Jul 2024, Volume 3 Issue 1
    

  • Select all
  • Research Highlight
    David Sokolov, Lucas B. Sullivan
  • Research Highlight
    Xiuxiu Liu, Bin Zhou
  • Research Highlight
    Xiaoli Ma, Hong Zhang
  • Review Article
    Jameel Barkat Lone, Jonathan Z. Long, Katrin J. Svensson

    The endocrine system is a fundamental type of long-range cell–cell communication that is important for maintaining metabolism, physiology, and other aspects of organismal homeostasis. Endocrine signaling is mediated by diverse blood-borne ligands, also called hormones, including metabolites, lipids, steroids, peptides, and proteins. The size and structure of these hormones are fine-tuned to make them bioactive, responsive, and adaptable to meet the demands of changing environments. Why has nature selected such diverse ligand types to mediate communication in the endocrine system? What is the chemical, signaling, or physiologic logic of these ligands? What fundamental principles from our knowledge of endocrine communication can be applied as we continue as a field to uncover additional new circulating molecules that are claimed to mediate long-range cell and tissue crosstalk? This review provides a framework based on the biochemical logic behind this crosstalk with respect to their chemistry, temporal regulation in physiology, specificity, signaling actions, and evolutionary development.

  • Original Article
    Shuo Wang, Lingling Zhang, Jingyu Zhao, Meijuan Bai, Yijun Lin, Qianqian Chu, Jue Gong, Ju Qiu, Yan Chen

    The monocarboxylate transporter 1 (MCT1), encoded by gene Slc16a1, is a proton-coupled transporter for lactate and other monocarboxylates. MCT1-mediated lactate transport was recently found to regulate various biological functions. However, how MCT1 and lactate in the intestine modulate the physiology and pathophysiology of the body is unclear. In this study, we generated a mouse model with specific deletion of Slc16a1 in the intestinal epithelium (Slc16a1IKO mice) and investigated the functions of MCT1 in the gut. When fed a high-fat diet, Slc16a1IKO male mice had improvement in glucose tolerance and insulin sensitivity, while Slc16a1IKO female mice only had increased adiposity. Deficiency of intestinal MCT1 in male mice was associated with downregulation of pro-inflammatory pathways, together with decreased circulating levels of inflammatory cytokines including tumor necrosis factor alpha (TNFα) and C–C motif chemokine ligand 2 (CCL2). Lactate had a stimulatory effect on pro-inflammatory macrophages in vitro. The number of intestinal macrophages was reduced in Slc16a1IKO male mice in vivo. Intestinal deletion of Slc16a1 in male mice reduced interstitial lactate level in the intestine. In addition, treatment of male mice with estrogen lowered interstitial lactate level in the intestine and abolished the difference in glucose homeostasis between Slc16a1IKO and wild-type mice. Deficiency of intestinal MCT1 also blocked the transport of lactate and short-chain fatty acids from the intestine to the portal vein. The effect of Slc16a1 deletion on glucose homeostasis in male mice was partly mediated by alterations in gut microbiota. In conclusion, our work reveals that intestinal MCT1 regulates glucose homeostasis in a sex-dependent manner.

  • Original Article
    Oliver K. Fuller, Casey L. Egan, Tina L. Robinson, Nimna Perera, Heidy K. Latchman, Lauren V. Terry, Emma D. McLennan, Carolina Chavez, Emma L. Burrows, John W. Scott, Robyn M. Murphy, Henriette van Praag, Martin Whitham, Mark A. Febbraio

    Obesity has been linked to a range of pathologies, including dementia. In contrast, regular physical activity is associated with the prevention or reduced progression of neurodegeneration. Specifically, physical activity can improve memory and spatial cognition, reduce age-related cognitive decline, and preserve brain volume, but the mechanisms are not fully understood. Accordingly, we investigated whether any detrimental effects of high-fat diet (HFD)-induced obesity on cognition, motor behavior, adult hippocampal neurogenesis, and brain-derived neurotrophic factor (BDNF) could be mitigated by voluntary exercise training in male C57Bl/6 mice. HFD-induced impairment of motor function was not reversed by exercise. Importantly, voluntary wheel running improved long-term memory and increased hippocampal neurogenesis, suggesting that regular physical activity may prevent cognitive decline in obesity.

  • Original Article
    Qinchao Ding, Rui Guo, Liuyi Hao, Qing Song, Ai Fu, Shanglei Lai, Tiantian Xu, Hui Zhuge, Kaixin Chang, Yanli Chen, Haibin Wei, Daxi Ren, Zhaoli Sun, Zhenyuan Song, Xiaobing Dou, Songtao Li

    Emerging evidence discloses the involvement of calcium channel protein in the pathological process of liver diseases. Transient receptor potential cation channel subfamily C member 3 (TRPC3), a ubiquitously expressed non-selective cation channel protein, controls proliferation, inflammation, and immune response via operating calcium influx in various organs. However, our understanding on the biofunction of hepatic TRPC3 is still limited. The present study aims to clarify the role and potential mechanism(s) of TRPC3 in alcohol-associated liver disease (ALD). We recently found that TRPC3 expression plays an important role in the disease process of ALD. Alcohol exposure led to a significant reduction of hepatic TRPC3 in patients with alcohol-related hepatitis (AH) and ALD models. Antioxidants (N-acetylcysteine and mitoquinone) intervention improved alcohol-induced suppression of TRPC3 via a miR-339-5p-involved mechanism. TRPC3 loss robustly aggravated the alcohol-induced hepatic steatosis and liver injury in mouse liver; this was associated with the suppression of Ca2+/calmodulin-dependent protein kinase kinase 2 (CAMKK2)/AMP-activated protein kinase (AMPK) and dysregulation of genes related to lipid metabolism. TRPC3 loss also enhanced hepatic inflammation and early fibrosis-like change in mice. Replenishing hepatic TRPC3 effectively reversed chronic alcohol-induced detrimental alterations in ALD mice. Briefly, chronic alcohol exposure-induced TRPC3 reduction contributes to the pathological development of ALD via suppression of the CAMKK2/AMPK pathway. Oxidative stress-stimulated miR-339-5p upregulation contributes to alcohol-reduced TRPC3. TRPC3 is the requisite and a potential target to defend alcohol consumption-caused ALD.