Multiple Solutions for an Elliptic Equation with Hardy Potential and Critical Nonlinearity on Compact Riemannian Manifolds

Youssef Maliki , Fatima Zohra Terki

Journal of Partial Differential Equations ›› 2024, Vol. 37 ›› Issue (1) : 1 -24.

PDF
Journal of Partial Differential Equations ›› 2024, Vol. 37 ›› Issue (1) : 1 -24. DOI: 10.4208/jpde.v37.n1.1

Multiple Solutions for an Elliptic Equation with Hardy Potential and Critical Nonlinearity on Compact Riemannian Manifolds

Author information +
History +
PDF

Abstract

We prove the existence of multiple solutions of an elliptic equation with critical Sobolev growth and critical Hardy potential on compact Riemannian manifolds.

Keywords

Riemannian manifolds / Yamabe equation / Hardy potential

Cite this article

Download citation ▾
Youssef Maliki, Fatima Zohra Terki. Multiple Solutions for an Elliptic Equation with Hardy Potential and Critical Nonlinearity on Compact Riemannian Manifolds. Journal of Partial Differential Equations, 2024, 37(1): 1-24 DOI:10.4208/jpde.v37.n1.1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aubin T., Some Nonlinear Analysis Problems in Riemannian Geometry. Springer Monographs in Mathematics, 1998.

[2]

Hebey E., Introductionà l’analyse non linéaire sur les variétés. Diderot, 1997.

[3]

Madani F., Le problème de Yamabe avec singularités. Bull. Sci. Math., 132 (2008), 5757-591.

[4]

Madani F., Le problème de Yamabe avec singularités et la conjecture de Hebey-Vaugon. Thesis, University Pièrre et Marie Curie, 2009.

[5]

Aubin T., Problèmes isopérimétriques et espace de Sobolev. Journal of Differenial Geometery, 4 (1976), 573-598.

[6]

Talenti G., Best constants in Sobolev inequality. Ann. Mat. Pura Appl., 110 (1976), 353-372.

[7]

Caffarelli L. A., Gidas B. and Spruck J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math., 42 (1989), 271-297.

[8]

Hebey E., Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant lecture notes AMS, 5 (2000).

[9]

Terracini S., On positive solutions to a class equations with a singular coefficient and critical exponent. Adv. Diff. Equats., 2 (1996), 241-264.

[10]

Ambrosetti A., Malchiodi A., Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics 104, 2007.

[11]

Maliki Y., Terki F. Z., A Struwe type decomposition result for a singular elliptic equation on compcat Riemannian manifold. Anal. Theory Appl., 34 (1) (2018), 17-35.

[12]

Benci V., Cerami G. and Passaseo D., On the number of the positive solutions of some nonlinear elliptic problems, in A. Ambrosetti, A. Marino (Eds.), Nonlinear Analysis. A tribute in Honour of Giovanni Prodi. Publ. Sc. Norm. Sup. Pisa, Ed. Norm. Pisa, Pisa, (1991), 93-107.

[13]

Benci V., Bonanno C. and Micheletti A. M., On the multilicity of the solutions of non linear elliptic problem on Riemannian manifolds. Journal of Functional Analysis, 252 (2007), 464-489.

[14]

Chabrowski J., Yang J., Multiple semiclassical solutions fro the Schrödinger euqation involving a critical exponent. Portugaliae Mathematica, 57 (3) (2000), 273-284.

[15]

Terki F. Z., Maliki Y., On the existence of solutions of a critical elliptic equation involving Hardy potential on compact Riemannian manifolds. Note di Matematica, 42 (2) (2022), 19-42.

[16]

Druet O., Hebey E. and Robert F., Blow-up Theory for Elliptic PDEs in Riemannian Geometry. Princeton University Press, 2004.

[17]

Smet D., Nonlinear Schrödinger equations with Hardy potential and critical nonlinearaties. Transactions of AMS, 357 (7) (2004), 2909-2938.

AI Summary AI Mindmap
PDF

927

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/