Niche conservatism and strong phylogenetic signals in climate, soil, and morphological variation of Neotropical firs (Abies, Pinaceae)
Interspecific trait divergence may reflect adaptation and reproductive isolation, particularly after the rapid differentiation that may follow the colonization of new environments. Although new lineages are generally expected to be morphologically and ecologically similar to their ancestors, environmental forces can also drive adaptive differentiation along specific phenotypic axes. We used climate niche models and comparative analyses based on a previously inferred phylogeny to examine the history of ecological and morphological divergence of Neotropical firs (Abies Mill., Pinaceae), a group of conifers that have recently colonized and diversified in the mountains of Mexico and northern Central America. We inferred past secondary contact zones by comparing current and past climate niche projections and looked for evidence of recent interspecific gene flow using genomic data. Neotropical firs have similar niches to each other and show a strong phylogenetic signal for most evaluated morphological traits. Analyses based on individual variables suggested a random walk model of differentiation. However, early adaptation to tropical conditions is inferred in the ancestor of the southernmost firs, as all modern southern taxa are differentiated climatically from Abies concolor, the northernmost species. In addition, observed autapomorphic traits for soil properties and the number of resin ducts in needles are consistent with possible species-specific adaptations. Thus, a combination of nonadaptive and adaptive processes along different phenotypic axes, some related to the environment, likely operated after the southward migration of this plant lineage from North America and its subsequent radiation in the Neotropics.
comparative method / firs / gene flow / Neotropical mountains / nonadaptive evolution
1 | JA Aguirre-Liguori, BS Gaut, JP Jaramillo-Correa, MI Tenaillon, S Montes-Hernández, F García-Oliva, SJ Hearne, LE Eguiarte. 2019. Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (Zea mays parviglumis and Zea mays mexicana). Molecular Ecology 28: 2814–2830. |
2 | E Aguirre-Planter, JP Jaramillo-Correa, S Gómez-Acevedo, DP Khasa, J Bousquet, LE Eguiarte. 2012. Phylogeny, diversification rates and species boundaries of Mesoamerican firs (Abies, Pinaceae) in a genus-wide context. Molecular Phylogenetics and Evolution 62: 263–274. |
3 | ME Aiello-Lammens, RA Boria, A Radosavljevic, B Vilela, RP Anderson. 2015. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38: 541–545. |
4 | H Akaike. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723. |
5 | S Arenas, J Campo, A Mastretta-Yanes, JP Jaramillo-Correa. 2021. Within-population genotype—Soil interactions drive phenotypic variation in a recovering fir forest from central Mexico. Forest Ecology and Management 494: 119293. |
6 | CH ávila Bello, L López-Mata. 2001. Distribución y análisis estructural de Abies hickelii (Flous & Gaussen) en México. Interciencia 26: 244–251. |
7 | CD Bacon, J Roncal, T Andermann, CJ Barnes, H Balslev, N Gutiérrez-Pinto, H Morales, LA Nú?ez-Avelleneda, N Tunarosa, A Antonelli. 2021. Genomic and niche divergence in an Amazonian palm species complex. Botanical Journal of the Linnean Society 197: 498–512. |
8 | F Balao, MT Lorenzo, JM Sánchez-Robles, O Paun, JL García-Casta?o, A Terrab. 2020. Early diversification and permeable species boundaries in the Mediterranean firs. Annals of Botany 125: 495–507. |
