2025-04-13 2012, Volume 19 Issue 3

  • Select all
  • Hao Cai , Xian-ting Li , Ling-juan Kong , Xiao-jun Ma , Xiao-liang Shao

    For the release of hazardous contaminant indoors, source identification is critical for developing effective response measures. A method which can quickly and accurately identify the position, emission rate, and release time of a single constant contaminant source by using real sensors was presented. The method was numerically demonstrated and validated by a case study of contaminant release in a three-dimensional office. The effects of the measurement errors and total sampling period of sensor on the performance of source identification were thoroughly studied. The results indicate that the adverse effects of the measurement errors can be mitigated by extending the total sampling period. For reaching a desirable accuracy of source identification, the total sampling period should exceed a certain threshold, which can be determined by repeatedly running the identification method until the results tend to be stable. The method presented can contribute to develop an onsite source identification system for protecting occupants from indoor releases.

  • Nian-ping Li , Ji-bo Long , Lin Su , Li Wang , Shan Zhong

    Thermal and moisture characteristics of the bamboo structure wall were tested in natural climate and three representative variation processes of heat and moisture: heating from solar radiation in summer at normal temperature and humidity, heating from solar radiation in summer at normal temperature and high humidity after rain, humidifying from brash in summer at high temperature and normal humidity. The results show that, in summer, the largest temperature difference between external and internal surface of the 28 mm-thick bamboo plywood wall is 11.73 °C (at 15:40) and the largest strain difference is 136 μm/m (at 18:50), both in ambient and indoor conditioned environment. In heating process, lengthways of the wall surface are in contracting strain while transverse ways are in expanding strain at initial stage and in contracting strain during later period. When the high temperature wall is humidified by rain, the surface temperature drops, moisture content increases and the expanding strain is presented on the surface during the whole process. Temperature and moisture content are two important factors which affect thermal and moisture stress (TMS) of the bamboo structure wall. The TMS is not only related to temperature and moisture content, but also greatly affected by temperature gradient, moisture content gradient and rates of changing.

  • Cui-yun Ou , Qi-hong Deng , Wei-wei Liu

    To investigate airflow pattern and its impact on particle deposition, finite-volume based computational fluid dynamics (CFD) simulations were conducted in the diseased triple-bifurcation airways. Computations were carried out for twenty Reynolds numbers ranging from 100 to 2 000 in the step of 100. Particles in the size range of 1–10 μm were conducted. Two particle deposition mechanisms (gravitational sedimentation and inertial impaction) were considered. The results indicate that there are strong relationship between airflow structures and particle deposition patterns. Deposition efficiency is different for different particles in the whole range of the respiratory rates. Particles in different sizes can deposit at different sites. Smaller particles can be uniformly deposited at the inside wall of the considered model. Larger particles can be mainly deposited in the proximal bifurcations. Deposition fraction varies a lot for different inlet Reynolds numbers. For lower Reynolds numbers, deposition fraction is relatively small and varies a little with varying the diameters. For higher Reynolds numbers, there is a most efficient diameter for each Reynolds number to target the aerosols at the specific site.

  • Chan Lu , Qi-hong Deng , Wei-wei Liu , Bo-liang Huang , Ling-zhi Shi

    The temporal variation of ventilation coefficient was estimated and a simple model for the prediction of urban ventilation coefficient in Changsha was developed. Firstly, Pearson correlation analysis was used to investigate the relationship between meteorological parameters and mixing layer height during 2005–2009 in Changsha, China. Secondly, the multi-linear regression model between daytime and nighttime was adopted to predict the temporal ventilation coefficient. Thirdly, the validation of the model between the predicted and observed ventilation coefficient in 2010 was conducted. The results showed that ventilation coefficient significantly varied and remained high during daytime, while it stayed relatively constant and low during nighttime. In addition, the diurnal ventilation coefficient was distinctly negatively correlated with PM10 (particle with the diameter less than 10 μm) concentration in Changsha, China. The predicted ventilation coefficient agreed well with the observed values based on the multi-linear regression models during daytime and nighttime. The urban temporal ventilation coefficient could be accurately predicted by some simple meteorological parameters during daytime and nighttime. The ventilation coefficient played an important role in the PM10 concentration level.

