Next-generation sequencing reveals hidden genomic diversity in glacial relicts: A case study of Meesia triquetra
The recent development of genetic methods has facilitated the identification of cryptic species across different groups of organisms, including plants. However, next-generation sequencing has rarely been used to study cryptic speciation in plants, especially in bryophytes, organisms with a dominant haploid life phase. The ability to capture variation across the whole genome makes this method an effective tool for distinguishing cryptic lineages. We have focused on the genetic structure of the moss Meesia triquetra along the Alps-to-Scandinavia transect. We detected the presence of the two genetically critically different lineages of M. triquetra in Europe. These lineages overlap in both morphological characters of the gametophyte and distribution ranges. However, they considerably differ in ecological preferences to groundwater pH. While lineage 1 occupied alkaline to subneutral fens, lineage 2 occurred in fens saturated with neutral to acidic water. We consider the entities cryptic species with respect to genetic and ecological differences but the absence of morphological features necessary for determining the entities. We hypothesize that fragmentation of the ancestral population of the moss in geographically isolated refugia differing in the commonness of acidic and alkaline substrates led to consequent long-term adaptation to different environmental conditions, then drove diversification in M. triquetra.
bryophyta / cryptic speciation / endangered moss / Europe / morphometry / north–south gradient / RAD-seq / rich fen
1 | S Alizon, M Kucera, VAA Jansen. 2008. Competition between cryptic species explains variations in rates of lineage evolution. Proceedings of the National Academy of Sciences of the United States of America 105: 12382–12386. |
2 | A B?czkiewicz, M Szczecińska, J Sawicki, A Stebel, K Buczkowska. 2017. DNA barcoding, ecology and geography of the cryptic species of Aneura pinguis and their relationships with Aneura maxima and Aneura mirabilis (Metzgeriales, Marchantiophyta). PLoS One 12: e0188837. |
3 | SV Balasundaram, IB Engh, I Skrede, H Kauserud. 2015. How many DNA markers are needed to reveal cryptic fungal species? Fungal Biology 119: 940–945. |
4 | D Bickford, DJ Lohman, NS Sodhi, PKL Ng, R Meier, K Winker, KK Ingram, I Das. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22: 148–155. |
5 | MN Britton, TA Hedderson, GA Verboom. 2014. Topography as a driver of cryptic speciation in the high-elevation cape sedge Tetraria triangularis (Boeck.) C. B. Clarke (Cyperaceae: Schoeneae). Molecular Phylogenetics and Evolution 77: 96–109. |
6 | D Bryant, V Moulton. 2004. Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution 21: 255–265. |
7 | BE Carter. 2012. Species delimitation and cryptic diversity in the moss genus Scleropodium (Brachytheciaceae). Molecular Phylogenetics and Evolution 63: 891–903. |
8 | J Catchen, PA Hohenlohe, S Bassham, A Amores, WA Cresko. 2013. Stacks: An analysis tool set for population genomics. Molecular Ecology 22: 3124–3140. |
9 | A Chenuil, AE Cahill, N Délémontey, E Du Salliant du Luc, H Fanton. 2019. Problems and questions posed by cryptic species. A framework to guide future studies. In: Casetta E, Marques da Silva J, Vecchi D eds. History, philosophy and theory of the life sciences. From assessing to conserving biodiversity. Cham: Springer International Publishing. 77–106. |
