Time-calibrated phylogeny of Daphne (Thymelaeaceae): Pre-mediterranean temporal origin of the sclerophyllous Daphne gnidium

Cristina Ramos-Capón1,2(), Pablo Vargas2(), Fernando Pomeda-Gutiérrez2, Sara Martín-Hernanz2,3()

PDF
Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (1) : 20-37. DOI: 10.1111/jse.13018
Review

Time-calibrated phylogeny of Daphne (Thymelaeaceae): Pre-mediterranean temporal origin of the sclerophyllous Daphne gnidium

  • Cristina Ramos-Capón1,2(), Pablo Vargas2(), Fernando Pomeda-Gutiérrez2, Sara Martín-Hernanz2,3()
Author information +
History +

Abstract

The sclerophyllous syndrome is characterized by well-defined traits (evergreen coriaceous leaves, inconspicuous flowers, and fleshy fruits). It has been hypothesized that lineages displaying the sclerophyllous syndrome show lower speciation rates than non-sclerophyllous lineages after the establishment of the mediterranean climate. Daphne gnidium displays sclerophyllous traits and some differentiation into three subspecies (gnidium, mauritanica, maritima), but the spatio-temporal origin of this taxonomic group is unknown due to the lack of a time-calibrated phylogeny of the whole genus. Here, we inferred phylogenetic relationships and divergence times of Daphne (32 species, 238 samples) and other genera of Thymelaeaceae (16 genera, 38 species, 34 samples) using the internal transcribed spacer (ITS), which revealed that the current circumscription of Daphne is profoundly polyphyletic because some species are nested within the genera Wikstroemia and Edgeworthia. In contrast, D. gnidium formed a well-supported clade as recognized in taxonomic accounts (subgenus Spachia). We found morphological and phylogenetic support for Daphne mauritanica as a monophyletic lineage sister to D. gnidium. Divergence between D. gnidium and D. mauritanica appears to have predated the establishment of seasonally dry conditions, which supports a pre-mediterranean temporal origin of the lineage. A phylogeographical analysis within D. gnidium based on 66 nrDNA (ITS) and 84 cpDNA (rps16, trnV) sequences agreed with the low differentiation of the species in the Pleistocene despite its large distribution range. Altogether, D. gnidium illustrates one more example of the sclerophyllous syndrome with no speciation after the onset of the mediterranean climate.

Keywords

Daphne / divergence times / ITS / Mediterranean Floristic Region / polyphyly / sclerophyllous syndrome

Cite this article

Download citation ▾
Cristina Ramos-Capón, Pablo Vargas, Fernando Pomeda-Gutiérrez, Sara Martín-Hernanz. Time-calibrated phylogeny of Daphne (Thymelaeaceae): Pre-mediterranean temporal origin of the sclerophyllous Daphne gnidium. Journal of Systematics and Evolution, 2024, 62(1): 20‒37 https://doi.org/10.1111/jse.13018