  • Qing-rong Liu , Ying-jun Ruan , Yu-ji Ryu , Jian-xing Ren

    Two practical crawlspace heating systems introduced in detached houses have been chosen as a field study. One is the crawlspace warm air heating system and the other is the crawlspace hot water circulation system. Based on the field study result, by using the simulation software, THERB, the effectiveness of the crawlspace warm air heating system has been examined. The effect of the factors, such as the wind amount circulating between crawlspace and indoor space, foundation insulation condition, and heat amount into the crawlspace, on the indoor thermal environment has been analyzed. Based on these analyses, the measured crawlspace heating system can make the average temperature of the living room above 20 °C. These two houses have excellent thermal environment. According to the simulating result, heat amount input into crawlspace, which can make comfortable indoor thermal environment, for every month in heating period has been roughly concluded, and they are 600 W in December and March and 800 W in February and January, respectively.

  • Yunqing Fan , T. Hayashi , K. Ito

    Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recovery ventilator and to investigate the effect of the air supply arrangement. Three types of mixing ventilation are chosen for the analysis of coupling ANSYS/FLUENT (a computational fluid dynamics (CFD) program) with TRNSYS (a building energy simulation (BES) software). The adoption of mutual complementary boundary conditions for CFD and BES provides more accurate and complete information of indoor air distribution and thermal performance in buildings. A typical office-space situated in a middle storey is chosen for the analysis. The office-space is equipped with air-conditioners on the ceiling. A heat recovery ventilation system directly supplies fresh air to the office space. Its thermal performance and indoor air distribution predicted by the coupled method are compared under three types of ventilation system. When the supply and return openings for ventilation are arranged on the ceiling, there is no critical difference between the predictions of the coupled method and BES on the energy consumption of HVAC because PID control is adopted for the supply air temperature of the occupied zone. On the other hand, approximately 21% discrepancy for the heat recovery estimation in the maximum between the simulated results of coupled method and BES-only can be obviously found in the floor air supply ventilation case. The discrepancy emphasizes the necessity of coupling CFD with BES when vertical air temperature gradient exists. Our future target is to estimate the optimum design of heat recovery ventilation system to control CO2 concentration by adjusting flow rate of fresh air.

  • Mingjie Zhao , J. Srebric

    A green roof is a specialized roof system that supports vegetation growth on rooftops. This technology is rapidly gaining popularity as a sustainable design option for buildings. In order to contribute to an understanding of green roof in regions with cold winters and snow, an on-site experimental investigation was present with a focus on the assessment of green roof performance during the winter. This field experiment took place on a six small buildings during the winter of 2010–2011. The work monitored three buildings with green roofs, two buildings with reference roofs and one building with a bare soil coverage for the roof. These six buildings were identically constructed and instrumented with sensor networks to provide heat flux data through the roofs. The 15 min averaged data were statistically analyzed for a week under the two separate periods, first without a snow cover and second with a snow cover. The results show that the roof type is a significant factor in affecting the thermal performance of these buildings. Most importantly, green roofs reduce heat flow through the roof and thus reduce the heating energy demand during the winter. However, the energy savings for buildings with the green roofs are reduced under snow conditions because the snow diminishes thermal resistance of the roof and increases the heat transfer process through the roofs.

  • Xiao-ping Li , Jian-lei Niu , Nai-ping Gao

    Existed evidences show that airborne transmission of human respiratory droplets may be related with the spread of some infectious disease, such as severe acute respiratory syndrome (SARS) and H1N1 pandemic. Non-pharmaceutical approaches, including ventilation system and personal protection, are believed to have certain positive effects on the reduction of co-occupant’s inhalation. This work then aims to numerically study the performances of mouth covering on co-occupant’s exposure under mixing ventilation (MV), under-floor air distribution (UFAD) and displacement ventilation (DV) system, using drift-flux model. Desk partition, as one generally employed arrangement in plan office, is also investigated under MV. The dispersion of 1, 5 and 10 μm droplet residuals are numerically calculated and CO2 is used to represent tracer gas. The results show that using mouth covering by the infected person can reduce the co-occupant’s inhalation greatly by interrupting direct spread of the expelled droplets, and best performance can be achieved under DV since the coughed air is mainly confined in the microenvironment of the infected person. The researches under MV show that the two interventions, mouth covering and desk partition, achieve almost the same inhalation for fine droplets while the inhalation of the co-occupant is lower when using mouth covering for large droplets.

  • Dong Yang , Bai-zhan Li , Tao Du , Nan Li

    Stack effect is a dominant driving force for building natural ventilation. Analytical models were developed for the evaluation of stack effect in a shaft, accounting for the heat transfer from shaft interior boundaries. Both the conditions with constant heat flux from boundaries to the airflow and the ones with constant boundary temperature were considered. The prediction capabilities of these analytical models were evaluated by using large eddy simulation (LES) for a hypothetical shaft. The results show that there are fairly good agreements between the predictions of the analytical models and the LES predictions in mass flow rate, vertical temperatures profile and pressure difference as well. Both the results of analytical models and LES show that the neutral plane could locate higher than one half of the shaft height when the upper opening area is identical with the lower opening area. Further, it is also shown that the analytical models perform better than KLOTE’s model does in the mass flow rate prediction.