10 | B Dayrat. 2005. Towards integrative taxonomy. Biological Journal of the Linnean Society 85: 407–415. |
11 | JH Dickson. 1973. Bryophytes of the Pleistocene. The British record and its chorological and ecological implications. London: Cambridge University Press. |
12 | D Dítě, M Hájek, I Svitková, A Ko?uthová, R ?oltés, J Kliment. 2018. Glacial-relict symptoms in the Western Carpathian flora. Folia Geobotanica 53: 277–300. |
13 | MJ Donoghue. 1985. A critique of the biological species concept and recommendations for a phylogenetic alternative. The Bryologist 88: 172–181. |
14 | PD Etter, S Bassham, PA Hohenlohe, EA Johnson, WA Cresko. 2011. SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods in Molecular Biology 772: 157–178. |
15 | Euro+Med. 2006. Euro+Med PlantBase—The information resource for Euro-Mediterranean plant diversity [online]. Available from [accessed 23 March 2023]. |
16 | G Evanno, S Regnaut, J Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology 14: 2611–2620. |
17 | VE Fedosov, AV Shkurko, AV Fedorova, EA Ignatova, EN Solovyeva, JC Brinda, MS Ignatov, J Kucera. 2022. Need for split: Integrative taxonomy reveals unnoticed diversity in the subaquatic species of Pseudohygrohypnum (Pylaisiaceae, Bryophyta). PeerJ 10: e13260. |
18 | JP Frahm. 2012. The phytogeography of European bryophytes. Botanica Serbica 36: 23–36. |
19 | RM Francis. 2017. pophelper: An R package and web app to analyse and visualize population structure. Molecular Ecology Resources 17: 27–32. |
20 | P De Frenne, BJ Graae, F Rodríguez-Sánchez, A Kolb, O Chabrerie, G Decocq, H De Kort, A De Schrijver, M Diekmann, O Eriksson, R Gruwez, M Hermy, J Lenoir, J Plue, DA Coomes, K Verheyen. 2013. Latitudinal gradients as natural laboratories to infer species′ responses to temperature. Journal of Ecology 101: 784–795. |
21 | P Geissler, H Zoller. 1978. Paludella squarrosa (Hedw.) Brid. an der Südwestgrenze ihrer Verbreitung, Charakterart einer neuen Assoziation des Sphagno-Tomenthypnion Dahl. Candollea 33: 299–319. |
22 | M Hájek, D Dítě, V Horsáková, E Mikulá?ková, T Peterka, J Navrátilová, B Jiménez-Alfaro, P Hájková, L Tichy, M Horsák. 2020. Towards the pan-European bioindication system: Assessing and testing updated hydrological indicator values for vascular plants and bryophytes in mires. Ecological Indicators 116: 106527. |
23 | M Hájek, B Jiménez-Alfaro, O Hájek, L Brancaleoni, M Cantonati, M Carbognani, A Dedi?, D Díte, R Gerdol, P Hájková, V Horsáková, F Jansen, J Kamberovi?, J Kapfer, THM Kolari, M Lamentowicz, P Lazarevi?, E Ma?i?, JE Moeslund, A Pérez-Haase, T Peterka, A Petraglia, E Pladevall-Izard, Z Plesková, S Segadelli, Y Semeniuk, P Singh, A ?ímová, E ?merdová, T Tahvanainen, M Tomaselli, Y Vystavna, C Bita-Nicolae, M Horsák. 2021. A European map of groundwater pH and calcium. Earth System Science Data 13: 1089–1105. |
24 | M Hájek, J Tě?itel, T Tahvanainen, T Peterka, B Jiménez-Alfaro, F Jansen, A Pérez-Haase, E Garbolino, M Carbognani, THM Kolari, P Hájková, U Jandt, L Aunina, P Pawlikowski, T Ivchenko, M Tomaselli, L Tichy, D Dítě, Z Plesková, E Mikulá?ková. 2022. Rising temperature modulates pH niches of fen species. Global Change Biology 28: 1023–1037. |
