An overview of multiomics: a powerful tool applied in cancer molecular subtyping for cancer therapy

Yazhu Zou, Zitong Zhao, Yongmei Song

PDF(771 KB)
PDF(771 KB)
Malignancy Spectrum ›› 2024, Vol. 1 ›› Issue (1) : 15-29. DOI: 10.1002/msp2.16
REVIEW

An overview of multiomics: a powerful tool applied in cancer molecular subtyping for cancer therapy

Author information +
History +

Abstract

During the process of carcinogenesis and tumor progression, various molecular alternations occur in different omics levels. In recent years, multiomics approaches including genomics, epigenetics, transcriptomics, proteomics, metabolomics, single-cell omics, and spatial omics have been applied in mapping diverse omics profiles of cancers. The development of high-throughput technologies such as sequencing and mass spectrometry has revealed different omics levels of tumor cells or tissues separately. While focusing on a single omics level results in a lack of accuracy, joining multiple omics approaches together undoubtedly benefits accurate molecular subtyping and precision medicine for cancer patients. With the deepening of tumor research in recent years, taking pathological classification as the only criterion of diagnosis and predicting prognosis and treatment response is found to be not accurate enough. Therefore, identifying precise molecular subtypes by exploring the molecular alternations during tumor occurrence and development is of vital importance. The review provides an overview of the advanced technologies and recent progress in multiomics applied in cancer molecular subtyping and detailedly explains the application of multiomics in identifying cancer driver genes and metastasis-related genes, exploring tumor microenvironment, and selecting liquid biopsy biomarkers and potential therapeutic targets.

Keywords

multiomics / cancer molecular subtyping / cancer therapy / single-cell omics / spatial omics

Cite this article

Download citation ▾
Yazhu Zou, Zitong Zhao, Yongmei Song. An overview of multiomics: a powerful tool applied in cancer molecular subtyping for cancer therapy. Malignancy Spectrum, 2024, 1(1): 15‒29 https://doi.org/10.1002/msp2.16