  • Yu-lian Lin , Yong-jiang Liu , Jia-jie Li

    In order to find the dynamic response laws of retaining walls affected by certain earthquake loads, the influence of the seismic wave characteristics and sub-grade fill parameters (including the foundation surface slope) were focused on, and a series of tests were performed. The results show that the maximum stress of the retaining wall decreases as internal friction angle, foundation slope, filled soil cohesion and the biggest dynamic elastic modulus increase, while it increases with the seismic frequency and seismic input peak dropping. The addition value of dynamics earth pressure increases when seismic frequency and seismic input peak are reduced, while it decreases when the filled soil cohesion and internal friction angle rise. Meanwhile, dynamic elastic modulus and foundation slope have no obvious influences on addition value of dynamics earth pressure. The slope will be instable if the seismic input peak exceeds 0.5g and be disruptive if seismic frequency is larger than 2.5 Hz. The mid-lower parts of retaining walls are in most heavy and obvious response to these factors, which reveals the mechanism of “belly burst” in retaining wall that appears commonly in practical projects.

  • Min Zheng , Bai-yi Li , Zheng-yong Qiao

    Aiming to give some advices on the ground coupled heat pump system design in Sichuan Province, China, a typical ground source heat pump (GSHP) system in Sichuan Province was tested in a whole operational year, and the parameters of temperature and flow rate in different parts of system were measured during this period. The seasonal energy efficiency ratio was calculated and the performance of heat pump system in summer was compared with that in winter. The result shows that the coefficient of performance of the system reaches 3.63 in summer and 3.49 in winter, respectively. The heat balance in underground rock mass is acquired basically throughout the year, and the heat accumulation in the earth tends to be zero.

  • Guo-jie Chen , Xiang-wei Liu , You-ming Chen , Xing-guo Guo , Yong-qiang Deng

    A new facility was presented which can expediently and cheaply measure the transient moisture content profile in multi-layer porous building envelope. Then, a common multi-layer porous building envelope was provided, which was constructed by cement mortar-red brick-cement plaster. With this kind of building envelope installed in the south wall, a well-controlled air-conditioning room was set up in Changsha, which is one of typical zones of hot and humid climate in China. And experiments were carried out to investigate the temperature and moisture distribution in multi-layer building envelope in summer, both in sunny day and rainy day. The results show that, the temperature and humidity at the interface between the brick and cement mortar are seriously affected by the changes of outdoor temperature and humidity, and the relative humidity at this interface keeps more than 80% for a long-term, which can easily trigger the growth of mould. The temperature and humidity at the interface between the brick and cement plaster change a little, and they are affected by the changes of indoor temperature and humidity. The temperature and humidity at the interface of the wall whose interior surface is affixed with a foam plastic wallpaper are generally higher than those of the wall without wallpaper. The heat transfer and moisture transfer in the envelope are coupled strongly.

  • Hai-guo Yin , An-gui Li

    A new air distribution pattern, air curtain jet ventilation was presented. The ventilation or airflow patterns and the air velocity produced by air curtain jet were investigated in detail. To identify the airflow characteristics of this novel air curtain jet ventilation system, a full-scale room was used to measure the jet velocity with a slot-ventilated supply device, with regards to the airflow fields along the vertical wall as well as on the horizontal floor zones. The airflow fields under three supply air velocities, 1.0, 1.5 and 2.0 m/s, were carried out in the full-scale room. The experimental results show the velocity profiles of air distribution, the airflow fields along the attached vertical wall and the air lake zones on the floor, respectively. The current experimental research is helpful for heating, ventilation and air conditioning (HVAC) engineers to design better air distribution in rooms.

  • Bin Zhou , Xiao-song Zhang , P. Tronville , Mu-xian Hui , Lü-feng Hui

    Generation of polydisperse KCl aerosol with a new salt aerosol generator was investigated. Special attention was paid on particles with diameters between 3 and 10 μm. The main improvement consists of the different routes of KCl solution droplets. In traditional generators, the solution droplets travel through one cylinder; while in the case analyzed here, after spray atomization, the droplets travel through two cylinders in series. The first cylinder was fed with warm air and the second one with cold air. In such way, the complete evaporation of the water from the droplets can be ensured. The influencing factors of the generated aerosol size distribution were investigated. The data measured show that the concentration of generated aerosol becomes higher both increasing the flow rate of the KCl solution injected in the first cylinder and increasing the concentration in the solution. The temperature of solution influences mainly the generation of smaller KCl particles (0.3–3 μm). The amount of hot air used in the generation process increases the concentration of larger KCl particles (>3 μm) while cold air does not have the same effect. The aerosol generator is able to generate KCl aerosol stably. This instrument can be used effectively for testing air filters for automotive.

