The flow stress behavior of Al-3.5Cu-1.5Li-0.25(Sc+Zr) alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermal-mechanical simulator. Compression tests were preformed in the temperature range of 653–773 K and in the strain rate range of 0.001–10 s−1 up to a true plastic strain of 0.7. The results indicate that the flow stress of the alloy increases with increasing strain rate at a given temperature, and decreases with increasing temperature at a given imposed strain rate. The relationship between the flow stress and the strain rate and the temperature was derived by analyzing the experimental data. The flow stress is in a hyperbolic sine relationship with the strain rate, and in an Arrhenius relationship with the temperature, which imply that the process of plastic deformation at an elevated temperature for this material is thermally activated. The flow stress of the alloy during the elevated temperature deformation can be represented by a Zener-Hollomon parameter with the inclusion of the Arrhenius term. The values of n, α and A in the analytical expressions of flow stress σ are fitted to be 5.62, 0.019 MPa−1 and 1.51×1016 s−1, respectively. The hot deformation activation energy is 240.85 kJ/mol.
Composite polymer electrolytes based on polyethylene oxide(PEO) were prepared by using LiClO4 as doping salt and silane-modified SiO2 as filler. SiO2 was formed in-situ in (PEO)8LiClO4 matrix by the hydrolysis and condensation reaction of Si(OC4H9)4. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. Compared with the crystallinity of the unmodified SiO2 as inert filler, that of composite polymer electrolytes is decreased. The results show that silane-modified SiO2 particles are uniformly dispersed in (PEO)8LiClO4 composite polymer electrolyte film and the addition of silane-modified SiO2 increases the ionic conductivity of the (PEO)8LiClO4 more noticeably. When the mass fraction of SiO2 is about 10%, the conductivity of (PEO)8LiClO4-modified SiO2 attains a maximum value of 4.8×10−5 S·cm−1.
MoSi2 powders were fabricated respectively by mechanical alloying technique and sintering at different temperatures to prepare materials with different relative densities. The relative oxidation behavior of all MoSi2 materials at 1 473 K was investigated by TGA, SEM and XRD. The results show that the “pesting” is not found in all materials after being oxidized for 480 h. The density has no essential relation to the “pesting”. The oxidation curve of specimens with lower density shows two-step oxidation kinetics. Both the first stage (0–1 h) and the second stage (1–480 h) nearly obey linear kinetics, but the oxidation rates are obviously different. The oxidation kinetics of MoSi2 with higher relative density nearly follows parabolic law. The mass gains of MoSi2 with the lowest relative density (78.6%) and the highest relative density (94.8%) are increased by 10.390 and 0.135 mg/cm2, respectively. The oxide scale of materials with lower densities is non-protective and makes the oxygen diffusion easy. A dense scale in the material with higher density is formed, which acts as a diffusion barrier to the oxygen atoms to penetrate into the matrix, showing much better high temperature oxidation resistance. The phases distribution of oxidation scale from the outside to the inside is SiO2→Mo5Si3→MoSi2.
Diglycidyl-4, 5-epoxycyclohexane-1, 2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-85/MeTHPA resin were prepared. The structural characteristics and properties of PU-modified TDE-85/MeTHPA resin were investigated by Fourier transform infrared(FTIR) spectrum, emission scanning electron microscopy(SEM) and thermogravimetry(TG). The results indicate that epoxy polymer network (I) and polyurethane polymer network (II) of the modified resin can be obtained and the networks (I) and (II) interpenetrate and tangle highly each other at the phase interface. The micro morphology presents heterogeneous structure. The integrative properties of PU-modified TDE-85/MeTHPA epoxy resin are improved obviously. The PU-modified TDE-85/MeTHPA resin’s tensile strength reaches 69.39 MPa, the impact strength reaches 23.56 kJ/m, the temperature for the system to lose 1% mass (t1%) is 300 °C, and that for the system to lose 50% mass (t50%) is 378 °C. Compared with those of TDE-85/MeTHPA resin, the tensile strength, impact strength, t1% and t50% of the PU-modified resin increases by 48%, 115%, 30 °C, 11 °C, respectively. The PU-modified TDE-85/MeTHPA resin has the structure characteristics and properties of interpenetrating polymer networks.