References

1 AJ Aberer, D Krompass, A Stamatakis. 2013. Pruning rogue taxa improves phylogenetic accuracy: An efficient algorithm and webservice. Systematic Biology 62(1): 162–166.
2 DI Axelrod. 1975. Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Annals of the Missouri Botanical Garden 62: 280–334.
3 JW Baker, P Bailey, V Barber, A Barker, S Bellot, D Bishop, LR Botigué, G Brewer, T Carruthers, JJ Clarkson, J Cook, RS Cowan, S Dodsworth, N Epitawalage, E Françoso, B Gallego, MG Johnson, JT Kim, K Leempoel, O Maurin, C Mcginnie, L Pokorny, R Roy, M Stone, E Toledo, NJ Wickett, AR Zuntini, WL Eiserhardt, PJ Kersey, IJ Leitch, F Forest. 2022. A comprehensive phylogenomic platform for exploring the angiosperm tree of life. Systematic Biology 71: 301–319.
4 A Banerjee, MD Dwivedi, S Kasana, P Singh, V Kumar, D Mait, AK Pandey. 2022. Phylogenetic relationships in Indian Daphne (Thymelaeaceae) based on nuclear ITS and cpDNAdata. Biologia 77: 3071–3086.
5 E Barrón, R Rivas-Carballo, JM Postigo-Mijarra, C Alcalde-Olivares, M Vieira, L Castroe, J Paise, M Valle-Hernández. 2010. The Cenozoic vegetation of the Iberian Peninsula: A synthesis. Review of Palaeobotany and Palynology 162: 382–402.
6 TL Bell, F Ojeda. 1999. Underground starch storage in Erica species of the Cape Floristic Region—Differences between seeders and resprouters. The New Phytologist 144(1): 143–152.
7 G Besnard, B Khadari, M Navascués, M Fernández-Mazuecos, A El Bakkali, N Arrigo, D Baali-Cherif, V Brunini-Bronzini de Caraffa, S Santoni, P Vargas, V Savolainen. 2013. The complex history of the olive tree: From Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proceedings of the Royal Society B: Biological Sciences 280: 20122833.
8 G Besnard, R Rubio de Casas, PA Christin, P Vargas. 2009. Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: Tertiary climatic shifts and lineage differentiation times. Annals of Botany 104: 143–160.
9 CD Brickell, B Mathew. 1976. Daphne, the genus in the wild & in cultivation. Surrey: The Alpine Garden Society.
10 J Capelo, MM de Sequeira, JC Costa, E Portela-Pereira, R Jardim, CS Neto, H Schaefer, MD Espírito-Santo, M Lousã, S Rivas-Martínez. 2013. Notas do Herbário Florestal do INIAV (LISFA): Fasc. XXXVII. Silva Lusitana 21(2): 235–238.
11 M Clement, D Posada, K Crandall. 2000. TCS: Estimating gene genealogies. IEEE Computer Society 3: 0184.
12 AJ Coello, MF Mazuecos, CG Verdugo, P Vargas. 2021. Phylogeographic sampling guided by species distribution modeling reveals the Quaternary history of the Mediterranean—Canarian Cistus monspeliensis (Cistaceae). Journal of Systematic and Evolution 59: 262–277.
13 TA Craney, JG Surles. 2002. Model-dependent variance inflation factor cutoff values model-dependent variance inflation factor cutoff values. Quality Engineering 14(3): 391–403.
14 AJ Drummond, MA Suchard, D Xie, A Rambaut. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Society of Molecular Biology and Evolution 29: 1969–1973.
15 AJ Drummond, MA Suchard, D Xie, A Rambaut. 2018. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Systematic Biology 67: 901–904.
16 RR Dute, JD Freeman, F Henning, LD Barnard. 1996. Intervascular pit membrane structure in Daphne and Wikstroemia-systematic implications. IAWA Journal 17: 161–181.
17 RC Edgar. 2004. MUSCLE: Multiple sequence alignment with improved accuracy and speed. In: Proceedings 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004. CA, USA: Stanford. 728–729.
18 J Elith, CH Graham, RP Anderson, M DudÍk, S Ferrier, A Guisan, RJ Hijmans, F Huettmann, FR Leathwick, A Lehmann, J Li, LC Lohmann, BA Loiselle, G Manion, C Moritz, M Nakamura, Y Nakazawa, JM A Overton, T Peterson, SJ Phillips, K Richardson, R Scachetti-Pereira, RE Schapire, J Soberón, S Williams, MS Wisz, NE Zimmerman. 2006. Novel methods improve prediction of species distributions from occurrence data. Ecography 29: 129–151.
19 P Escobar-García, M Pakravan, P Schönswetter, J Fuertes Aguilar, GM Schneeweiss. 2012. Phylogenetic relationships in the species-rich Irano-Turanian genus Alcea (Malvales). Taxon 61: 324–332.
