Transposable elements and gene expression variation in the intraspecific hybrids of Capsella rubella

Jia-Fu Chen1,2,3, Yong-Chao Xu1,2, Juan Jiang1,2,3, Xiao-Min Niu1,2, Xing-Hui Hou1,2, Zhi-Qin Zhang1,2,3, Ya-Long Guo1,2,3()

PDF
Journal of Systematics and Evolution ›› 2024, Vol. 62 ›› Issue (3) : 358-367. DOI: 10.1111/jse.13002
Research Article

Transposable elements and gene expression variation in the intraspecific hybrids of Capsella rubella

  • Jia-Fu Chen1,2,3, Yong-Chao Xu1,2, Juan Jiang1,2,3, Xiao-Min Niu1,2, Xing-Hui Hou1,2, Zhi-Qin Zhang1,2,3, Ya-Long Guo1,2,3()
Author information +
History +

Abstract

Transposable elements (TEs) are prevalent components of diverse genomes, and play an important role on the genomic stability and expression regulation of their adjacent genes. It is interesting to know the variation of TE expression and the effects of the presence/absence of TEs on gene expression after hybridization. Here we assessed the expression variation of TEs and the impacts of TEs on expression of nearby genes after hybridization based on comparisons of three pairs of reciprocal F1 hybrids and four parents in Capsella rubella. Of the 480 TE families expressed in all the four parents and six F1 hybrids, 7–23 (1.5%–4.2%) TE families were significantly differentially expressed between in silico and real F1 hybrids, indicating the expression levels of these TE families were affected during hybridization. In particular, there was a Copia TE superfamily and a non-long terminal repeat (non-LTR) TE differentially expressed between the reciprocal F1 hybrids of 879 and 86IT1, indicating maternal effects may have impacts on expression of TEs in these F1 hybrids. Besides the impacts on the expression of TE families of the hybridization, genes adjacent to polymorphic TEs tended to show a higher proportion (24.83%) of allele-specific expression (ASE) in F1 hybrids. Overall, our results highlight the impacts of hybridization on the expression level variation of TEs, and the effects of TEs on ASE after hybridization.

Keywords

allele-specific expression / gene expression level / hybridization / TE family expression level / transposable elements

Cite this article

Download citation ▾
Jia-Fu Chen, Yong-Chao Xu, Juan Jiang, Xiao-Min Niu, Xing-Hui Hou, Zhi-Qin Zhang, Ya-Long Guo. Transposable elements and gene expression variation in the intraspecific hybrids of Capsella rubella. Journal of Systematics and Evolution, 2024, 62(3): 358‒367 https://doi.org/10.1111/jse.13002