25 | P Hájková, T ?techová, R ?oltés, E ?merdová, Z Plesková, D Dítě, J Bradá?ová, M Mútňanová, P Singh, M Hájek. 2018. Using a new database of plant macrofossils of the Czech and Slovak Republics to compare past and present distributions of hypothetically relict fen mosses. Preslia 90: 367–386. |
26 | T Hallingb?ck, N L?nnell, H Weibull. 2008. Nationalnyckeln till Sveriges flora och fauna. Bladmossor: Kompaktmossor-kapmossor. Bryophyta: Anoectangium-Orthodontium. Uppsala: ArtDatabanken, SLU. |
27 | BJ Harris, JW Clark, D Schrempf, GJ Sz?ll?si, PC Donoghue, AM Hetherington, T Williams. 2022. Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. Nature Ecology & Evolution 6: 1634–1643. |
28 | L Heden?s. 2008. Molecular variation and speciation in Antitrichia curtipendula s.l. (Leucodontaceae, Bryophyta). Botanical Journal of the Linnean Society 156: 341–354. |
29 | L Heden?s. 2018. Conservation status of the two cryptic species of Hamatocaulis vernicosus (Bryophyta) in Sweden. Journal of Bryology 40: 307–315. |
30 | L Heden?s. 2020a. Cryptic speciation revealed in Scandinavian Racomitrium lanuginosum (Hedw.) Brid. (Grimmiaceae). Journal of Bryology 42: 117–127. |
31 | L Heden?s. 2020b. Cryptic and morphologically recognizable species diversity within Scandinavian Plagiopus oederianus (Bryophyta: Bartramiaceae). Lindbergia 43: linbg.01130. |
32 | L Heden?s. 2020c. Disentangling Scandinavian species hidden within Meesia uliginosa Hedw. s.l. (Bryophyta, Meesiaceae). Lindbergia 43: 1–15. |
33 | L Heden?s, I Bisang. 2019. Episodic but ample sporophyte production in the moss Drepanocladus turgescens (Bryophyta: Amblystegiaceae) in SE Sweden. Acta Musei Silesiae, Scientiae Naturales 68: 83–93. |
34 | L Heden?s, A Désamoré, B Laenen, B Papp, D Quandt, JM González-Mancebo, J Pati?o, A Vanderpoorten, M Stech. 2014. Three species for the price of one within the moss Homalothecium sericeum s.l. Taxon 63: 249–257. |
35 | L Heden?s, P Elden?s. 2007. Cryptic speciation, habitat differentiation, and geography in Hamatocaulis vernicosus (Calliergonaceae, Bryophyta). Plant Systematics and Evolution 268: 131–145. |
36 | E Heegaard. 1997. Morphological variation within Andreaea blyttii in relation to the environment on hardangervidda, Western Norway: A quantitative analysis. Bryologist 100: 308–323. |
37 | J Hey. 2006. On the failure of modern species concepts. Trends in Ecology & Evolution 21: 447–450. |
38 | NG Hodgetts, L S?derstr?m, TL Blockeel, S Caspari, MS Ignatov, NA Konstantinova, N Lockhart, B Papp, C Schr?ck, M Sim-Sim, D Bell, NE Bell, HH Blom, MA Bruggeman-Nannenga, M Brugués, J Enroth, KI Flatberg, R Garilleti, L Heden?s, DT Holyoak, V Hugonnot, I Kariyawasam, H K?ckinger, J Ku?era, F Lara, RD Porley. 2020. An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. Journal of Bryology 42: 1–116. |
39 | M Hofreiter, J Stewart. 2009. Ecological change, range fluctuations and population dynamics during the Pleistocene. Current Biology 19: R584–R594. |
40 | V Horsáková, JC Nekola, M Horsák. 2019. When is a “cryptic” species not a cryptic species: A consideration from the Holarctic micro-landsnail genus Euconulus (Gastropoda: Stylommatophora). Molecular Phylogenetics and Evolution 132: 307–320. |
41 | KM Hufford, SJ Mazer. 2003. Plant ecotypes: Genetic differentiation in the age of ecological restoration. Trends in Ecology and Evolution 18: 147–155. |
42 | DH Huson, D Bryant. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254–267. |