20 GN Feliner. 1995. A neglected Daphne [sect. Daphnanthes subsect. Gnidium] from northern África: D. mauritanica, sp. nov. (Thymelaeaceae). Anales Jardín Botánico de Madrid 53(2): 191–197.
21 O Fiz-Palacios, V Valcárcel. 2013. From Messinian crisis to Mediterranean climate: A temporal gap of diversification recovered from multiple plant phylogenies. Perspectives in Plant Ecology, Evolution and Systematics 15: 130–137.
22 D Galicia-Herbada. 2006. Origin and diversification of Thymelaea (Thymelaeaceae): Inferences from a phylogenetic study based on ITS (rDNA) sequences. Plant Systematics and Evolution 257(3): 159–187.
23 L Gratani, MF Crescente. 1997. Phenology and leaf adaptive strategies of Mediterranean maquis plants. Ecologia Mediterranea 23(3): 11–19.
24 B Guzmán, MD Lledó, P Vargas. 2009. Adaptive radiation in mediterranean Cistus (Cistaceae). PLoS One 4(7): e6362.
25 JJ Halda. 2001. The genus Daphne. Dobré: SEN.
26 JJ Halda, L Horáček, P Panarotto. 1998. Some taxonomic problems in the genus Daphne L. Rychnov nad Kněžnou: Okresní muzeum Orlických hor.
27 R Hernández-Gutiérrez, S Magallón. 2019. The timing of Malvales evolution: Incorporating its extensive fossil record to inform about lineage diversification. Molecular Phylogenetics and Evolution 140: 106606.
28 CM Herrera. 1992. Historical effects and sorting processes as explanations for contemporary ecological patterns: Character syndromes in Mediterranean woody plants. The American Naturalist 140(3): 421–446.
29 AL Hipp, PS Manos, M Hahn, M Avishai, C Bodénès, J Cavender-Bares, AA Crowl, M Deng, T Denk, S Fitz-Gibbon, O Gailing, MS González-Elizondo, A González-Rodríguez, GW Grimm, X-L Jiang, A Kremer, I Lesur, JD McVay, C Plomion, H Rodríguez-Correa, E-D Schulze, MC Simeone, VL Sork, S Valencia-Avalos. 2020. Genomic landscape of the global oak phylogeny. New Phytologist 226: 1198–1212.
30 International Plant Names Index (IPNI). 2023. The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Herbarium [online]. Available from [accessed 12 December 2021].
31 M Itoh. 2021. Phenotypic variation and adaptation in morphology and salt spray tolerance in coastal and inland populations of Setaria viridis in central Japan. Weed Research 61: 199–209.
32 S James. 1984. Lignotubers and burls. Their structure, function and ecological significance in Mediterranean ecosystems. The Botanical Review 50: 225–266.
33 J Jordano. 1987. Avian fruit removal: Effects of fruit variation, crop size, and insect damage. Ecology 68: 1711–1723.
34 J Jordano. 1988. Polinización y variabilidad de la produccion de semillas en Pistacia lentiscus L. (Anacardiaceae). Anales del Jardin Botánico de Madrid 45: 213–231.
35 J Jordano. 1989. Pre-dispersal biology of Pistacia lentiscus (Anacardiaceae): Cumulative effects on seed removal by birds. Oikos 55: 375–386.
36 M Kearse, R Moir, A Wilson, S Stones-Havas, M Cheung, S Sturrock, S Buxton, A Cooper, S Markowitz, C Duran, T Thierer, B Ashton, P Meintjes, A Drummond. 2012. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics Applications Note 28: 1647–1649.
37 W Krijgsman, F Hilger, I Raffi, FJ Sierro, DS Wilson. 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature 400: 652–655.
38 SY Lee, KW Xu, CY Huang, JH Lee, WB Liao, YH Zhang, Q Fan. 2022. Molecular phylogenetic analyses based on the complete plastid genomes and nuclear sequences reveal Daphne (Thymelaeaceae) to be non-monophyletic as current circumscription. Plant Diversity 44(3): 279–289.
39 JW Leigh, D Bryant. 2015. POPART: Full-feature software for haplotype network construction. Methods Ecological and Evolution 6: 1110–1116.
40 JS López-Villalta. 2014. Trait-driven vs. syndrome-driven diversification in the Mediterranean woody flora. Ecologia Mediterranea 40(1): 27–33.
41 R Maire. 1931. Contributions à l'étude de la Flore de l'Afrique du Nord (fascicule 25). Bulletin de la Société d'Histoire Naturelle de l'Afrique du Nord 22: 275–325.