9 | M Barbet-Massin, F Jiguet, CH Albert, W Thuiller. 2012. Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution 3: 327–338. |
10 | N Barve, V Barve, A Jiménez-Valverde, A Lira-Noriega, SP Maher, AT Peterson, J Soberón, F Villalobos. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222: 1810–1819. |
11 | EK Bissell, PK Diggle. 2010. Modular genetic architecture of floral morphology in Nicotiana: Quantitative genetic and comparative phenotypic approaches to floral integration. Journal of Evolutionary Biology 23: 1744–1758. |
12 | SP Blomberg, T Garland, AR Ives. 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57: 717–745. |
13 | FC Boucher, NE Zimmermann, E Conti. 2016. Allopatric speciation with little niche divergence is common among alpine Primulaceae. Journal of Biogeography 43: 591–602. |
14 | P Braconnot, B Otto-Bliesner, S Harrison, S Joussaume, JY Peterchmitt, A Abe-Ouchi, M Crucifix, E Driesschaert, T Fichefet, CD Hewitt, M Kageyama, A Kitoh, MF Loutre, O Marti, U Merkel, G Ramstein, P Valdes, L Weber, Y Yu, Y Zhao. 2007. Results of PMIP2 coupled simulations of the Mid-Holocene and last glacial maximum—Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate of the Past 3: 279–296. |
15 | O Broennimann, MC Fitzpatrick, PB Pearman, B Petitpierre, L Pellissier, NG Yoccoz, W Thuiller, MJ Fortin, C Randin, NE Zimmermann, CH Graham, A Guisan. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21: 481–497. |
16 | KP Burnham, DR Anderson. 2004. Multimodel inference: A practical information-theoretic approach. Fort Collins: Springer. |
17 | E Buschiazzo, C Ritland, J Bohlmann, K Ritland. 2012. Slow but not low: Genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evolutionary Biology 12: 8. |
18 | MA Butler, AA King. 2004. Phylogenetic comparative analysis: A modeling approach for adaptive evolution. American Naturalist 164: 683–695. |
19 | M Caballero, S Lozano García, L Vázquez Selem, B Ortega. 2010. Evidencias de cambio climático y ambiental en registros glaciales y en cuencas lacustres del centro de México durante el último máximo glacial. Boletin de la Sociedad Geologica Mexicana 62: 359–377. |
20 | ARO Chin, SC Sillett. 2016. Phenotypic plasticity of leaves enhances water-stress tolerance and promotes hydraulic conductivity in a tall conifer. American Journal of Botany 103: 796–807. |
21 | JB Clair St., WB Critchfield. 1988. Hybridization of a Rocky mountain fir (Abies concolor) and a Mexican fir (Abies religiosa). Canadian Journal of Forest Research 18: 640–643. |
22 | N Cooper, W Jetz, RP Freckleton. 2010. Phylogenetic comparative approaches for studying niche conservatism. Journal of Evolutionary Biology 23: 2529–2539. |
23 | MD Crisp, LG Cook. 2011. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytologist 192: 997–1009. |
24 | WB Critchfield. 1988. Hybridization of the California firs. Forest Science 34: 139–151. |
25 | G Cruz-Cárdenas, L López-Mata, CA Ortiz-Solorio, JL Villase?or, E Ortiz, JT Silva, F Estrada-Godoy. 2014. Interpolation of Mexican soil properties at a scale of 1:1,000,000. Geoderma 213: 29–35. |
26 | J Cruz-Nicolás, G Giles-Pérez, E González-Linares, J Múgica-Gallart, A Lira-Noriega, DS Gernandt, LE Eguiarte, JP Jaramillo-Correa. 2020a. Contrasting evolutionary processes drive morphological and genetic differentiation in a subtropical fir (Abies, Pinaceae) species complex. Botanical Journal of the Linnean Society 192: 401–420. |