References

[1]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021; 71 (1): 7- 33.
[2]
Paczkowska M, Barenboim J, Sintupisut N, et al. Integrative pathway enrichment analysis of multivariate omics data. Nat Commun. 2020; 11 (1): 735.
[3]
Moncada R, Barkley D, Wagner F, et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol. 2020; 38 (3): 333- 342.
[4]
Nam AS, Chaligne R, Landau DA. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat Rev Genet. 2021; 22 (1): 3- 18.
[5]
Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017; 18 (1): 83.
[6]
Akhoundova D, Rubin MA. Clinical application of advanced multi-omics tumor profiling: shaping precision oncology of the future. Cancer Cell. 2022; 40 (9): 920- 938.
[7]
Menyhárt O, Győrffy B. Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Comput Struct Biotechnol J. 2021; 19: 949- 960.
[8]
Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013; 502 (7471): 333- 339.
[9]
Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013; 499 (7457): 214- 218.
[10]
McCain J. The Cancer Genome Atlas: new weapon in old war? Biotechnol Healthc. 2006; 3 (2): 46- 51B.
[11]
Jones JC, Renfro LA, Al-Shamsi HO, et al. Non-V600 BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol. 2017; 35 (23): 2624- 2630.
[12]
Xu S, Lou F, Wu Y, et al. Circulating tumor DNA identified by targeted sequencing in advanced-stage non-small cell lung cancer patients. Cancer Lett. 2016; 370 (2): 324- 331.
[13]
Gale D, Heider K, Ruiz-Valdepenas A, et al. Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Ann Oncol. 2022; 33 (5): 500- 510.
[14]
Mosele F, Remon J, Mateo J, et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO precision medicine working group. Ann Oncol. 2020; 31 (11): 1491- 1505.
[15]
Wang F, Liu DB, Zhao Q, et al. The genomic landscape of small cell carcinoma of the esophagus. Cell Res. 2018; 28 (7): 771- 774.
[16]
Moody S, Senkin S, Islam SMA, et al. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat Genet. 2021; 53 (11): 1553- 1563.
[17]
Hu Z, Zhu D, Wang W, et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015; 47 (2): 158- 163.
[18]
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008; 455 (7216): 1061- 1068.
[19]
Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011; 474 (7353): 609- 615.
[20]
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012; 487 (7407): 330- 337.
[21]
Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008; 455 (7216): 1069- 1075.
[22]
Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012; 150 (1): 12- 27.
[23]
Liu L, Li Y, Tollefsbol TO. Gene‐environment interactions and epigenetic basis of human diseases. Curr Issues Mol Biol. 2008; 10 (1‐2): 25- 36.
[24]
Gut P, Verdin E. The nexus of chromatin regulation and intermediary metabolism. Nature. 2013; 502 (7472): 489- 498.
[25]
Baylin SB, Esteller M, Rountree MR, et al. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Gen. 2001; 10 (7): 687- 692.
[26]
Grandi FC, Modi H, Kampman L, Corces MR. Chromatin accessibility profiling by ATAC-seq. Nat Protoc. 2022; 17 (6): 1518- 1552.
[27]
Wang KC, Chang HY. Epigenomics: technologies and applications. Circ Res. 2018; 122 (9): 1191- 1199.
[28]
Schutsky EK, DeNizio JE, Hu P, et al. Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase. Nat Biotechnol. 2018; 36: 1083- 1090.
[29]
Chao YL, Pecot CV. Targeting epigenetics in lung cancer. Cold Spring Harbor Perspect Med. 2021; 11 (6): a038000.
[30]
Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer. 2004; 4 (9): 707- 717.
[31]
Li X, Liu Y, Salz T, Hansen KD, Feinberg A. Whole-genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver. Genome Res. 2016; 26 (12): 1730- 1741.
[32]
Zhao SG, Chen WS, Li H, et al. The DNA methylation landscape of advanced prostate cancer. Nat Genet. 2020; 52 (8): 778- 789.
[33]
Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc. 2015; 2015 (11): 951- 969.
[34]
Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017; 13 (5): e1005457.
[35]
Li M, Sun Q, Wang X. Transcriptional landscape of human cancers. Oncotarget. 2017; 8 (21): 34534- 34551.
[36]
Varešlija D, Priedigkeit N, Fagan A, et al. Transcriptome characterization of matched primary breast and brain metastatic tumors to detect novel actionable targets. J Natl Cancer Inst. 2019; 111 (4): 388- 398.
[37]
Kohno T, Ichikawa H, Totoki Y, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012; 18 (3): 375- 377.