42 S Martín-Hernanz, RG Albaladejo, S Lavergne, E Rubio, A Grall, A Aparicio. 2021. Biogeographic history and environmental niche evolution in the palearctic genus Helianthemum (Cistaceae). Molecular Phylogenetics and Evolution 163: 107238.
43 S Martín-Hernanz, A Aparicio, M Fernández-Mazuecos, E Rubio, JA Reyes-Betancort, A Santos-Guerra, M Olangua-Corral, RG Albaladejo. 2019. Maximize resolution or minimize error? Using genotyping-by-sequencing to investigate the recent diversification of Helianthemum (Cistaceae). Frontiers in Plant Science 10: 1416.
44 S Martín-Hernanz, M Nogales, L Valente, M Fernández-Mazuecos, F Pomeda-Gutiérrez, E Cano, P Marrero, JM Olesen, R Heleno, P Vargas. 2023. Time-calibrated phylogenies reveal mediterranean and pre-mediterranean temporal origin of the thermophilous vegetation of the Canary Islands. Annals of Botany 131: 667–684.
45 I Matic, I Ahel, RT Hay. 2012. jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9: 419.
46 F Médail, K Diadema. 2009. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. Journal of Biogeography 36: 1333–1345.
47 F Médail, P Quezél. 1999. Biodiversity hotspots in the mediterranean basin: Setting global conservation priorities. Conservation Biology 13: 1510–1513.
48 J Médus, A Pons. 1980. Les prédécesseurs des végétaux méditerranéens actuels jusqu′au début du Miocéne. Naturalia Monspeliensia, Hors Serie 237: 11–20.
49 MA Miller, W Pfeiffer, T Schwartz. 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, 14 November, 2010. 1–8.
50 RE Onstein, HP Linder. 2016. Beyond climate: Convergence in fast evolving sclerophylls in Cape and Australian Rhamnaceae predates the Mediterranean climate. Journal of Ecology 104(3): 665–667.
51 A Otero, P Vargas, M Fernández-Mazuecos, P Jiménez-Mejías, V Valcárcel, I Villa-Machío, AL Hipp. 2022. A snapshot of progenitor–derivative speciation in Iberodes (Boraginaceae). Molecular Ecology 31: 3192–3209.
52 B Oxelman, M Lidén, D Berglund. 1997. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Systematic and Evolution 206: 393–410.
53 E Palamarev. 1989. Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant systematics and Evolution 162: 93–107.
54 S Paula, JG Pausas. 2006. Leaf traits and resprouting ability in the Mediterranean basin. Functional Ecology 20: 941–947.
55 POWO. 2023. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. [Internet]. Retrieved from August 14, 2023.
56 A Rambaut. 2017. FigTree-version 1.4. 3, a graphical viewer of phylogenetic trees. Computer program distributed by the author [online]. Available from [accessed 16 March 2021]
57 A Rambaut, AJ Drummond. 2018. TreeStat tree statistic calculation tool [online]. Available from [accessed 30 March 2021].
58 E Roccotiello, G Casazza, L Cornara, A Moncalvo, L Minuto. 2012. Reproductive success in Daphne gnidium (Thymelaeaceae). Bollettino dei Musei e degli Istituti Biologici 74: 22–37.
59 E Roccotiello, G Casazza, L Galli, L Cornara, A Moncalvo, L Minuto. 2009. The flower biology of Daphne gnidium L. (Thymelaeaceae). Plant Systematics and Evolution 279: 41–49.
60 J Rodríguez-Pérez, A Traveset. 2011. Influence of reproductive traits on pollination success in two Daphne species (Thymelaeaceae). Journal of Plant Research 124: 277–287.
61 F Ronquist, M Teslenko, P Van Der Mark, DL Ayres, A Darling, S Höhna, B Larget, L Liu, MA Suchard, JP Huelsenbeck. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Journal of Systematic and Evolution 61: 539–542.
62 PW Rundel, MTK Arroyo, RM Cowling, JE Keeley, BB Lamont, P Vargas. 2016. Mediterranean biomes: Evolution of their vegetation, floras, and climate. Annual Review of Ecology, Evolution, and Systematics 47: 383–407.
63 J Russell, M Van Zonneveld, IK Dawson, A Booth, R Waugh, B Steffenson. 2014. Genetic diversity and ecological niche modelling of wild barley: Refugia, large-scale post-LGM range expansion and limited mid-future climate threats?PLoS One 9(2): e86021.
64 F Rodríguez-Sánchez, J Arroyo. 2008. Reconstructing the demise of Tethyan plants: Climate-driven range dynamics of Laurus since the Pliocene. Global Ecology and Biogeography 17: 685–695.