27 | J Cruz-Nicolás, GI Giles-Pérez, A Lira-Noriega, N Martínez-Méndez, E Aguirre-Planter, LE Eguiarte, JP Jaramillo-Correa. 2020b. Using niche centrality within the scope of the nearly neutral theory of evolution to predict genetic diversity in a tropical conifer species-pair. Journal of Biogeography 47: 2755–2772. |
28 | J Cruz-Nicolás, A Villarruel-Arroyo, DS Gernandt, RM Fonseca, E Aguirre-Planter, LE Eguiarte, JP Jaramillo-Correa. 2021. Non-adaptive evolutionary processes governed the diversification of a temperate conifer lineage after its migration into the tropics. Molecular Phylogenetics and Evolution 160: 107125. |
29 | JE Czekanski-Moir, RJ Rundell. 2019. The ecology of nonecological speciation and nonadaptive radiations. Trends in Ecology and Evolution 34: 400–415. |
30 | AR De La Torre, T Wang, B Jaquish, SN Aitken. 2014. Adaptation and exogenous selection in a Picea glauca × Picea engelmannii hybrid zone: Implications for forest management under climate change. New Phytologist 201: 687–699. |
31 | AR De La Torre, Z Li, Y Van De Peer, PK Ingvarsson. 2017. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Molecular Biology and Evolution 34: 1363–1377. |
32 | AF Diefendorf, AB Leslie, SL Wing. 2015. Leaf wax composition and carbon isotopes vary among major conifer groups. Geochimica et Cosmochimica Acta 170: 145–156. |
33 | MJ Donoghue. 2009. A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences USA 2: 247–262. |
34 | AJ Eckert, H Shahi, SL Datwyler, DB Neale. 2012. Spatially variable natural selection and the divergence between parapatric subspecies of lodgepole pine (Pinus contorta, Pinaceae). American Journal of Botany 99: 1323–1334. |
35 | S Eguiluz de Antuna?o, M Aranda García, R Marret. 2000. Tectónica de la Sierra Madre Oriental. México. Boletin de la Sociedad Geológica Mexicana 53: 1–26. |
36 | MEK Evans, SA Smith, RS Flynn, MJ Donoghue. 2009. Climate, niche evolution, and diversification of the ‘bird-cage’ evening primroses (Oenothera, sections Anogra and Kleinia). American Naturalist 173: 225–240. |
37 | A Farjon. 2010. A handbook of the world's conifers. Leiden: Brill Academic Publishers. |
38 | J Felsenstein. 1985. Phylogenies and the comparative method. American Society of Naturalists 125: 1–15. |
39 | L Ferrari, T Orozco-Esquivel, V Manea, M Manea. 2012. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522–523: 122–149. |
40 | SE Fick, RJ Hijmans. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315. |
41 | RP Freckleton, PH Harvey, M Pagel. 2002. Phylogenetic analysis and comparative data: A test and review of evidence. American Naturalist 160: 712–726. |
42 | DS Gernandt, JA Pérez-De La Rosa. 2014. Biodiversidad de Pinophyta (coníferas) en México. Revista Mexicana de Biodiversidad 85: 126–133. |
43 | GI Giles-Pérez, E Aguirre-Planter, LE Eguiarte, JP Jaramillo-Correa. 2022. Demographic modelling helps track the rapid and recent divergence of a conifer species pair from Central Mexico. Molecular Ecology 31: 5074–5088. |
44 | G Gleiser, KL Speziale, SA Lambertucci, F Hiraldo, JL Tella, MA Aizen. 2019. Uncoupled evolution of male and female cone sizes in an ancient conifer lineage. International Journal of Plant Sciences 180: 72–80. |
45 | A Graham. 1976. Studies in neotropical paleobotany II. The Miocene communities of Veracruz, Mexico. Missouri Botanical Garden 63: 787–842. |
46 | A Graham. 1999. The Tertiary history of the northern temperate element in the northern Latin American biota. American Journal of Botany 86: 32–38. |
47 | CH Graham, D Storch, A Machac. 2018. Phylogenetic scale in ecology and evolution. Global Ecology and Biogeography 27: 175–187. |