43 | EA Ignatova, OI Kuznetsova, MS Ignatov. 2016. On the genus Hedwigia (Hedwigiaceae, Bryophyta) in Russia. Arctoa 25: 241–277. |
44 | JK Janes, JM Miller, JR Dupuis, RM Malenfant, JC Gorrell, CI Cullingham, RL Andrew. 2017. The K = 2 conundrum. Molecular Ecology 26: 3594–3602. |
45 | DH Janzen, JM Burns, Q Cong, W Hallwachs, T Dapkey, R Manjunath, M Hajibabaei, PDN Hebert, NV Grishin. 2017. Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology. Proceedings of the National Academy of Sciences of the United States of America 114: 8313–8318. |
46 | R Joan, S Montagnes, DH Vitt. 1991. Patterns of morphological variation in Meesia triquetra (Bryopsida: Meesiaceae) over an Arctic-Boreal Gradient. Systematic Botany 16: 726. |
47 | KM J?rger, M Schr?dl. 2013. How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology 10: 59. |
48 | DN Karger, O Conrad, J B?hner, T Kawohl, H Kreft, RW Soria-Auza, NE Zimmermann, HP Linder, M Kessler. 2017. Climatologies at high resolution for the earth′s land surface areas. Scientific Data 4: 170122. |
49 | BJ Knaus, NJ Grünwald. 2017. vcfr: A package to manipulate and visualize variant call format data in R. Molecular Ecology Resources 17: 44–53. |
50 | NM Kopelman, J Mayzel, M Jakobsson, NA Rosenberg, I Mayrose. 2015. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15: 1179–1191. |
51 | MO Kyrkjeeide, K Hassel, KI Flatberg, AJ Shaw, N Yousefi, HK Sten?ien. 2016. Spatial genetic structure of the abundant and widespread peatmoss Sphagnum magellanicum Brid. PLoS One 11: e0148447. |
52 | M Krzakowa, J Szweykowski. 1979. Isozyme polymorphism in natural populations of a liverwort, Plagiochila asplenioides. Genetics 93: 711–719. |
53 | AM Linde, DM Eklund, N Cronberg, JL Bowman, U Lagercrantz. 2021. Rates and patterns of molecular evolution in bryophyte genomes, with focus on complex thalloid liverworts, Marchantiopsida. Molecular Phylogenetics and Evolution 165: 107295. |
54 | TE Martin, GC Bennett, A Fairbairn, AO Mooers. 2022. ‘Lost’ taxa and their conservation implications. Animal Conservation 26: 14–24. |
55 | G Mattos, PC Paiva, M Mateos, PA Haye, LA Hurtado. 2018. The cost of ignoring cryptic diversity in macroecological studies: Comment on Martínez et al. (2017). Marine Ecology Progress Series 601: 269–271. |
56 | E Mayr. 1942. Systematics and the origin of species. New York: Columbia University Press. |
57 | PG Meirmans. 2006. Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60: 2399–2402. |
58 | Monro AK, Mayo SJ eds. 2022. Cryptic species: Morphological stasis, circumscription, and hidden diversity. Cambridge: Cambridge University Press. |
59 | RJS Montagnes, RJ Bayer, DH Vitt. 1993. Isozyme variation in the moss Meesia triquetra (Meesiacea). Journal of the Hattori Botanical Laboratory 74: 155–170. |
60 | K Myszczyński, A B?czkiewicz, K Buczkowska, M ?lipiko, M Szczecińska, J Sawicki. 2017. The extraordinary variation of the organellar genomes of the Aneura pinguis revealed advanced cryptic speciation of the early land plants. Scientific Reports 7: 9804. |
61 | R Natcheva, N Cronberg. 2004. What do we know about hybridization among bryophytes in nature? Canadian Journal of Botany 82: 1687–1704. |
62 | M Nei. 1972. Genetic distance between populations. The American Naturalist 106: 283–292. |
63 | M Nieto-Lugilde, O Werner, SF McDaniel, P Koutecky, J Ku?era, SM Rizk, RM Ros. 2018. Peripatric speciation associated with genome expansion and female-biased sex ratios in the moss genus Ceratodon. American Journal of Botany 105: 1009–1020. |