65 F Rodrıguez-Sánchez, R Pérez-Barrales, F Ojeda, P Vargas, J Arroyo. 2008. The Strait of Gibraltar as a melting pot for plant biodiversity. Quaternary Science Reviews 27: 2100–2117.
66 A Rozeira. 1964. Agronomia Lusitana. 24(3): 169.
67 A Stamatakis, T Ludwig, H Meier. 2005. RAxML-III: A fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463.
68 Y Su-Chang, O Sang-Hun, P Jongsun. 2021. Phylogenetic position of Daphne genkwa (Thymelaeaceae) inferred from complete chloroplast data. Korean Journal of Plant Taxonomy 51(2): 171–175.
69 JP Suc. 1984. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307: 429–432.
70 JP Suc, SM Popescu, S Fauquette, M Bessedik, G Jiménez-Moreno, N Taoufiq, Z Zheng, F Medail, S Klotz. 2018. Reconstruction of Mediterranean flora, vegetation and climate for the last 23 million years based on an extensive pollen dataset. Ecologia Mediterranea 44(2): 53–85.
71 C Tavşanoğlu, J Pausas. 2018. Data descriptor: A functional trait database for Mediterranean basin plants. Scientific Data 5(1): 1–18.
72 TG Tutin, VH Heywood, NA Burges, DM Moore, DH Valentine, SM Walters, DA Webb. 1968. Flora europaea. Cambridge: Cambridge University Press. 2: 469.
73 J Van Der Burgh. 1983. Allochthonous seed and fruit floras from the pliocene of the lower Rhine basin. Review of Palaeobotany and Palynology 40(1-2): 33–90.
74 P Vargas. 2007. Are Macaronesian islands refugia of relict plant lineages?: A molecular survey. In: Weiss SJ, Ferrand N eds. Phylogeography in Southern European Refugia: Evolutionary perspectives on the origins and conservation of European biodiversity. Dordrecht, The Netherlands: Kluwer Academic Publishers. 297–314.
75 P Vargas. 2020. The Mediterranean floristic region: High diversity of plants and vegetation types. In: Goldstein MI, DellaSala DA eds. Encyclopedia of the world′s biomes. Elsevier. 3: 602–616.
76 P Vargas, M Fernandez-Mazuecos, R Heleno. 2018. Phylogenetic evidence for a Miocene origin of Mediterranean lineages: Species diversity, reproductive traits and geographical isolation. Plant Biology 20: 157–165.
77 P Vargas, LM Valente, JL Blanco-Pastor, I Liberal, B Guzmán, E Cano, A Forrest, M Fernández-Mazuecos. 2014. Testing the biogeographical congruence of palaeofloras using molecular phylogenetics: Snapdragons and the Madrean–Tethyan flora. Journal of Biogeography 41: 932–943.
78 M Verdú. 2000. Ecological and evolutionary differences between Mediterranean seeders and resprouters. Journal of Vegetation Science 11: 265–268.
79 M Verdú, P Dávila, P García-Fayos, N Flores-Hernández, A Valiente-Banuet. 2003. “Convergent” traits of mediterranean woody plants belong to pre-mediterranean lineages. Biological Journal of the Linnean Society 78: 415–427.
80 M Verdú, JG Pausas. 2013. Syndrome-driven diversification in a Mediterranean ecosystem. International Journal of Organic Evolution 67: 1756–1766.
81 J Viruel, N Le Galliot, S Pironon, G Nieto Feliner, JP Suc, F Lakhal-Mirleau, M Juin, M Selva, MBD Kharrat, L Ouahmane, S La Malfa, K Diadema, H Sanguin, F Médail, A Baumel. 2020. A strong east–west Mediterranean divergence supports a new phylogeo-graphic history of the carob tree (Ceratonia siliqua, Leguminosae) and multiple domestications from native populations. Journal of Biogeography 47: 460–471.
82 XR Wang, Y Tsumura, H Yoshimaru, K Nagasaka, AE Szmidt. 1999. Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, MATK, RPL20-RPS18 spacer, and TRNV intron sequences. American Journal of Botany 86(12): 1742–1753.
83 TJ White, TD Bruns, SB Lee, JW Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocol Guide to Methods Applications 38: 315–322.
84 ZY Wu, PH Raven, DY Hong. 2007. Flora of China. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. 13: 230–245.
85 L Xie, ZY Yang, J Wen, DZ Li, TS Yi. 2014. Biogeographic history of Pistacia (Anacardiaceae), emphasizing the evolution of the Madrean-Tethyan and the eastern Asian-Tethyan disjunctions. Molecular Phylogenetics and Evolution 77: 136–146.
PDF

Accesses

Citations

Detail

Sections
Recommended

/