  • Bo Hong , Bo-rong Lin , Bing Wang , Shu-hua Li

    Vegetation plays a key role in improving wind environment of residential districts, and is helpful for creating a comfortable and beautiful living environment. The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing, and after that, numerical simulation with SPOTE (simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison. The conclusions were summarized as follows: 1) By comparing the experimental data with simulation results, it could be concluded that the wind field simulated was consistent with the actual wind field, and the flow distribution impacted by vegetation could be accurately reflected; 2) The wind velocity with vegetation was lower than that without vegetation, and the wind velocity was reduced by 46%; 3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity, the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.

  • Yang Lü , H. Yoshino , R. Takaki , R. Kurihara , A. Mochida , H. Yonekura

    Based on the fact that the house dust usually falls on the ground, the floor level slit exhaust ventilation system including inlet located at the ceiling and outlet of slit exhaust installed at corner between wall and floor was considered. Experiments and simulations were performed to investigate the flow and diffusion fields that are affected by this floor level slit exhaust ventilation system. The characteristics of airflow with experiments and computation fluid dynamics (CFD) are generally similar except airflow at the location of impinging flow and the location right below the inlet. Riboflavin particles were used as the house dust. For the spatial distribution of riboflavin particles in the ventilation system before operation, due to the influence of gravity, different sizes of particles show smooth decay curve. After floor level slit exhaust ventilation system is operated, the decay rate of the particles becomes faster than that after the ventilation system is powered on, and the particles with diameter of 0.5–3.0 μm in the experimental data and calculated values show good agreement.

  • Xing-guo Guo , You-ming Chen , Yong-qiang Deng

    A modified one-dimensional transient hygrothermal model for multilayer wall was proposed using air humidity ratio and temperature as the driving potentials. The solution for the governing equations was obtained numerically by implementing the finite-difference scheme. To evaluate the accuracy of the model, a test system was built up to measure relative humidity and temperature within a porous wall and compare with the prediction of the model. The prediction results have good agreement with the experimental results. For the interface close to indoor side, the maximum deviation of temperature between calculated and test data is 1.87 K, and the average deviation is 0.95 K; the maximum deviation of relative humidity is 11.4%, and the average deviation is 5.7%. For the interface close to outdoor side, the maximum deviation of temperature between prediction and measurement is 1.78 K, and the average deviation is 1.1 K; the maximum deviation of relative humidity is 9.9%, and the average deviation is 4.2%.

  • Ya-juan Xin , Zhi-qiang Wang , Zhe Tian

    A building model with radiant cooling system was established and the cooling load, indoor temperature, surface temperature of the walls and other parameters in non-cooling and radiant cooling room were calculated by TRNSYS. The comparative analysis of the characteristics of attenuation and delay proves that the operation of radiant cooling system increases the degree of temperature attenuation of the room and reduces the inner surface temperature of the wall significantly, but has little effect on the attenuation coefficient and delay time of wall heat transfer. The simulation results also show that the inner surface temperature of the walls in the radiant cooling room is much lower than that in non-cooling room in the day with the maximum cooling load, which reduces the indoor operation temperature largely, and improves the thermal comfort. Finally, according to the analysis of indoor temperature of the rooms with different operation schedules of cooling system, it can be derived that the indoor mean temperature changes with the working time of radiant cooling system, and the operation schedule can be adjusted in practice according to the actual indoor temperature to achieve the integration of energy efficiency and thermal comfort.

  • Jia-sheng Wu , Guo-qiang Zhang , Quan Zhang , Jin Zhou , Yong-hui Guo , Wei Shen

    An adaptive neuro-fuzzy inference system (ANFIS) for predicting the performance of a reversibly used cooling tower (RUCT) under cross flow conditions as part of a heat pump system for a heating mode in winter was demonstrated. Extensive field experimental work was carried out in order to gather enough data for training and prediction. The statistical methods, such as the correlation coefficient, absolute fraction of variance and root mean square error, were given to compare the predicted and actual values for model validation. The simulation results predicted with the ANFIS can be used to simulate the performance of a reversibly used cooling tower quite accurately. Therefore, the ANFIS approach can reliably be used for forecasting the performance of RUCT.