48 | DC Haak, BA Ballenger, LC Moyle. 2014. No evidence for phylogenetic constraint on natural defense evolution among wild tomatoes. Ecology 95: 1633–1641. |
49 | JA Hamilton, C Lexer, SN Aitken. 2013. Differential introgression reveals candidate genes for selection across a spruce (Picea sitchensis × P. glauca) hybrid zone. New Phytologist 197: 927–938. |
50 | LJ Harmon, JT Weir, CD Brock, RE Glor, W Challenger. 2008. GEIGER: Investigating evolutionary radiations. Bioinformatics 24: 129–131. |
51 | LJ Harmon, JB Losos, T Jonathan Davies, RG Gillespie, JL Gittleman, W Bryan Jennings, KH Kozak, MA McPeek, F Moreno-Roark, TJ Near, A Purvis, RE Ricklefs, D Schluter, JA Schulte, O Seehausen, BL Sidlauskas, O Torres-Carvajal, JT Weir, AT Mooers. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64: 2385–2396. |
52 | PH Harvey, M Pagel. 1991. The comparative method in evolutionary biology. Oxford: Oxford University Press. |
53 | C Heibl, C Calenge. 2013. phyloclim: Integrating phylogenetics and climatic niche modeling. R package version 0.9-4. Available from [accessed 7 October 2020]. |
54 | RJ Hijmans, SE Cameron, JL Parra, PG Jones, A Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978. |
55 | RJ Hijmans. 2019. raster: Geographic data analysis and modeling. R package version 2.8-19. Available from [accessed 7 October 2020]. |
56 | R Hopkins. 2013. Reinforcement in plants. New Phytologyst 197: 1095–1103. |
57 | T Ingram, LJ Harmon, JB Shurin. 2012. When should we expect early bursts of trait evolution in comparative data? Predictions from an evolutionary food web model. Journal of Evolutionary Biology 25: 1902–1910. |
58 | W Jin, DS Gernandt, C Wehenkel, X Xia, X Wei. 2021. Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proceedings of the National Academy of Sciences USA 118: e2022302118. |
59 | JM Kamilar, N Cooper. 2013. Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society B: Biological Sciences 368: 20120341. |
60 | M Kirkpatrick, NH Barton. 1997. Evolution of a species’ range. The American Naturalist 150: 1–23. |
61 | P Krasilnikov, M Gutiérrez-Castorena, C del, RJ Ahrens, CO Cruz-Gaistardo, S Sedov, E Solleiro-Rebolledo, E Solleiro-Rebolledo. 2013. The soils of Mexico. In: Hartemink AE ed. World soil book series. Dordrecht, Heidelberg, New York: Springer. 1–181. |
62 | AB Leslie, JM Beaulieu, S Mathews. 2017. Variation in seed size is structured by dispersal syndrome and cone morphology in conifers and other nonflowering seed plants. New Phytologist 216: 429–437. |
63 | JL Li, LL Zhong, J Wang, T Ma, KS Mao, L Zhang. 2020. Genomic insights into speciation history and local adaptation of an alpine aspen in the Qinghai–Tibet Plateau and adjacent highlands. Journal of Systematics and Evolution 59: 1220–1231. |
64 | C Macinnis-Ng, K McClenahan, D Eamus. 2004. Convergence in hydraulic architecture, water relations and primary productivity amongst habitats and across seasons in Sydney. Functional Plant Biology 31(5): 429–439. |
65 | M Malinsky, M Matschiner, H Svardal. 2021. Dsuite—Fast D-statistics and related admixture evidence from VCF files. Molecular Ecology Resources 21(2): 584–595. |
66 | N Martínez-Méndez, E Aguirre-Planter, LE Eguiarte, JP Jaramillo-Correa. 2016. Modelado de nicho ecológico de las especies del género Abies (Pinaceae) en México: Algunas implicaciones taxonómicas y para la conservación. Botanical Sciences 94: 5–24. |
67 | M Martínez. 1948. Los Abies mexicanos. México: Anales del Instituto de Biología de México. 19: 11–104. |