[38]
Ren S, Wei GH, Liu D, et al. Whole-genome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur Urol. 2018; 73 (3): 322- 339.
[39]
Cao Y, He M, Gao Z, et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing's syndrome. Science. 2014; 344 (6186): 913- 917.
[40]
Demircioğlu D, Cukuroglu E, Kindermans M, et al. A pan-cancer transcriptome analysis reveals pervasive regulation through alternative promoters. Cell. 2019; 178 (6): 1465- 1477.
[41]
Mardamshina M, Geiger T. Next-generation proteomics and its application to clinical breast cancer research. Am J Pathol. 2017; 187 (10): 2175- 2184.
[42]
Li J, Lu Y, Akbani R, et al. TCPA: a resource for cancer functional proteomics data. Nat Methods. 2013; 10 (11): 1046- 1047.
[43]
Chakraborty S, Hosen MI, Ahmed M, Shekhar HU. Onco-multi-omics approach: a new frontier in cancer research. BioMed Res Int. 2018; 2018: 9836256.
[44]
Iwamoto N, Shimada T. Recent advances in mass spectrometry-based approaches for proteomics and biologics: great contribution for developing therapeutic antibodies. Pharmacol Ther. 2018; 185: 147- 154.
[45]
Gu Y, Guo Y, Gao N, et al. The proteomic characterization of the peritumor microenvironment in human hepatocellular carcinoma. Oncogene. 2022; 41 (17): 2480- 2491.
[46]
Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016; 17 (7): 451- 459.
[47]
Kettunen J, Tukiainen T, Sarin AP, et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet. 2012; 44 (3): 269- 276.
[48]
Li B, Qiu B, Lee DSM, et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature. 2014; 513 (7517): 251- 255.
[49]
Heinrich S, Craig AJ, Ma L, Heinrich B, Greten TF, Wang XW. Understanding tumour cell heterogeneity and its implication for immunotherapy in liver cancer using single-cell analysis. J Hepatol. 2021; 74 (3): 700- 715.
[50]
Ho DWH, Tsui YM, Sze KMF, et al. Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver cancer. Cancer Lett. 2019; 459: 176- 185.
[51]
Zheng C, Zheng L, Yoo JK, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell. 2017; 169 (7): 1342- 1356.
[52]
Hornburg M, Desbois M, Lu S, et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell. 2021; 39 (7): 928- 944.
[53]
Lim B, Lin Y, Navin N. Advancing cancer research and medicine with single-cell genomics. Cancer Cell. 2020; 37 (4): 456- 470.
[54]
Kashima Y, Sakamoto Y, Kaneko K, Seki M, Suzuki Y, Suzuki A. Single-cell sequencing techniques from individual to multiomics analyses. Exp Mol Med. 2020; 52 (9): 1419- 1427.
[55]
Chaligne R, Gaiti F, Silverbush D, et al. Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states. Nat Genet. 2021; 53 (10): 1469- 1479.
[56]
Bingham GC, Lee F, Naba A, Barker TH. Spatial‐omics: novel approaches to probe cell heterogeneity and extracellular matrix biology. Matrix Biol. 2020; 91-92: 152- 166.
[57]
Lewis SM, Asselin-Labat ML, Nguyen Q, et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat Methods. 2021; 18 (9): 997- 1012.
[58]
Lomakin A, Svedlund J, Strell C, et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature. 2022; 611 (7936): 594- 602.
[59]
Deng Y, Bartosovic M, Kukanja P, et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science. 2022; 375 (6581): 681- 686.
[60]
Deng Y, Bartosovic M, Ma S, et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature. 2022; 609 (7926): 375- 383.
[61]
Strell C, Hilscher MM, Laxman N, et al. Placing RNA in context and space—methods for spatially resolved transcriptomics. FEBS J. 2019; 286 (8): 1468- 1481.
[62]
Ke R, Mignardi M, Pacureanu A, et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods. 2013; 10 (9): 857- 860.
[63]
Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019; 363 (6434): 1463- 1467.
[64]
Lee JH, Daugharthy ER, Scheiman J, et al. Highly multiplexed subcellular RNA sequencing in situ. Science. 2014; 343 (6177): 1360- 1363.
[65]
Ji AL, Rubin AJ, Thrane K, et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell. 2020; 182 (6): 1661- 1662.
[66]
Sun S, Zhu J, Zhou X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat Methods. 2020; 17 (2): 193- 200.
[67]
Sun D, Liu Z, Li T, Wu Q, Wang C. STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing. Nucleic Acids Res. 2022; 50 (7): e42.
[68]
Dong K, Zhang S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat Commun. 2022; 13 (1): 1739.
[69]
