864- 872.
|
[97] |
Lin BQ, Zhang WB, Zhao J, et al. An optimized integrin α6-targeted magnetic resonance probe for molecular imaging of hepatocellular carcinoma in mice. J Hepatocell Carcinoma. 2021; 8: 645- 656.
|
[98] |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68 (6): 394- 424.
|
[99] |
Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014; 383 (9927): 1490- 1502.
|
[100] |
Higashikawa K, Akada N, Yagi K, et al. Exploration of target molecules for molecular imaging of inflammatory bowel disease. Biochem Biophys Res Commun. 2011; 410 (3): 416- 421.
|
[101] |
Heriot AG, Hicks RJ, Drummond EG, et al. Does positron emission tomography change management in primary rectal cancer? A prospective assessment. Diseases Colon Rectum. 2004; 47 (4): 451- 458.
|
[102] |
Xiao YT, Zhou C, Ye JC, et al. Integrin α6-targeted positron emission tomography imaging of colorectal cancer. ACS Omega. 2019; 4 (13): 15560- 15566.
|
[103] |
Dmochowska N, Wardill H, Hughes P. Advances in imaging specific mediators of inflammatory bowel disease. Int J Mol Sci. 2018; 19 (9): 2471.
|
[104] |
Misawa M, Kudo S, Mori Y, et al. Artificial intelligence-assisted polyp detection for colonoscopy: initial experience. Gastroenterology. 2018; 154 (8): 2027- 2029.
|
[105] |
van Rijn JC, Reitsma JB, Stoker J, Bossuyt PM, van Deventer SJ, Dekker E. Polyp miss rate determined by tandem colonoscopy: a systematic review. Am J Gastroenterol. 2006; 101 (2): 343- 350.
|
[106] |
Beaulieu JF, Herring E, Kanaoka S, Tremblay É. Use of integrin α6 transcripts in a stool mRNA assay for the detection of colorectal cancers at curable stages. Oncotarget. 2016; 7 (12): 14684- 14692.
|
[107] |
Feng RM, Zong YN, Cao SM, Xu RH. Current cancer situation in China: good or bad news from the 2018 global cancer statistics? Cancer Commun. 2019; 39 (1): 22.
|
[108] |
Ghasemi M, Nabipour I, Omrani A, Alipour Z, Assadi M. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis. Am J Nucl Med Mol Imaging. 2016; 6 (6): 310- 327.
|
[109] |
Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol. 2010; 65 (7): 500- 516.
|
[110] |
Lee SY, Jeon SI, Jung S, Chung IJ, Ahn CH. Targeted multimodal imaging modalities. Adv Drug Deliv Rev. 2014; 76: 60- 78.
|
[111] |
Umeda I, Fujii H. Current status and future prospect on molecular imaging for diagnosis and therapy. Nihon Jibiinkoka Gakkai Kaiho. 2013; 116 (8): 933- 940.
|
[112] |
Hao L, Yu RS, Cui F, Ren XC, Xu HB, Xu KY. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of MR imaging features. Zhonghua Yi Xue Za Zhi. 2013; 93 (11): 819- 823.
|
[113] |
Sörensen J, Sandberg D, Sandström M, et al. First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J Nucl Med. 2014; 55 (5): 730- 735.
|
[114] |
Wang Q, Li SB, Zhao YY, et al. Identification of a sodium pump Na+/K+ ATPase α1-targeted peptide for PET imaging of breast cancer. J Controlled Release. 2018; 281: 178- 188.
|
[115] |
Friedrichs K, Ruiz P, Franke F, Gille I, Terpe HJ, Imhof BA. High expression level of α6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res. 1995; 55 (4): 901- 906.
|
[116] |
Espinoza I, Yang L, Steen TV, et al. Binding of the angiogenic/ senescence inducer CCN1/CYR61 to integrin α6β1 drives endocrine resistance in breast cancer cells. Aging. 2022; 14 (3): 1200- 1213.
|
[117] |
Gao S, Jia B, Feng G, et al. First-in-human pilot study of an integrin α6-targeted radiotracer for SPECT imaging of breast cancer. Signal Transduct Target Ther. 2020; 5 (1): 147.