  • Lei Zhang , Qing-lin Meng

    In order to calculate the air temperature of the near surface layer in urban environment, the surface layer air was divided into several sections in the vertical direction, and some energy balance equations were developed for each air layer, in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account. Then, the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls. Moreover, the measured air temperatures in a small area (with a horizontal scale of less than 500 m) and a large area (with a horizontal scale of more than 1 000 m) in Guangzhou in summer were used to validate the proposed model. The calculated results accord well with the measured ones, with a maximum relative error of 4.18%. It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.

  • W. T. Chong , S. C. Poh , A. Fazlizan , K. C. Pan

    A novel shrouded wind-solar hybrid renewable energy and rain water harvester with an omni-directional-guide-vane (ODGV) for urban high-rise application is introduced. The ODGV surrounds the vertical axis wind turbine (VAWT) and enhances the VAWT performance by increasing the on-coming wind speed and guiding it to an optimum flow angle before it interacts with the rotor blades. An ODGV scaled model was built and tested in the laboratory. The experimental results show that the rotational speed of the VAWT increases by about 2 times. Simulations show that the installation of the ODGV increases the torque output of a single-bladed VAWT by 206% for tip speed ratio of 0.4. The result also reveals that higher positive torque can be achieved when the blade tangential force at all radial positions is optimized. In conclusion, the ODGV improves the power output of a VAWT and this integrated design promotes the installation of wind energy systems in urban areas.

  • Gang Tan

    Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of multiple variable factors including wind speed, wind direction, internal heat source and building structural thermal mass, the conventional methods for quantifying ventilation rate simply using dominant wind direction and average wind speed may not accurately describe the characteristic performance of natural ventilation. From a new point of view, the natural ventilation performance of a single room building under fluctuating wind speed condition using the Monte-Carlo simulation approach was investigated by incorporating building façade thermal mass effect. Given a same hourly turbulence intensity distribution, the wind speeds with 1 min frequency fluctuations were generated using a stochastic model, the modified GARCH model. Comparisons of natural ventilation profiles, effective ventilation rates, and air conditioning electricity use for a three-month period show statistically significant differences (for 80% confidence interval) between the new calculations and the traditional methods based on hourly average wind speed.

  • T. Lhendup , L. Aye , R. J. Fuller

    Night sky cooling is explored as an alternative to the conventional cooling technologies using fossil fuels. The night sky cooling method is based on the long wave radiation of unglazed collectors to the sky at night. An evaluation of the night sky cooling system is present for a residential building in three cities of Australia, namely Alice Springs, Darwin and Melbourne. The system comprises an unglazed flat plate solar collector integrated with borehole storage. It uses night sky radiation to reduce the temperature of the ground near to the boreholes. The system was simulated with TRNSYS, a transient simulation program. The simulation results for adequately sized systems show that night sky radiation is able to reduce the coolth storage borehole temperature and the proposed system is able to meet the cooling load of the residential building simulated in three locations. Borehole lengths of 270, 318 and 106 m are required for coolth storage with 90, 260 and 14 m2 collector area for heat rejection in Alice Springs, Darwin and Melbourne, respectively. At the 20th simulation year, the proposed system is able to achieve a system cooling coefficient of performance of 2.2 in Alice Springs, and 2.8 in Darwin and Melbourne.

  • S. Patel , K. Ram , M. Rafiuddin Ahmed

    The use of a Savonius rotor as turbine for an oscillating water column (OWC) is demonstrated. The effect of tuning the OWC using turbine duct blockage is also studied for different wave conditions. A horizontal turbine section OWC employing a Savonius rotor was tested by varying the opening of OWC exit (0%, 25%, 50%, 75% and 100%) to study the behavior and performance of the device. The OWC model was tested at water depth of 0.29 m at frequencies of 0.8, 0.9 and 1.0 Hz while the exit openings are varied. The static pressure, dynamic pressure, rotational speed of the Savonius rotor and the coefficient of power are presented as results. The OWC with exit opening of 25% showed greater performance in terms of rotational speed and CP compared to OWC with other exit opening percentages. This proves the ability of the OWC to be tuned by regulating flow in the turbine duct.

  • M. Tahbaz

    In architecture and urban design, solar energy plays an important role to save fossil energy and preserve environment. Passive or active use of this energy needs especial consideration in the preliminary stage of design to the probable shadows. This work will answer two questions: 1) How is it possible to distinguish shadow need periods during a year in a specific climate? 2) How is it possible to produce shadow in hot periods without being deprived of pleasant sunshine in cold periods? In this regard, it will introduce the usage process and opportunities of “shading mask” of Olgyay as an easy and useful graphical method in six steps. At the end, different ways of using this method in design will be discussed. Several research projects that have been done in past 30 years will support the argument as examples of this method.