References

1 SN Anderson, P Zhou, K Higgins, Y Brandvain, NM Springer. 2021. Widespread imprinting of transposable elements and variable genes in the maize endosperm. PLoS Genetics 17: e1009491.
2 P Baduel, L Quadrana. 2021. Jumpstarting evolution: How transposition can facilitate adaptation to rapid environmental changes. Current Opinion in Plant Biology 61: 102043.
3 Y Bao, G Hu, CE Grover, J Conover, D Yuan, JF Wendel. 2019. Unraveling cis and trans regulatory evolution during cotton domestication. Nature Communications 10: 5399.
4 P Batut, A Dobin, C Plessy, P Carninci, TR Gingeras. 2013. High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression. Genome Research 23: 169–180.
5 G Bourque, KH Burns, M Gehring, V Gorbunova, A Seluanov, M Hammell, M Imbeault, Z Izsvak, HL Levin, TS Macfarlan, DL Mager, C Feschotte. 2018. Ten things you should know about transposable elements. Genome Biology 19: 199.
6 SE Castel, P Mohammadi, WK Chung, Y Shen, T Lappalainen. 2016. Rare variant phasing and haplotypic expression from RNA sequencing with phASER. Nature Communications 7: 12817.
7 C Chen, H Chen, Y Zhang, HR Thomas, MH Frank, Y He, R Xia. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13: 1194–1202.
8 N Chung, GM Jonaid, S Quinton, A Ross, CE Sexton, A Alberto, C Clymer, D Churchill, O Navarro Leija, MV Han. 2019. Transcriptome analyses of tumor-adjacent somatic tissues reveal genes co-expressed with transposable elements. Mobile DNA 10: 39.
9 EB Chuong, NC Elde, C Feschotte. 2017. Regulatory activities of transposable elements: From conflicts to benefits. Nature Reviews Genetics 18: 71–86.
10 AM Dion-Côté, S Renaut, E Normandeau, L Bernatchez. 2014. RNA-seq reveals transcriptomic shock involving transposable elements reactivation in hybrids of young lake whitefish species. Molecular Biology and Evolution 31: 1188–1199.
11 A Dobin, CA Davis, F Schlesinger, J Drenkow, C Zaleski, S Jha, P Batut, M Chaisson, TR Gingeras. 2013. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29: 15–21.
12 M Drouin, M Hénault, J Hallin, CR Landry. 2021. Testing the genomic shock hypothesis using transposable element expression in yeast hybrids. Frontiers in Fungal Biology 2: 729264.
13 U Göbel, AL Arce, F He, A Rico, G Schmitz, J de Meaux. 2018. Robustness of transposable element regulation but no genomic shock observed in interspecific Arabidopsis hybrids. Genome Biology and Evolution 10: 1403–1415.
14 SA Goff, Q Zhang. 2013. Heterosis in elite hybrid rice: Speculation on the genetic and biochemical mechanisms. Current Opinion in Plant Biology 16: 221–227.
15 M Guo, MA Rupe, X Yang, O Crasta, C Zinselmeier, OS Smith, B Bowen. 2006. Genome-wide transcript analysis of maize hybrids: Allelic additive gene expression and yield heterosis. Theoretical and Applied Genetics 113: 831–845.
16 M Hénault, S Marsit, G Charron, CR Landry. 2020. The effect of hybridization on transposable element accumulation in an undomesticated fungal species. Elife 9: e60474.
17 Y Hu, X Wang, Y Xu, H Yang, Z Tong, R Tian, S Xu, L Yu, Y Guo, P Shi, S Huang, G Yang, S Shi, F Wei. 2023. Molecular mechanisms of adaptive evolution in wild animals and plants. Science China Life Sciences 66: 453–495.
18 S Huang, X Tao, S Yuan, Y Zhang, P Li, HA Beilinson, Y Zhang, W Yu, P Pontarotti, H Escriva, Y Le Petillon, X Liu, S Chen, DG Schatz, A Xu. 2016. Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell 166: 102–114.
19 Y Jin, OH Tam, E Paniagua, M Hammell. 2015. TEtranscripts: A package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics 31: 3593–3599.
20 R Johnson, R Guigo. 2014. The RIDL hypothesis: Transposable elements as functional domains of long noncoding RNAs. RNA 20: 959–976.
21 C Josefsson, B Dilkes, L Comai. 2006. Parent-dependent loss of gene silencing during interspecies hybridization. Current Biology 16: 1322–1328.
22 M Laporte, J Le Luyer, C Rougeux, A Dion-Côté, M Krick, L Bernatchez. 2019. DNA methylation reprogramming, TE derepression, and postzygotic isolation of nascent animal species. Science Advances 5: eaaw1644.
23 Q Li, L Li, J Dai, J Li, J Yan. 2009. Identification and characterization of cacta transposable elements capturing gene fragments in maize. Chinese Science Bulletin 54: 642–651.
24 D Lisch, JL Bennetzen. 2011. Transposable element origins of epigenetic gene regulation. Current Opinion in Plant Biology 14: 156–161.
25 MI Love, W Huber, S Anders. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15: 550.
26 C Malone, G Hannon. 2009. Molecular evolution of piRNA and transposon control pathways in Drosophila. Cold Spring Harbor Symposia in Quantitative Biology 2009: 225–234.