|
[118] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019; 69 (1): 7- 34.
|
[119] |
Jia X, Du P, Wu K, et al. Pancreatic cancer mortality in China: characteristics and prediction. Pancreas. 2018; 47 (2): 233- 237.
|
[120] |
Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet. 2016; 388 (10039): 73- 85.
|
[121] |
Sawai H, Okada Y, Funahashi H, et al. Interleukin-1α enhances the aggressive behavior of pancreatic cancer cells by regulating the α6β1-integrin and urokinase plasminogen activator receptor expression. BMC Cell Biol. 2006; 7: 8.
|
[122] |
Wu Y, Tan X, Liu P, et al. ITGA6 and RPSA synergistically promote pancreatic cancer invasion and metastasis via PI3K and MAPK signaling pathways. Exp Cell Res. 2019; 379 (1): 30- 47.
|
[123] |
Sawai H, Funahashi H, Matsuo Y, et al. Expression and prognostic roles of integrins and interleukin-1 receptor type I in patients with ductal adenocarcinoma of the pancreas. Dig Dis Sci. 2003; 48 (7): 1241- 1250.
|
[124] |
Zhu GH, Huang C, Qiu ZJ, et al. Expression and prognostic significance of CD151, c-Met, and integrin alpha3/alpha6 in pancreatic ductal adenocarcinoma. Dig Dis Sci. 2011; 56 (4): 1090- 1098.
|
[125] |
Mei Y, Li YH, Yang XC, et al. An optimized integrin α6-targeted peptide for positron emission tomography/magnetic resonance imaging of pancreatic cancer and its precancerous lesion. Clin Transl Med. 2020; 10 (4): e157.
|
[126] |
Feng SR, Chen ZX, Cen JN, Shen HJ, Wang YY, Yao L. Disruption of blood brain-barrier by leukemic cells in central nervous system leukemia. Zhonghua xueyexue zazhi. 2011; 32 (5): 289- 293.
|
[127] |
Lazarus HM, Richards SM, Chopra R, et al. Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis: results from the international ALL trial MRC UKALL XII/ECOG E2993. Blood. 2006; 108 (2): 465- 472.
|
[128] |
Thastrup M, Marquart HV, Levinsen M, et al. Flow cytometric detection of leukemic blasts in cerebrospinal fluid predicts risk of relapse in childhood acute lymphoblastic leukemia: a Nordic Society of Pediatric Hematology and Oncology study. Leukemia. 2020; 34 (2): 336- 346.
|
[129] |
Levinsen M, Marquart HV, Groth-Pedersen L, et al. Leukemic blasts are present at low levels in spinal fluid in one-third of childhood acute lymphoblastic leukemia cases. Pediatr Blood Cancer. 2016; 63 (11): 1935- 1942.
|
[130] |
Krause S, Pfeiffer C, Strube S, et al. Mer tyrosine kinase promotes the survival of t(1;19)-positive acute lymphoblastic leukemia (ALL) in the central nervous system (CNS). Blood. 2015; 125 (5): 820- 830.
|
[131] |
Wigton EJ, Thompson SB, Long RA, Jacobelli J. Myosin-IIA regulates leukemia engraftment and brain infiltration in a mouse model of acute lymphoblastic leukemia. J Leukoc Biol. 2016; 100 (1): 143- 153.
|
[132] |
Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science. 2011; 333 (6039): 218- 221.
|
[133] |
Yamakawa N, Kaneda K, Saito Y, Ichihara E, Morishita K. The increased expression of integrin α6 (ITGA6) enhances drug resistance in EVI1high leukemia. PLoS One. 2012; 7 (1): e30706.
|
[134] |
DiGiuseppe JA, Fuller SG, Borowitz MJ. Overexpression of CD49f in precursor B-cell acute lymphoblastic leukemia: potential usefulness in minimal residual disease detection. Cytometry B Clin Cytom. 2009; 76 (2): 150- 155.
|
[135] |
Bonardi F, Fusetti F, Deelen P, van Gosliga D, Vellenga E, Schuringa JJ. A proteomics and transcriptomics approach to identify leukemic stem cell (LSC) markers. Mol Cell Proteomics. 2013; 12 (3): 626- 637.