68 | A Mastretta-Yanes, A Moreno-Letelier, D Pi?ero, TH Jorgensen, BC Emerson. 2015. Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. Journal of Biogeography 42: 1586–1600. |
69 | AS Mathys, NC Coops, SW Simard, RH Waring, SN Aitken. 2018. Diverging distribution of seedlings and mature trees reflects recent climate change in British Columbia. Ecological Modelling 384: 145–153. |
70 | ID Méndez-González, L Jardón-Barbolla, JP Jaramillo-Correa. 2017. Differential landscape effects on the fine-scale genetic structure of populations of a montane conifer from central Mexico. Tree Genetics & Genomes 13: 13–30. |
71 | C Merow, MJ Smith, JA Silander. 2013. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36: 1058–1069. |
72 | DO Mesquita, GC Costa, GR Colli, TB Costa, DB Shepard, LJ Vitt, ER Pianka. 2016. Life-history patterns of lizards of the world. American Naturalist 187: 689–705. |
73 | T Münkemüller, S Lavergne, B Bzeznik, S Dray, T Jombart, K Schiffers, W Thuiller. 2012. How to measure and test phylogenetic signal. Methods in Ecology and Evolution 3: 743–756. |
74 | T Münkemüller, FC Boucher, W Thuiller, S Lavergne. 2015. Phylogenetic niche conservatism—Common pitfalls and ways forward. Functional Ecology 29: 627–639. |
75 | R Muscarella, PJ Galante, M Soley-Guardia, RA Boria, JM Kass, M Uriarte, RP Anderson. 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5: 1198–1205. |
76 | BL Otto-Bliesner, SJ Marshall, JT Overpeck, GH Miller, A Hu. 2006. Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311: 1751–1753. |
77 | HL Owens, LP Campbell, LL Dornak, EE Saupe, N Barve, J Soberón, K Ingenloff, A Lira-Noriega, CM Hensz, CE Myers, AT Peterson. 2013. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling 263: 10–18. |
78 | B ?züdo?ru, ? Karacao?lu, G Akayd?n, S Erik, K Mummenhoff, ?K Sa?lam. 2022. Ecological specialization promotes diversity and diversification in the Eastern Mediterranean genus Ricotia (Brassicaceae). Journal of Systematics and Evolution 60: 331–343. |
79 | M Pagel. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877–884. |
80 | E Paradis, J Claude, K Strimmer. 2004. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290. |
81 | N Patterson, P Moorjani, Y Luo, S Mallick, N Rohland, Y Zhan, T Genschoreck, T Webster, D Reich. 2012. Ancient admixture in human history. Genetics 192: 1065–1093. |
82 | AT Peterson, J Soberón, RG Pearson, RP Anderson, E Martínez-Meyer, M Nakamura, M Bastos Araujo. 2011. Ecological niches and geographic distributions. Princeton: Princeton University Press. |
83 | SJ Phillips, RP Anderson, M Dudík, RE Schapire, ME Blair. 2017. Opening the black box: an open-source release of Maxent. Ecography 40: 887–893. |
84 | SJ Phillips, RP Anderson, RE Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259. |
85 | BJ Pickles, BD Twieg, GA O'Neill, WW Mohn, SW Simard. 2015. Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors. New Phytologist 207: 858–871. |
86 | Y Pillon, HCF Hopkins, F Rigault, T Jaffré, EA Stacy. 2014. Cryptic adaptive radiation in tropical forest trees in New Caledonia. New Phytologist 202: 521–530. |
87 | R Development Core Team. 2018. R: a language end environment for statistical computing. Vienna: The R Foundation for Statistical Computing. Available from |
88 | A Radosavljevic, RP Anderson. 2014. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography 41: 629–643. |
89 | LJ Revell. 2012. phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217–223. |
90 | LJ Revell, LJ Harmon, DC Collar. 2008. Phylogenetic signal, evolutionary process, and rate. Systematic Biology 57: 591–601. |
