On the Viability of Solutions to Conformable Stochastic Differential Equations

Liping Xu, Zhi Li

PDF
Journal of Partial Differential Equations ›› 2024, Vol. 37 ›› Issue (1) : 47-58. DOI: 10.4208/jpde.v37.n1.3

On the Viability of Solutions to Conformable Stochastic Differential Equations

Author information +
History +

Abstract

The viability of the conformable stochastic differential equations is studied. Some necessary and sufficient conditions in terms of the distance function to K are given. In addition, when the boundary of K is sufficiently smooth, our necessary and sufficient conditions can reduce to two relations just on the boundary of K. Lastly, an example is given to illustrate our main results.

Keywords

Viability / conformable derivatives / conformable stochastic differential equation

Cite this article

Download citation ▾
Liping Xu, Zhi Li. On the Viability of Solutions to Conformable Stochastic Differential Equations. Journal of Partial Differential Equations, 2024, 37(1): 47‒58 https://doi.org/10.4208/jpde.v37.n1.3

References

[[1]]
Baleanu D., Gunvenc Z. B. and Tenreiro Machado J. A., New Trends in Nanotechnology and Fractional Calculus Applications. Springer-Verlag, New York, Heidelberg, 2010.
[[2]]
Efe M., Battery power loss compensated fractional order sliding mode control of a quadrotor UAV. Asian J. Control., 413 (2012), 14.
[[3]]
Monje C. A., Chen Y. Q., Vinagre B. M., Xue D. and Feliu V., Fractional-Order Systems and Controls. Series: Advances in Industrial Control, Springer, New York, Heidelberg, 2010.
[[4]]
Oldham K. B., Spanier J., The Fractional Calculus. Academic Press, New York, 1974.
[[5]]
Podlubny I., Fractional Differential Equations. Academic Press, New York, 1999.
[[6]]
Caputo M., Fabrizio M., A new Definition of Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl., 2 (1) (2015), 73-85.
[[7]]
Atangana A., Baleanu D., New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Thermal Science, 2 (20) (2016), 763-769.
[[8]]
Khalil R., Horani M. A., Yousef A. and Sababheh M., A new definition of fractional derivative. J. Comput. Appl. Math., 264 (2014), 65-70.
[[9]]
Abdeljawad T., On conformable fractional calculus. J. Comput. Appl. Math., 279 (2015), 57-66.
[[10]]
Khan T. U., Khan M. A., Generalized conformable fractional operators. J. Comput. Appl. Math., 346 (2019), 378-389.
[[11]]
Chung W., Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math., 290 (15) (2015), 150-158.
[[12]]
Zhao D., Pan X. and Luo M., A new framework for multivariate general conformable fractional calculus and potential applications. Physica A-Stat. Mech. Appl., 510 (10) (2018), 271-280.
[[13]]
Xiao G., Wang J. and O’Regan D., Existence, uniqueness and continuous dependence of solutions to conformable stochastic differential equations. Chaos, Solitons and Fractals, 139 (2020), 110269.
[[14]]
Xiao G., Wang J., On the stability of the solutions to conformable stochastic differential equations, Miskolc Mathematical Notes., 21 (1) (2020), 509-523.
[[15]]
Xiao G., Wang J. and O’Regan D., Existence and Stability of Solutions to Neutral Conformable Stochastic Functional Differential Equations. Qualitative Theory of Dynamical Systems., 21 (7) (2022), 22.
[[16]]
Friedman A., Stochastic differential equations and applications. 2nd edition, Academic Press, 34 (1976), 295-299.
[[17]]
Doss H., Liens entre équations différentiells stochastiques et ordinaires, Ann. Inst. H. Poincaré Sect. B(N. S)., 13 (2) (1977), 99-125.
[[18]]
Aubin J. P., Doss H., Characterization of stochastic viability of any nonsmooth set involving its generalized contingent curvature. Stochastic Anal. Appl., 21 (5) (2003), 955-981.
[[19]]
Aubin J. P., Da Prato G., Stochastic viability and invariance. Ann. Scuola Norm. Pisa., 17 (4) (1990), 595-613.
[[20]]
Aubin J. P., Da Prato G., Stochastic Nagumo’s viability theorem. Stochastic Anal. Appl., 13 (1) (1995), 1-11.
[[21]]
Bardi M., Goatin P., Invariance sets for controlled degenerate diffusions: a viscosity solutions approach. Systems Control Found Appl, (1999), 191-208.
[[22]]
Bardi M., Jensen R., A geometric characterization of viable sets for controlled degenerate diffusions. Set-Valued Analysis., 10 (2-3) (2002), 129-141.
[[23]]
Cannarsa P., Da Prato G., Probality Theory-stochastic viability for regular closed sets in Hilbert spaces. Rend. Lincei Mat. Appl., 22 (2011), 337-346.
[[24]]
Da Prato G., Frankowska H., Stochastic viability of convex sets. J. Math Anal Appl, 333 (01) (2007), 151-163.
[[25]]
Da Prato G., Frankowska H., Invariance of stochastic control systems with deterministic arguments. J. Differential Equations., 200 (1) (2004), 18-52.
[[26]]
Ioana C., Aurel R., Viability for differential equations driven by fractional Brownian motion. J. Differential Equations., 247 (2009), 1505-1528.
[[27]]
Jaber E. A., Bouchard B. and Illand C., Stochastic invariance of closed sets with non-Lipschitz coefficients. Stochastic Processes and their Applications., 129 (5) (2019),1726-1748.
[[28]]
Jaber E. A., Stochastic invariance of closed sets for jump-diffusions with non-Lipschitz coefficients. arXiv 1612.07647v1, (2016).
[[29]]
Marius A., Mihaela-Hanako M., Octavian P. and Eduard R., Invariance for stochastic differential systems with time-dependent constraining sets. Acta Mathematica Sinica, English Series., 31 (7) (2015), 1171-1188.
[[30]]
Tappe S., Invariance of closed convex cones for stochastic partial differential equations. J. Math Anal Appl., 451 (2) (2017), 1077-1122.
[[31]]
Xu L., Luo J., Viability for stochastic functional differential equations in Hilbert spaces driven by fractional Brownian motion. Applied Mathematics and Computation., 341 (15) (2019), 93-110.
[[32]]
Xu L., Viability for stochastic functional differential equations with infinite memory driven by a fractional Brownian motion. Physica A: Statistical Mechanics and its Applications., 527 (1) (2019), 121076.
[[33]]
Aubin J. P., Applied Functional Analysis. JohnWiley and Sons, Hoboken, New Jersey, 1999.
PDF

Accesses

Citations

Detail

Sections
Recommended

/