  • Mi-hui Yi , Wook-jung Na , Won-hwa Hong , Gyu-yeob Jeon

    This work aims at finding pedestrian walking characteristics at U-type stairs according to the width change of stairs and appropriate spot for installing piezoelectric energy harvesting. The number of pedestrian at two kinds of stairs (one is stairs with 1.5 m in width and the other is stairs with 3 m in width) was estimated by calculating the number of steps on the stairs by a zone which is divided into 30 cm×30 cm. The result shows high density in the middle in the case of narrow stairs but traffic is concentrated on stair inside (pillar side) in stairs with large width. In conclusion, the location for installation of piezoelectric energy harvesting system should be considered differently on stairs width and the number of installation depends on total expected traffic and the expected traffic for a device.

  • Kang-guk Lee , Sung-bum Kim , Won-hwa Hong

    Recently, urban high temperature phenomenon has become a problem which results from human activities, the increase in energy consumption, and land-cover change in urban areas. As extremely hot weather caused by urban high temperature continues, demand for power is increased and results in the degradation of electricity reserves. The current trend in climate change, regardless of the summer and winter power demand, is likely to have much effect on the power demand. Thus, sensitivity to electricity consumption in urban areas due to climate change was researched. The results show that, 1) the basic unit of the sensitivity to electricity consumption in the target areas is 1.25–1.58W/(m2·°C); 2) The maximum sensitivity is recorded at around 8:00 pm in the area crowded with commercial and business area. And in the business area, electricity consumption load is even from 9:00 am to 6:00 pm.

  • Ying He , Hua-song Mao , Li Quan

    According to Chinese daylighting climate data, combined with the standard of Commission Inernationale de l’Eclairgae (CIE) general sky luminance distribution (SLD), the sky luminance distribution of typical daylighting climate zones in China was studied. Through the research on reference SLD of overcast, intermediate and clear types, the standards of clear and overcast SLD are consistent with CIE general sky, and the intermediate SLD has greater error with CIE general sky. The main types of Chinese sky luminance in different daylighting climate zones were obtained, which provide the basic data for simulation and forecast of China natural light, and provide reference for using the standard amendments of China future natural light.

  • Xiang-fei Kong , Shi-lei Lü , Ya-juan Xin , Wei Wu

    With rapid economy growth, building energy consumption in China has been gradually increased. The energy consumption and indoor environmental quality of 51 office buildings in Hainan Province, a hot and humid area, were studied through collection of verified data in site visits and field tests. The result revealed that, electricity accounted for 99.79% of the total energy consumption, natural gas 0.17%, and diesel 0.04%. The air conditioning dominated the energy use with a share of 43.18%, equipment in the particular areas 26.90%, equipment in the office rooms 11.95%, lighting system 8.67%, general service system 7.57%, and miscellaneous items 1.73%. Statistical method including six indicators obtained the energy consumption benchmark with upper limit of 98.31 kW·h/m2 and lower limit of 55.26 kW·h/m2. According to ASHRAE standard (comfortable standard) and GB/T 18883-2002 (acceptable standard), the indoor environmental quality of 51 sampled office buildings was classified into three ranks: good, normal and bad. With benchmark of building energy consumption combined with indoor environmental quality, it was found that only 3.92% of sampled buildings can be identified as the best performance buildings with low energy consumption and advanced indoor environmental quality, and the buildings classified into normal level accounted for the maximum ratio.

  • S. J. Ikhmayies , R. N. Ahmad-Bitar

    Fluorine doped tin oxide SnO2:F thin films were prepared by the spray pyrolysis (SP) technique on glass substrates by using SnCl2·2H2O as a precursor and NH4F and HF as doping compounds. A comparison between the properties of the films obtained by using the two doping compounds was performed by using I–V characteristics in the dark at room temperature, AC measurements, and transmittance. It is found that the films prepared by using HF have smaller resistivity, lower impedance and they are less capacitive than films prepared by using NH4F. In addition, these films have higher transmittance, higher optical bandgap energy and narrower Urbach tail width. These results are interesting for the use of SnO2:F as forecontact in CdS/CdTe solar cells.