Goltsev Y, Samusik N, Kennedy-Darling J, et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell. 2018; 174 (4): 968- 981.
[70]
Giesen C, Wang HAO, Schapiro D, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014; 11 (4): 417- 422.
[71]
Hadley KC, Rakhit R, Guo H, et al. Determining composition of micron-scale protein deposits in neurodegenerative disease by spatially targeted optical microproteomics. eLife. 2015; 4: e09579.
[72]
Gozal YM, Cheng D, Duong DM, Lah JJ, Levey AI, Peng J. Merger of laser capture microdissection and mass spectrometry: a window into the amyloid plaque proteome. Methods Enzymol. 2006; 412: 77- 93.
[73]
Ben-Chetrit N, Niu X, Swett AD, et al. Integration of whole transcriptome spatial profiling with protein markers. Nat Biotechnol. 2023; 41: 788- 793.
[74]
Sun C, Li T, Song X, et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc Natl Acad Sci USA. 2019; 116 (1): 52- 57.
[75]
Yuan Z, Zhou Q, Cai L, et al. SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment. Nat Methods. 2021; 18 (10): 1223- 1232.
[76]
Bardelli A, Pantel K. Liquid biopsies, what we do not know (yet). Cancer Cell. 2017; 31 (2): 172- 179.
[77]
Kiebish MA, Cullen J, Mishra P, et al. Multi-omic serum biomarkers for prognosis of disease progression in prostate cancer. J Transl Med. 2020; 18 (1): 10.
[78]
Drabovich AP, Saraon P, Drabovich M, et al. Multi-omics biomarker pipeline reveals elevated levels of protein-glutamine gamma-glutamyltransferase 4 in seminal plasma of prostate cancer patients. Mol Cell Proteomics. 2019; 18 (9): 1807- 1823.
[79]
Li J, Guan X, Fan Z, et al. Non-invasive biomarkers for early detection of breast cancer. Cancers. 2020; 12 (10): 2767.
[80]
Henderson MC, Silver M, Tran Q, et al. A noninvasive blood-based combinatorial proteomic biomarker assay to detect breast cancer in women over age 50 with BI-RADS 3, 4, or 5 assessment. Clin Cancer Res. 2019; 25 (1): 142- 149.
[81]
Chen K, Sun J, Zhao H, et al. Non-invasive lung cancer diagnosis and prognosis based on multi-analyte liquid biopsy. Mol Cancer. 2021; 20 (1): 23.
[82]
Zhang S, Zhang J, Hu X, et al. Noninvasive detection of brain gliomas using plasma cell-free DNA 5-hydroxymethylcytosine sequencing. Int J Cancer. 2023; 152 (8): 1707- 1718.
[83]
Li K, Lin Y, Luo Y, et al. A signature of saliva-derived exosomal small RNAs as predicting biomarker for esophageal carcinoma: a multicenter prospective study. Mol Cancer. 2022; 21 (1): 21.
[84]
Xue L, Zhao Z, Wang M, et al. A liquid biopsy signature predicts lymph node metastases in T1 oesophageal squamous cell carcinoma: implications for precision treatment strategy. Br J Cancer. 2022; 127 (11): 2052- 2059.
[85]
Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009; 458 (7239): 719- 724.
[86]
Stratton MR. Exploring the genomes of cancer cells: progress and promise. Science. 2011; 331 (6024): 1553- 1558.
[87]
Dhingra P, Martinez-Fundichely A, Berger A, et al. Identification of novel prostate cancer drivers using regnetdriver: a framework for integration of genetic and epigenetic alterations with tissue-specific regulatory network. Genome Biol. 2017; 18 (1): 141.
[88]
Song Y, Li L, Ou Y, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014; 509 (7498): 91- 95.
[89]
Campbell JD, Alexandrov A, Kim J, et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 2016; 48 (6): 607- 616.
[90]
Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014; 511 (7511): 543- 550.
[91]
Devarakonda S, Morgensztern D, Govindan R. Genomic alterations in lung adenocarcinoma. Lancet Oncol. 2015; 16 (7): e342- e351.
[92]
Chen YJ, Roumeliotis TI, Chang YH, et al. Proteogenomics of non-smoking lung cancer in east Asia delineates molecular signatures of pathogenesis and progression. Cell. 2020; 182 (1): 226- 244.
[93]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144 (5): 646- 674.
[94]
Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004; 4 (2): 118- 132.
[95]
Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009; 9 (4): 265- 273.
[96]
Talmadge JE, Fidler IJ. Aacr centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010; 70 (14): 5649- 5669.
[97]
Li C, Sun YD, Yu GY, et al. Integrated omics of metastatic colorectal cancer. Cancer Cell. 2020; 38 (5): 734- 747.
[98]
Kwon OK, Jeon JM, Sung E, Na AY, Kim SJ, Lee S. Comparative secretome profiling and mutant protein identification in metastatic prostate cancer cells by quantitative mass spectrometry-based proteomics. Cancer Genom Proteom. 2018; 15 (4): 279- 290.