27 C Marcon, A Paschold, WA Malik, A Lithio, JA Baldauf, L Altrogge, N Opitz, C Lanz, H Schoof, D Nettleton, HP Piepho, F Hochholdinger. 2017. Stability of single-parent gene expression complementation in maize hybrids upon water deficit stress. Plant Physiology 173: 1247–1257.
28 B McClintock. 1984. The significance of responses of the genome to challenge. Science 226: 792–801.
29 XM Niu, YC Xu, ZW Li, YT Bian, XH Hou, JF Chen, YP Zou, J Jiang, Q Wu, S Ge, S Balasubramanian, YL Guo. 2019. Transposable elements drive rapid phenotypic variation in Capsella rubella. Proceedings of the National Academy of Sciences of the United States of America 116: 6908–6913.
30 M Pertea, D Kim, GM Pertea, JT Leek, SL Salzberg. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols 11: 1650–1667.
31 M Pertea, GM Pertea, CM Antonescu, TC Chang, JT Mendell, SL Salzberg. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33: 290–295.
32 L Quadrana, M Etcheverry, A Gilly, E Caillieux, MA Madoui, J Guy, AB Silveira, S Engelen, V Baillet, P Wincker, JM Aury, V Colot, E Caillieux. 2019. Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nature Communications 10: 3421.
33 AR Quinlan, IM Hall. 2010. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842.
34 MD Robinson, DJ McCarthy, GK Smyth. 2010. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.
35 RK Slotkin, R Martienssen. 2007. Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics 8: 272–285.
36 T Slotte, KM Hazzouri, JA Agren, D Koenig, F Maumus, YL Guo, K Steige, AE Platts, JS Escobar, LK Newman, W Wang, T Mandakova, E Vello, LM Smith, SR Henz, J Steffen, S Takuno, Y Brandvain, G Coop, P Andolfatto, TT Hu, M Blanchette, RM Clark, H Quesneville, M Nordborg, BS Gaut, MA Lysak, J Jenkins, J Grimwood, J Chapman, S Prochnik, S Shu, D Rokhsar, J Schmutz, D Weigel, SI Wright. 2013. The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nature Genetics 45: 831–835.
37 C Smukowski Heil, K Patterson, AS Hickey, E Alcantara, MJ Dunham. 2021. Transposable element mobilization in interspecific yeast hybrids. Genome Biology and Evolution 13: 1–13.
38 DR Smyth, JL Bowman, EM Meyerowitz. 1990. Early flower development in Arabidopsis. The Plant Cell 2: 755–767.
39 KA Steige, B Laenen, J Reimegard, DG Scofield, T Slotte. 2017. Genomic analysis reveals major determinants of cis-regulatory variation in Capsella grandiflora. Proceedings of the National Academy of Sciences of the United States of America 114: 1087–1092.
40 KA Steige, J Reimegård, D Koenig, DG Scofield, T Slotte. 2015. Cis-regulatory changes associated with a recent mating system shift and floral adaptation in Capsella. Molecular Biology and Evolution 32: 2501–2514.
41 T Stuart, SR Eichten, J Cahn, YV Karpievitch, JO Borevitz, R Lister. 2016. Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. Elife 5: e20777.
42 T Tian, Y Liu, H Yan, Q You, X Yi, Z Du, W Xu, Z Su. 2017. AgriGO v2.0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research 45: W122–W129.
43 Y Tian, A Thrimawithana, T Ding, J Guo, A Gleave, D Chagne, C Ampomah-Dwamena, HS Ireland, RJ Schaffer, Z Luo, M Wang, X An, D Wang, Y Gao, K Wang, H Zhang, R Zhang, Z Zhou, Z Yan, L Zhang, C Zhang, P Cong, CH Deng, JL Yao. 2022. Transposon insertions regulate genome-wide allele-specific expression and underpin flower colour variations in apple (Malus spp.). Plant Biotechnology Journal 20: 1285–1297.
44 C Trapnell, BA Williams, G Pertea, A Mortazavi, G Kwan, MJ van Baren, SL Salzberg, BJ Wold, L Pachter. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28: 511–515.
45 S Tusso, F Suo, Y Liang, LL Du, JBW Wolf. 2022. Reactivation of transposable elements following hybridization in fission yeast. Genome Research 32: 324–336.
46 AJ Waters, I Makarevitch, J Noshay, LT Burghardt, CN Hirsch, CD Hirsch, NM Springer. 2017. Natural variation for gene expression responses to abiotic stress in maize. The Plant Journal 89: 706–717.
47 L Wei, X Cao. 2016. The effect of transposable elements on phenotypic variation: Insights from plants to humans. Science China Life Sciences 59: 24–37.
48 W Xu, M Dai, F Li, A Liu. 2014. Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean. Nucleic Acids Research 42: 6987–6998.
49 M Zhang, S Xie, X Dong, X Zhao, B Zeng, J Chen, H Li, W Yang, H Zhao, G Wang, Z Chen, S Sun, A Hauck, W Jin, J Lai. 2014. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Research 24: 167–176.
50 X Zhang, JJ Emerson. 2019. Inferring compensatory evolution of cis- and trans-regulatory variation. Trends in Genetics 35: 1–3.
51 P Zhou, CN Hirsch, SP Briggs, NM Springer. 2019. Dynamic patterns of gene expression additivity and regulatory variation throughout maize development. Molecular Plant 12: 410–425.
PDF

Accesses

Citations

Detail

Sections
Recommended

/