  • Jun-ye Hua , Ya-ping Chen , Hua-jin Liu , Jia-feng Wu

    A simplified dual-pressure ammonia-water absorption power cycle (DPAPC-a) using low grade energy resources is presented and analyzed. This cycle uses turbine exhaust heat to distill the basic solution for desorption. The structure of the cycle is simple which comprises evaporator, turbine, regenerator (desorber), absorber, pump and throttle valves for both diluted solution and vapor. And it is of high efficiency, because the working medium has large temperature difference in evaporation and small temperature difference in absorptive condensation, which can match the sensible exothermal heat resource and the cooling water simultaneously. Orthogonal calculation was made to investigate the influence of the working concentration, the basic concentration and the circulation multiple on the cycle performance, with 85–110 °C heat resource and 20–32°C cooling water. An optimum scheme was given in the condition of 110 °C sensitive heat resource and 20 °C cooling water, with the working concentration of 0.6, basic concentration of 0.385, and circulation multiple of 5. The thermal efficiency and the power recovery efficiency are 8.06 % and 6.66%, respectively. The power recovery efficiency of the DPAPC-a is 28.8% higher than that of the steam Rankine cycle (SRC) and 12.7% higher than that of ORC (R134a) under the optimized situation.

  • Yu-lan Yang , Hui-xin Tai , Tao Shi

    Analytic hierarchy process (Group AHP) is combined with two different methods of assigning experts’ priority to weight indicators in building energy efficiency assessment. One is to assign the experts’ priority averagely, and the other is to use cluster analysis to assign experts’ priority. The results show that, 1) Different expert’s priority assigns result in great different weights of indicators in building energy efficiency assessment, therefore, the method of assigning experts’ priority should be taken into account carefully while weighting indicators of building energy efficiency assessment using Group AHP; 2) Three indicators are found to be overwhelmingly important in residential building energy efficiency assessment in the hot summer and cold winter zone in China. They are ‘Outdoor & indoor shadow’, ‘Heating & air-conditioning facilities’ and ‘Insulation of envelope’; 3) The method combining cluster analysis with Group AHP to weight indicator of building energy efficiency assessment has the advantage of finding overwhelming important indicator, whereas, some less important indicators have a tendency to be ignored. A useful reference is provided for building energy conservation including policy revision and energy efficient residential building design.

  • Jin-hua Chen , Xiu-bi Bao , Yun-lin Peng , Yu Jia

    Based on the state-of-the-art studies of solar-soil source heat pump compound system, operation patterns of solar-soil compound system were analyzed, particularly the advantages of parallel operation pattern. It is found that parallel operation pattern is better for solar-soil compound system. Furthermore, the heat balance issue of solar-soil compound system was emphatically analyzed from four aspects, which were annual analysis of heating and cooling load, the heat exchange of ground heat exchanger, capacity determination of solar-assisted heat source and heat balance calculation of solar-soil compound system. Moreover, annual rate of heat balance in a solar-soil source heat pump compound system was calculated with a case study. It is shown that the annual heat unbalance ratio is 19%, which is less than 20%. As a result, the practical solar-soil compound system can basically maintain the heat balance of soil.

  • Feng-hao Wang , Chen-chen Feng , Liang Yan , Xin-ke Wang

    Several parameter identification methods of thermal response test were evaluated through numerical and experimental study. A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test. The thermal response curve was firstly obtained through numerical calculation. Then, the accuracy of the numerical model was verified with measured data obtained through a thermal response test. Based on the numerical and experimental thermal response curves, the thermal conductivity of the soil was calculated by different parameter identification methods. The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated. Furthermore, the effects of test time, variable data quality, borehole radius, initial ground temperature, and heat injection rate were analyzed. The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius. For parameter estimation, the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.

  • Run-ping Niu , Shi-jun You

    A two-dimensional steady state model was developed and solved numerically to predict the performance of evaporative condensing regenerator. Two-dimensional parameter distributions of air, solution and refrigerant were calculated by the mathematical model. The solution content first increases and then decreases along the solution flow direction. At y/Hr=0.98 (where Hr is the height of regenerator), air humidity increases from 1.99% to 2.348% firstly and then decreases. The experimental results were used to validate mathematical model. It is indicated that the simulation results agree with experimental data well. The results not only show that the mathematical model can be used to predict the performance of regenerator, but also has great value in the design and improvement of evaporative condensing regenerator.

  • S. J. Ikhmayies , R. N. Ahmad-Bitar

    Indium doped cadmium sulfide thin films (CdS:In) were produced by the spray pyrolysis technique on glass substrates. AC measurements were used to investigate the electrical properties of the films depending on Brick-layer model for polycrystalline materials. The measurements were performed at room temperature in the dark and room light in the frequency range from 20 Hz to 1 MHz using coplanar indium electrodes. The data were analyzed by using Bode plots for the impedance Z and dielectric loss tanδ with frequency f. It is found that the impedance has no dependence on frequency in the low frequency region but has 1/f dependence in the high frequency region. One dielectric loss peak is obtained, which means the presence of a single relaxation time, and hence the films are modeled by just one RC circuit which represents the grains. This means that there is just one conduction mechanism that is responsible for the conduction in the bulk, due to electronic transport through the grains. Real values of the impedance in the low frequency region and relaxation times for treated and as-deposited films were estimated.