64 | M Nobis, PD Gudkova, E Baiakhmetov, J ?abicka, K Krawczyk, J Sawicki. 2019. Hybridisation, introgression events and cryptic speciation in Stipa (Poaceae): A case study of the Stipa heptapotamica hybrid-complex. Perspectives in Plant Ecology, Evolution and Systematics 39: 125457. |
65 | L Orsini, J Vanoverbeke, I Swillen, J Mergeay, L De Meester. 2013. Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molecular Ecology 22: 5983–5999. |
66 | JR Paris, JR Stevens, JM Catchen. 2017. Lost in parameter space: a road map for stacks. Methods in Ecology and Evolution 8: 1360–1373. |
67 | R Peakall, PE Smouse. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295. |
68 | R Peakall, PE Smouse. 2012. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537–2539. |
69 | LW Pembleton, NOI Cogan, JW Forster. 2013. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Molecular Ecology Resources 13: 946–952. |
70 | T Peterka, P Hájková, E Mikulá?ková, L Aunina, D Dítě, P Pawlikowski, T ?techová, M Hájek. 2020. Vegetation affinity of the moss species Meesia triquetra, Paludella squarrosa, Pseudocalliergon trifarium and Scorpidium scorpioides across European regions. In: S?derstr?m L, Engel JJ, Ku?era J eds. Nova Hedwigia, Beihefte Series 150. Contributions to morphology, taxonomy, distribution and ecology of bryophytes Ji?í Váňa in Memoriam. Stuttgart: Schweizerbart and Borntraeger Science Publishers. 133–158. |
71 | T Peterka, M Jirou?ek, M Hájek, B Jiménez-Alfaro. 2015. European Mire Vegetation Database: A gap-oriented database for European fens and bogs. Phytocoenologia 45: 291–297. |
72 | J Pither, LW Aarssen. 2005. The evolutionary species pool hypothesis and patterns of freshwater diatom diversity along a pH gradient. Journal of Biogeography 32: 503–513. |
73 | JK Pritchard, M Stephens, P Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959. |
74 | K de Queiroz. 2007. Species concept and species delimitation. Systematic Biology 56: 879–886. |
75 | R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available from [accessed 29 March 2023]. |
76 | M Ramaiya, MG Johnson, B Shaw, J Heinrichs, J Hentschel, M von Konrat, PG Davison, AJ Shaw. 2010. Morphologically cryptic biological species within the liverwort Frullania asagrayana. American Journal of Botany 97: 1707–1718. |
77 | S Rehell, R Virtanen. 2016. Rich-fen bryophytes in past and recent mire vegetation in a successional land uplift area. Holocene 26: 136–146. |
78 | MAM Renner. 2020. Opportunities and challenges presented by cryptic bryophyte species. Telopea 23: 41–60. |
79 | M Ricca, FW Beecher, SB Boles, E Temsch, J Greilhuber, EF Karlin, AJ Shaw. 2008. Cytotype variation and allopolyploidy in North American species of the Sphagnum subsecundum complex (Sphagnaceae). American Journal of Botany 95: 1606–1620. |
80 | M Ricca, AJ Shaw. 2010. Allopolyploidy and homoploid hybridization in the Sphagnum subsecundum complex (Sphagnaceae: Bryophyta). Biological Journal of the Linnean Society 99: 135–151. |
81 | S Richards. 2015. It′s more than stamp collecting: How genome sequencing can unify biological research. Trends in Genetics 31: 411–421. |
82 | K Rybní?ek. 1966. Glacial relics in the bryoflora of the highlands ?eskomoravská vrchovina (Bohemian-Moravian Highlands); their habitat and cenotaxonomic value. Folia Geobotanica et Phytotaxonomica 1: 101–119. |