91 | LH Rieseberg, JH Willis. 2007. Plant speciation. Science 317: 910–914. |
92 | LH Rieseberg, BK Blackman. 2010. Speciation genes in plants. Annals of Botany 106: 439–455. |
93 | RJ Rundell, TD Price. 2009. Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends in Ecology and Evolution 24: 394–399. |
94 | TW Schoener. 1970. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51: 408–418. |
95 | VL Semerikov, SA Semerikova, YY Khrunyk, YA Putintseva. 2022. Sequence capture of mitochondrial genome with PCR-generated baits provides new insights into the biogeography of the genus Abies Mill. Plants 11: 762. |
96 | SA Semerikova, YY Khrunyk, M Lascoux, VL Semerikov. 2018. From America to Eurasia: a multigenomes history of the genus Abies. Molecular Phylogenetics and Evolution 125: 14–28. |
97 | SA Smith, BC O'Meara. 2012. TreePL: Divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28(20): 2689–2690. |
98 | J Soberón, AT Peterson. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2: 1–10. |
99 | JS Sperry, UG Hacke, J Pittermann. 2006. Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany 93: 1490–1500. |
100 | U Strandby, KI Christensen, M S?rensen. 2009. A morphometric study of the Abies religiosa-hickelii-guatemalensis complex (Pinaceae) in Guatemala and Mexico. Plant Systematics and Evolution 280: 59–76. |
101 | M Sundaram, MJ Donoghue, A Farjon, D Filer, S Mathews, W Jetz, AB Leslie. 2019. Accumulation over evolutionary time as a major cause of biodiversity hotspots in conifers. Proceedings of the Royal Society B: Biological Sciences 268: 1–8. |
102 | JA Vázquez-García, V Shalisko, R Cuevas-Guzmán, MA Mu?iz-Castro, MR Mantilla-Blandón. 2014. Abies jaliscana (Pinaceae): A new combination in section Grandis and a key to the species of Abies in western Mexico. Phytotaxa 183(1): 27–36. |
103 | AW Van der Vaart. 1998. Asymptotic statistics. Cambridge: Cambridge University Press. |
104 | ME Van Nuland, RC Wooliver, AA Pfennigwerth, QD Read, IM Ware, L Mueller, JA Fordyce, JA Schweitzer, JK Bailey. 2016. Plant–soil feedbacks: connecting ecosystem ecology and evolution. Functional Ecology 30: 1032–1042. |
105 | DL Warren, RE Glor, M Turelli. 2008. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62: 2868–2883. |
106 | A Widmer, C Lexer, S Cozzolino. 2009. Evolution of reproductive isolation in plants. Heredity 102: 31–38. |
107 | JJ Wiens. 2004. Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution 58: 193–197. |
108 | JJ Wiens, DD Ackerly, AP Allen, BL Anacker, LB Buckley, HV Cornell, EI Damschen, T Jonathan Davies, JA Grytnes, SP Harrison, BA Hawkins, RD Holt, CM McCain, PR Stephens. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13: 1310–1324. |
109 | JJ Wiens, CH Graham. 2005. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36: 519–539. |
110 | R Wooliver, AA Pfennigwerth, JK Bailey, JA Schweitzer. 2016. Plant functional constraints guide macroevolutionary trade-offs in competitive and conservative growth responses to nitrogen. Functional Ecology 30: 1099–1108. |
111 | QP Xiang, R Wei, YZ Shao, ZY Yang, XQ Wang, XC Zhang. 2015. Phylogenetic relationships, possible ancient hybridization, and biogeographic history of Abies (Pinaceae) based on data from nuclear, plastid, and mitochondrial genomes. Molecular Phylogenetics and Evolution 82: 1–14. |
112 | JY Zou, YH Luo, KS Burgess, SL Tan, W Zheng, CN Fu, K Xu, LM Gao. 2021. Joint effect of phylogenetic relatedness and trait selection on the elevational distribution of Rhododendron species. Journal of Systematics and Evolution 59: 1244–1255. |
/
〈 | 〉 |