[99]
Huang F, Ni M, Chalishazar MD, et al. Inosine monophosphate dehydrogenase dependence in a subset of small cell lung cancers. Cell Metab. 2018; 28 (3): 369- 382.
[100]
Huang K, Li S, Mertins P, et al. Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat Commun. 2017; 8: 14864.
[101]
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013; 14 (10): 1014- 1022.
[102]
Zhang Y, Chen H, Mo H, et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell. 2021; 39 (12): 1578- 1593.
[103]
Huang Z, Li B, Guo Y, Wu L, Kou F, Yang L. Signatures of multi-omics reveal distinct tumor immune microenvironment contributing to immunotherapy in lung adenocarcinoma. Front Immunol. 2021; 12: 723172.
[104]
Zhang L, Li Z, Skrzypczynska KM, et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell. 2020; 181 (2): 442- 459.
[105]
Lordick F, Carneiro F, Cascinu S, et al. Gastric cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol. 2022; 33 (10): 1005- 1020.
[106]
Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. The Lancet. 2020; 396 (10251): 635- 648.
[107]
Laurén P. The two histological main types of gastric carcinoma: diffuse and so‐called intestinal‐type carcinoma. An attempt at a histo‐clinical classification. Acta Pathol Microbiol Scandin. 1965; 64: 31- 49.
[108]
Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO classification of tumours of the digestive system. 4th Edition. International Agency for Research on Cancer. Lyon. 2010.
[109]
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014; 513 (7517): 202- 209.
[110]
Mun DG, Bhin J, Kim S, et al. Proteogenomic characterization of human early-onset gastric cancer. Cancer Cell. 2019; 35 (1): 111- 124.
[111]
Ruiz-Cordero R, Devine WP. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin. 2020; 13 (1): 17- 33.
[112]
Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004; 350 (21): 2129- 2139.
[113]
Paez JG, Jänne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004; 304 (5676): 1497- 1500.
[114]
Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007; 448 (7153): 561- 566.
[115]
Xu JY, Zhang C, Wang X, et al. Integrative proteomic characterization of human lung adenocarcinoma. Cell. 2020; 182 (1): 245- 261.
[116]
Gillette MA, Satpathy S, Cao S, et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell. 2020; 182 (1): 200- 225.
[117]
Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Breast cancer. Lancet. 2021; 397 (10286): 1750- 1769.
[118]
Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001; 98 (19): 10869- 10874.
[119]
Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long‐term follow‐up. Histopathology. 1991; 19 (5): 403- 410.
[120]
Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000; 406 (6797): 747- 752.
[121]
Cheang MCU, Chia SK, Voduc D, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009; 101 (10): 736- 750.
[122]
Krug K, Jaehnig EJ, Satpathy S, et al. Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell. 2020; 183 (5): 1436- 1456.
[123]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68 (6): 394- 424.
[124]
Li FY, Lai MD. Colorectal cancer, one entity or three. J Zhejiang Univ Sci B. 2009; 10 (3): 219- 229.
[125]
Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015; 21 (11): 1350- 1356.
[126]
Alwers E, Jia M, Kloor M, Bläker H, Brenner H, Hoffmeister M. Associations between molecular classifications of colorectal cancer and patient survival: a systematic review. Clin Gastroenterol Hepatol. 2019; 17 (3): 402- 410.
[127]
Miao Z, Humphreys BD, McMahon AP, Kim J. Multi-omics integration in the age of million single-cell data. Nat Rev Nephrol. 2021; 17 (11): 710- 724.
[128]
Biswas N, Chakrabarti S. Artificial intelligence (AI)-based systems biology approaches in multi-omics data analysis of cancer. Front Oncol. 2020; 10: 588221.
[129]
Chen A, Liao S, Cheng M, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell. 2022; 185 (10): 1777- 1792.
[130]
Hu KH, Eichorst JP, McGinnis CS, et al. ZipSeq: barcoding for real-time mapping of single cell transcriptomes. Nat Methods. 2020; 17 (8): 833- 843.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Malignancy Spectrum published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(771 KB)

Accesses

Citations

Detail

Sections
Recommended

/