83 | E Rybní?ková, K Rybní?ek. 1972. Erste Ergebnisse pal?ogeobotanischer Untersuchungen des Moores bei Vracov, Südm?hren. Folia Geobotanica et Phytotaxonomica 7: 285–308. |
84 | SM S?stad. 2005. Patterns and mechanisms of polyploid speciation in bryophytes. In: Bakker FT, Chatrou LW, Gravendeel B, Pelser B eds. Plant species-level systematics: New perspectives on pattern & process. Ruggell: ARG Gantner Verlag. 317–333. |
85 | BC Schlick-Steiner, FM Steiner, B Seifert, C Stauffer, E Christian, RH Crozier. 2010. Integrative taxonomy: A multisource approach to exploring biodiversity. Annual Review of Entomology 55: 421–438. |
86 | H Shang, J Hess, M Pickup, DL Field, PK Ingvarsson, J Liu, C Lexer. 2020. Evolution of strong reproductive isolation in plants: Broad-scale patterns and lessons from a perennial model group: Evolution of strong barriers in plants. Philosophical Transactions of the Royal Society B: Biological Sciences 375: 20190544. |
87 | AJ Shaw. 2001. Biogeographic patterns and cryptic speciation in bryophytes. Journal of Biogeography 28: 253–261. |
88 | AJ Shaw, DL Albright. 1990. Potential for the evolution of heavy metal tolerance in Bryum argenteum, a Moss. II. Generalized tolerances among diverse populations. Bryologist 93: 187–192. |
89 | AJ Shaw, B Piatkowski, AM Duffy, B Aguero, K Imwattana, M Nieto-Lugilde, A Healey, DJ Weston, MN Patel, J Schmutz, J Grimwood, JB Yavitt, K Hassel, HK Sten?ien, KI Flatberg, CP Bickford, KA Hicks. 2022. Phylogenomic structure and speciation in an emerging model: The Sphagnum magellanicum complex (Bryophyta). New Phytologist 236: 1497–1511. |
90 | H Sj?rs. 1950. On the relation between vegetation and electrolytes in North Swedish mire waters. Oikos 2: 241. |
91 | P ?milauer, J Lep?. 2014. Multivariate analysis of ecological data using Canoco 5. Cambridge: Cambridge University Press. |
92 | TH Struck, JL Feder, M Bendiksby, S Birkeland, J Cerca, VI Gusarov, S Kistenich, KH Larsson, LH Liow, MD Nowak, B Stedje, L Bachmann, D Dimitrov. 2018. Finding evolutionary processes hidden in cryptic species. Trends in Ecology and Evolution 33: 153–163. |
93 | JC Svenning, S Normand, F Skov. 2009. Plio-Pleistocene climate change and geographic heterogeneity in plant diversity-environment relationships. Ecography 32: 13–21. |
94 | PO Title, JB Bemmels. 2018. ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41: 291–307. |
95 | DH Vitt, JM Glime. 1984. The structural adaptations of aquatic Musci. Lindbergia 10: 95–110. |
96 | KD Whitney, JR Ahern, LG Campbell, LP Albert, MS King. 2010. Patterns of hybridization in plants. Perspectives in Plant Ecology, Evolution and Systematics 12: 175–182. |
97 | J Wiegers, B van Geel. 1984. Meesia triquetra (Jolyclerc) ?ngstr. in a Late-Glacial peat deposit of Aller?d age from Usselo, The Netherlands. Lindbergia 10: 183–186. |
98 | N Yousefi, K Hassel, KI Flatberg, P Kemppainen, E Trucchi, AJ Shaw, MO Kyrkjeeide, P Sz?vényi, HK Sten?ien. 2017. Divergent evolution and niche differentiation within the common peatmoss Sphagnum magellanicum. American Journal of Botany 104: 1060–1072. |
99 | N Yousefi, E Mikulá?ková, HK Sten?ien, KI Flatberg, A Ko?uthová, M Hájek, K Hassel. 2019. Genetic and morphological variation in the circumpolar distribution range of Sphagnum warnstorfii: Indications of vicariant divergence in a common peatmoss. Botanical Journal of the Linnean Society 189: 408–423. |
/
〈 | 〉 |