  • Wen-fa Tan , Li-ao Wang , Chuang Huang , Yuan-yuan Liu , J. E. Green , D. Newport , T. Green

    Washing pre-treatment of municipal solid waste incineration (MSWI) fly ash blended with shale and sludge was utilized in the manufacture of light-weight aggregates and processed to form ceramic pellets. A formula uniform design was performed to arrange the mixture ratio of the materials. The optimal mixture ratio of the materials was determined by measuring the bulk density, granule strength, and 1 h water absorption of the pellets. It is shown that the optimal mixture ratios of materials, MSWI fly ash, shale, and sludge, are 23.16%, 62.58%, and 14.25% (mass fraction), respectively. The performance testing indicators of light-weight aggregates are obtained under the optimum mixture ratio: bulk density of 613 kg/m3, granule strength of 821N, and 1 h water absorption of 11.6%, meeting 700 grade light-aggregate of GB/T 17431.2—1998 standard. The results suggest that utilization of MSWI fly ash in light-weight aggregates is an effective method and a potential means to create much more values.

  • Zhi Zhang , Bo-lin Li , Xin-yi Xiang , Chi Zhang , Hua Chai

    To enhance the nitrogen removal, a systemic monitoring of the biological and hydrological parameters of Carrousel oxidation ditch in Chongqing Jingkou Wastewater Treatment Plant was carried out to study the feasibility of simultaneous nitrification and denitrification (SND). The variation and distribution of parameters such as flow velocity, concentration of dissolved oxygen (DO) and mixed liquor suspended solids (MLSS) in oxidation ditch were monitored and analyzed, which were major control factors for SND. The results showed that, the dimensional distribution of flow velocity, DO and MLSS were affected significantly by the operation condition of the aeration wheels. With all the four aeration wheels being in operation, DO and flow velocity were higher and the mixing of MLSS was sufficient. With three aeration wheels being in operation, the flow velocity in most of the bottom areas was enough to meet the basic requirements of no deposition, and the anaerobic region and aerobic region could exist simultaneously in one oxidation ditch, which was helpful to the process of SND. According to spatial distribution characteristics of the flow velocity, DO and soluble components under optimized condition, different functional zones of biochemical reaction in the Carrousel oxidation ditch system were defined, which might contribute to the optimization control and SND of Carrousel oxidation ditch.

  • Xiao-yi Xu , Zhen-yu Jiang , Ji-hang Wang , Hong Zhu , Jun-feng Dou , H. D. Narres , D. Hofmann , E. Klumpp

    Sixteen priority polycyclic aromatic hydrocarbons (PAHs) in surface water samples were analyzed by gas chromatograph-mass spectrometer (GC-MS) to study their distribution and characterizing sources. The water samples were collected from five sites (J1-J5) in the Jialing River of Chongqing downtown area from September 2009 to August 2010. The results demonstrate that the concentration of total PAHs in three samples upstream are relatively higher than those in other two sites downstream, with average concentration of total PAHs for each site ranging from 811.5 ng/L to 1585.8 ng/L. The 2, 3 and 4-ring PAHs for sampling stations account for 13.0%, 56.6% and 28.6%, respectively, in total PAHs. There are obvious tendencies of seasonal change for PAHs concentration in surface water. The PAHs concentration in April of wet season is 1 301.6 ng/L, which is 1.3 times the lowest amount of total PAHs in August of flood season. Ratios of specific PAH compounds were used to characterize the possible pollution sources. Experimental results indicate that the PAHs in surface water samples are primarily from pyrolytic PAHs because of factories along these sites, while the direct leakage of petroleum products may be significant for two sites, Jiahua Bridge (J4) and Huanghuayuan Bridge (J5), because of the wharf boat nearby.

  • Yuan-yuan Liu , Jia-jia Wang , Xiang Lin , Li-ao Wang , Shan Zhong , Wei Yang

    To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSWI) fly ash were studied by measuring the chemical element composition, specific surface area, pore sizes, functional groups, TEM image, mineralogy and DSC-TG curves of raw and sintered fly ash specimens. The results show that MSWI fly ash particles mostly have irregular shapes and non-typical pore structure, and the supersonic treatment improves the pore structure; MSWI fly ash consists of such crystals as SiO2, CaSO4 and silica-aluminates, and some soluble salts like KCl and NaCl. During the sintering process, mineralogy changes largely and novel solid solutions are produced gradually with the rise of temperature. Therefore, the utilization of a proper thermal technology not only destructs those persistent organic toxicants but also stabilizes hazardous heavy metals in MSWI fly ash.