|
[136] |
Yao H, Price TT, Cantelli G, et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature. 2018; 560 (7716): 55- 60.
|
[137] |
Zhang W, Li Y, Chen G, et al. Integrin α6-targeted molecular imaging of central nervous system leukemia in mice. Front Bioeng Biotechnol. 2022; 10: 812277.
|
[138] |
Hosen N, Matsunaga Y, Hasegawa K, et al. The activated conformation of integrin β7 is a novel multiple myeloma-specific target for CAR T cell therapy. Nature Med. 2017; 23 (12): 1436- 1443.
|
[139] |
Wallstabe L, Mades A, Frenz S, Einsele H, Rader C, Hudecek M. CAR T cells targeting αvβ3 integrin are effective against advanced cancer in preclinical models. Adv Cell Gene Therapy. 2018; 1: e11.
|
[140] |
Whilding LM, Parente-Pereira AC, Zabinski T, et al. Targeting of aberrant αvβ6 integrin expression in solid tumors using chimeric antigen receptor-engineered T cells. Mol Ther. 2017; 25 (1): 259- 273.
|
[141] |
Alday-Parejo B, Stupp R, Rüegg C. Are integrins still practicable targets for anti-cancer therapy? Cancers. 2019; 11 (7): 978.
|
[142] |
Stupp R, Hegi ME, Gorlia T, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014; 15 (10): 1100- 1108.
|
[143] |
Mason WP. End of the road: confounding results of the CORE trial terminate the arduous journey of cilengitide for glioblastoma. Neuro-Oncol. 2015; 17 (5): 634- 635.
|
[144] |
Hersey P, Sosman J, O'Day S, et al. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin αvβ3, ± dacarbazine in patients with stage IV metastatic melanoma. Cancer. 2010; 116 (6): 1526- 1534.
|
[145] |
Cirkel GA, Kerklaan BM, Vanhoutte F, et al. A dose escalating phase I study of GLPG0187, a broad spectrum integrin receptor antagonist, in adult patients with progressive high-grade glioma and other advanced solid malignancies. Invest New Drugs. 2016; 34 (2): 184- 192.
|
[146] |
Shergalis A, Bankhead A 3rd, Luesakul U, Muangsin N, Neamati N. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev. 2018; 70 (3): 412- 445.
|
[147] |
Landowski TH, Gard J, Pond E, et al. Targeting integrin α6 stimulates curative-type bone metastasis lesions in a xenograft model. Mol Cancer Ther. 2014; 13 (6): 1558- 1566.
|
[148] |
Gang EJ, Kim HN, Hsieh YT, et al. Integrin α6 mediates the drug resistance of acute lymphoblastic B-cell leukemia. Blood. 2020; 136 (2): 210- 223.
|
[149] |
Shi H, Wang Q, Venkatesh V, et al. Photoactive platinum(IV) complex conjugated to a cancer-cell-targeting cyclic peptide. Dalton Trans. 2019; 48 (24): 8560- 8564.
|
[150] |
Jin H, Ying X, Que B, et al. N6-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine. 2019; 47: 195- 207.
|
[151] |
Zheng G, Bouamar H, Cserhati M, et al. Integrin α6 is upregulated and drives hepatocellular carcinoma progression through integrin α6β4 complex. Int J Cancer. 2022; 151 (6): 930- 943.
|
[152] |
Gupta N, Srivastava SK. Atovaquone suppresses the growth of metastatic triple-negative breast tumors in lungs and brain by inhibiting integrin/FAK signaling axis. Pharmaceuticals. 2021; 14 (6): 521.
|
[153] |
Kwon J, Lee TS, Lee HW, et al. Integrin alpha 6: a novel therapeutic target in esophageal squamous cell carcinoma. Int J Oncol. 2013; 43 (5): 1523- 1530.
|
[154] |
Hu T, Zhou R, Zhao Y, Wu G. Integrin α6/Akt/Erk signaling is essential for human breast cancer resistance to radiotherapy. Sci Rep. 2016; 6: 33376.
|
/
〈 | 〉 |