Numerical solution method for fundamental frequency and mode shape of Euler-Bernoulli beam based on Monte Carlo method

Zhu Lei1,2, Zhang Jianxun1,2, Sun Hailin3

PDF(757 KB)
PDF(757 KB)
Journal of Southeast University (English Edition) ›› 2024, Vol. 40 ›› Issue (2) : 203-209. DOI: 10.3969/j.issn.1003-7985.2024.02.011

Numerical solution method for fundamental frequency and mode shape of Euler-Bernoulli beam based on Monte Carlo method

  • Zhu Lei1,2, Zhang Jianxun1,2, Sun Hailin3
Author information +
History +

Abstract

To address the challenge of solving free vibration problems in beams with uniform cross-sections, beams with variable cross-sections, and Euler-Bernoulli beams with concentrated masses, an innovative method combining the Rayleigh method and the Monte Carlo method is introduced. This dual-method strategy offers a novel solution by first discretizing the continuous beam structure model, followed by employing the Monte Carlo method to determine the vibration modes of the beam structure. Subsequently, these identified vibration modes are integrated into the Rayleigh method to calculate the fundamental frequency and vibration modes. The process involves a meticulous comparison with the minimum value obtained during calculations to ensure the satisfaction of the convergence condition. The results show that this combined method achieves a maximum error of 10% or less in predicting the fundamental frequency across different calculation models. This accuracy level is well within acceptable engineering requirements. The control parameters for accuracy and time can be easily adjusted to meet various needs. The method, which is simple in theory and widely applicable, enables the quick and precise determination of fundamental frequencies and vibration modes for diverse beam structures.

Keywords

Euler-Bernoulli beam / fundamental frequency / Monte Carlo method / numerical solution

Cite this article

Download citation ▾
Zhu Lei, Zhang Jianxun, Sun Hailin. Numerical solution method for fundamental frequency and mode shape of Euler-Bernoulli beam based on Monte Carlo method. Journal of Southeast University (English Edition), 2024, 40(2): 203‒209 https://doi.org/10.3969/j.issn.1003-7985.2024.02.011

References

[1] Rao C K, Mirza S.A note on vibrations of generally restrained beams[J].Journal of Sound & Vibration, 1989, 130(3):453-465. DOI:10.1016/0022-460X(89)90069-2.
[2] Piccardo G, Tubino F.Dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads[J].Structural Engineering & Mechanics, 2012, 44(5):681-704. DOI:10.12989/sem.2012.44.5.681.
[3] Bokaian A.Natural frequencies of beams under compressive axial loads[J].Journal of Sound and Vibration, 1988, 126(1):49-65. DOI:10.1016/0022-460X(88)90397-5.
[4] Li S, Xie L L, Bao Y Q.Analysis of beam with variable cross-section by using direct element-based equilibrium framework[J].Chinese Journal of Computational Mechanics, 2009, 26(2):226-231. DOI:10.1109/CLEOE-EQEC.2009.5194697. (in Chinese)
[5] Shahba A, Rajasekaran S.Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials[J].Applied Mathematical Modelling, 2012, 36(7):3094-3111. DOI:10.1016/j.apm.2011.09.073.
[6] Özdemir Ö, Kaya M O.Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method[J].Journal of Sound & Vibration, 2006, 289(1/2):413-420. DOI:10.1016/j.jsv.2005.01.055.
[7] Şimşek M,Kocatirkş T,Akba Ş.Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory[J].Composite Structures, 2013, 95:740-747. DOI:10.1016/j.compstruct.2012.08.036.
[8] Huang Y, Li X F.A new approach for free vibration of axially functionally graded beams with non-uniform cross-section[J].Journal of Sound & Vibration, 2010, 329(11):2291-2303. DOI:10.1016/j.jsv.2009.12.029.
[9] Jin W Y, Dennis B H, Wang B P.Improved sensitivity and reliability analysis of nonlinear Euler-Bernoulli beam using a complex variable semi-analytical method[C]//ASME International Design Engineering Technical Conferences & Computers & Information in Engineering Conferences. San Diego, CA, USA, 2010:375-380. DOI:10.1115/DETC2009-87593.
[10] Abdollahi M, Attarnejad R.Dynamic analysis of dam-reservoir-foundation interaction using finite difference technique[J].Journal of Central South University of Technology, 2012, 19(5):1399-1410. DOI:10.1007/s11771-012-1156-5.
[11] Liu J, Zhou S J, Dong M L, et al.Three-node Euler-Bernoulli beam element based on positional FEM[J].Procedia Engineering, 2012, 29:3703-3707. DOI:10.1016/j.proeng.2012.01.556.
[12] Shang H Y, Machado R D, Abdalla Filho J E. Dynamic analysis of Euler-Bernoulli beam problems using the generalized finite element method[J].Computers & structures, 2016, 173:109-122. DOI:10.1016/j.compstruc.2016.05.019.
[13] Miletic M, Arnold A.Euler-Bernoulli beam with boundary control: Stability and FEM[J].PAMM, 2011, 11(1):681-682.DOI:10.1002/pamm.201110330.
[14] Banerjee J R, Ananthapuvirajah A.Free flexural vibration of tapered beams[J]. Computers & Structures, 2019, 224:106106. DOI:10.1016/j.compstruc.2019.106106.
[15] Lee J W, Lee J Y.Free vibration analysis using the transfer-matrix method on a tapered beam[J].Computers & Structures, 2016, 164:75-82.DOI:10.1016/j.compstruc.2015.11.007.
[16] Zheng Z, Guo N S, Sun Y Z, et al.Mechanical response analysis on cement concrete pavement structure considering interlayer slip[J].Journal of Southeast University(Natural Science Edition), 2023, 53(4):655-663. DOI:10.3969/j.issn.1001-0505.2023.04.011. (in Chinese)
[17] Kang Z T, Wang Z Y, Zhou B, et al.Study on size-dependent bending behavior of axially functionally graded microbeams via nonlocal strain gradient theory[J].Journal of Southeast University(English Edition), 2019, 35(4):453-463. DOI:10.3969/j.issn.1003-7985.2019.04.008.
[18] Niu J, Wang L H, Zong Z H, et al.Damage identification method of beam type structures considering proportional damping[J]. Journal of Southeast University(Natural Science Edition), 2018, 48(3):496-505. DOI:10.3969/j.issn.1001-0505.2018.03.018. (in Chinese)
[19] Clough R W, Penzien J, Griffin D S.Dynamics of structures[M].Berkeley, CA, USA: Computers & Structures, Inc., 2003:377-382.
[20] Jonkman J, Butterfield S, Musial W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R].Golden, CO, USA: National Renewable Energy Laboratory, 2009.
PDF(757 KB)

Accesses

Citations

Detail

Sections
Recommended

/