Robustness of Pullback Attractors for 2D Incompressible Navier-Stokes Equations with Delay

Keqin Su, Xinguang Yang

PDF
Journal of Partial Differential Equations ›› 2024, Vol. 37 ›› Issue (1) : 25-46. DOI: 10.4208/jpde.v37.n1.2

Robustness of Pullback Attractors for 2D Incompressible Navier-Stokes Equations with Delay

Author information +
History +

Abstract

This paper is concerned with the pullback dynamics and robustness for the 2D incompressible Navier-Stokes equations with delay on the convective term in bounded domain. Under appropriate assumption on the delay term, we establish the existence of pullback attractors for the fluid flow model, which is dependent on the past state. Inspired by the idea in Zelati and Gal’s paper (JMFM, 2015), the robustness of pullback attractors has been proved via upper semi-continuity in last section.

Keywords

Navier-Stokes equations / pullback attractors / delay / upper semi-continuity

Cite this article

Download citation ▾
Keqin Su, Xinguang Yang. Robustness of Pullback Attractors for 2D Incompressible Navier-Stokes Equations with Delay. Journal of Partial Differential Equations, 2024, 37(1): 25‒46 https://doi.org/10.4208/jpde.v37.n1.2

References

[[1]]
Caraballo T., Łukaszewicz G. and Real J., Pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domain. C. R. Math. Acad. Sci. Paris., 342 (2006), 263-268.
[[2]]
Cheskidov A., Lu S., Uniform global attractors for the non-homogeneous 3D Navier-Stokes equations. Adv. Math., 267 (2014), 277-306.
[[3]]
Vishik M. I., Chepyzhov V. V., Trajectory and global attractors of three-dimensional Navier-Stokes systems. Math. Notes., 71 (2002), 177-193.
[[4]]
Krasovskii N. N., Stability of Motion, Stanford University Press, 2002.
[[5]]
Taniguchi T., The exponential behavior of Navier-Stokes equations with time delay external force. Discrete Contin. Dyn. Syst., 12 (5) (2005), 997-1018.
[[6]]
Hale J. K., Lunel V., Introduction to Functional Differential Equations, Springer, New York, 1993.
[[7]]
Caraballo T., Real J., Attractors for 2D Navier-Stokes models with delays. J. Differential Equa-tions, 205 (2004), 271-297.
[[8]]
García-Luengo J., Marín-Rubio P., Attractors for a double time-delayed 2D-Navier-Stokes model. Discrete Contin. Dyn. Syst., 252 (2012), 4333-4356.
[[9]]
Marín-Rubio P., Márquez-Durán A. M. and Real J., On the convergence of solutions of glob-ally modified Navier-Stokes equations with delays to solutions of Navier-Stokes equations with delays. Adv. Nonlinear Stud., 11 (2011), 917-927.
[[10]]
Planas G., Hernández E., Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations. Discrete Contin. Dyn. Syst., 21 (2008), 1245-1258.
[[11]]
Carvalho A. N., Langa J. A. and Robinson J. C., Attractors for Infinite-Dimensional Non-Au-tonomous Dynamical Systems, Springer, New York-Heidelberg-Dordrecht-London, 2013.
[[12]]
Caraballo T., Langa J. and Robinson J., Upper semi-continuity of attractors for small random perturbations of dynamical systems. Comm. Partial Differential Equations, 23 (1998), 1557-1581.
[[13]]
Caraballo T., Langa J. A., On the upper semi-continuity of cocycle attractors for non-autono-mous and random dynamical systems. Discrete Contin. Dyn. Impulse Syst., 10 (2003), 491-513.
[[14]]
Wang B. X., Upper semicontinuity of random attractors for non-compact random dynamical systems. Electron J Differ Equ., 2009 (2009), 1-18.
[[15]]
Wang Y., Zhong C., Upper semicontinuity of pullback attractors for nonautonomous Kirch-hoff wave models. Discrete Contin. Dyn. Syst., 33 (7) (2013), 3189-3209.
[[16]]
Liu L., Fu X., Existence and upper semi-continuity of pullback attractors of a p-laplacian equation with delay. J. Math. Phys., 58 (2017), 082702.
[[17]]
Li L., Yang X., Li X., Yan X. and Lu Y., Dynamics and stability of the 3D Brinkman-Forchheimer equation with variable dealy (I). Asym. Anal., 113 (2019), 167-194.
[[18]]
Zelati M. C., Gal C. G., Singular limits of voigt models in fluid dynamics. J. Math. Fluid Mech., 17 (2015), 233-259.
[[19]]
Lions J. L., Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.
[[20]]
Chepyzhov V. V., Vishik M. I., Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence Rhode Island, 2002.
[[21]]
Coddington E. A., Levinson N., Theory of Ordinary Differential Equations, McGraw-Hill, New York-Heidelberg-Dordrecht-London, 2013.
[[22]]
Brown R. M., Perry P. A. and Shen Z., On the dimension of the attractor of the non-homogeneous Navier-Stokes equations in non-smooth domains. Indiana Univ. Math. J., 49 (2000), 1-34.
[[23]]
Yang X., Li L., Yan X. and Ding L., The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electron. Res. Arch., 28 (4) (2020), 1395-1418.
[[24]]
Yang X., Wang R., Yan X. and Miranville A., Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete Contin. Dyn. Syst., 41 (7) (2021), 3343-3366.
PDF

Accesses

Citations

Detail

Sections
Recommended

/