The movement mode of the atomizer is a very important parameter during spray deposition process, which has direct influence on the size and surface texture of the billets. To resolve the problem of manufacturing large size billets, a method of spray deposition by the atomizer with off-center swing was put forward. The atomizer was driven by the alternating current servomotor to swing within 7° at varying speed. The influence of the atomizer parameters, such as translation of the atomizer, swing angle of the atomizer, substrate falling speed and spraying pressure, on the spray deposition was studied. The optimized parameters of the spray deposition process were obtained. The results show that the large size billets with uniform surface quality can be made through adjusting swing frequency and angle of the atomizer, offset distance of the atomizer and inclined angle of the substrate; the valid spray area will decrease and the dimension of top surface will reduce when pressure is less than 0.4 MPa within certain spray distance; meantime, the moving time and cooling time of the droplets are extended, which will lead to loose structure and bad densification. When the pressure, the swing angle and the eccentric offset of the atomization equal 0.5 MPa, 7° and 60 mm, respectively, large size billets with fine texture and diameter of 500 mm can be produced.
The formation and the growth of Cu-Sn intermetallic compound (IMC) layer at the interface between Sn-3.0Ag-0.5Cu-xCe solder and Cu substrate during soldering and aging were studied. The results show that Cu6Sn5 IMC is observed at the interface between solder and Cu substrate in all conditions. After aging for 120 h, the Cu3Sn IMC is then obtained. With increasing aging time, the scalloped Cu6Sn5 structure changes to a plate structure. The Cu3Sn film always forms with a relatively planar interface. By adding a small amount of the rare earth element Ce (only 0.1%, mass fraction) into the Sn-3.0Ag-0.5Cu solder alloy, the growth rate of the Cu-Sn IMC at the interface of solder alloy system is decreased. When the time exponent is approximately 0.5, the growth of the IMC layer is mainly controlled by a diffusion over the studied time range.
Magnesium hydroxide(MH), which is commonly used as a halogen-free flame retardant filler in composite materials, was modified by silanization reaction with γ-aminopropyltriethoxysilane (γ-APS) in aqueous solution at different pH values (pH range from 8.0 to 12.0). The surface properties of grafted γ-APS on MH surface as a function of solution pH value were studied using elemental analysis, Fourier transform infrared spectroscopy and zeta potential measurement. The results show that hydrolysis and condensation of γ-APS are activated in alkaline solution and lead to multilayer adsorption of γ-APS molecules on the surface of MH. The type of adsorption orientation of γ-APS on MH surface is a function of coverage density that is altered by changing solution pH value. At low coverage density (e.g. 55 nm−2), γ-APS molecules are preferentially adsorbed to the surface with the silicon moiety towards the surface, and increasing coverage density (e.g. 90 nm−2) leads to parallel orientation. At an even higher coverage density (e.g. 115 nm−2), γ-APS molecules bond to the surface with the amino moiety towards the surface.
Using butyl acrylate(BA), methyl methacrylate(MMA), methacrylic acid(MAA) and mixed emulsifier as raw materials, the self-crosslinked emulsion was prepared via pre-emulsified and semi-continuous seeded emulsion polymerization technology in the presence of N-hydroxymethyl acrylamide and poly solidum maleate. The influence of mass ratio of BA to MMA, amount of N-hydroxymethyl acrylamide and poly solidum maleate on the rheological properties of the self-crosslinked emulsion was studied. Possible cross-linked mechanism of self-crosslinked monomer was investigated. And the relationship between emulsion viscosity and shear rate was investigated. The results show that the self-crosslinked acrylate emulsion with high elasticity can be synthesized when the mass fractions of BA is 60%, MMA is 40%, and added amount of N-hydroxymethyl acrylamide is 2.5%–3.0% and added amount of poly solidum maleate is 0.3%–0.4%. The self-crosslinkage process of N-hydroxymethyl acrylamide involves two steps. One is copolymerization of N-hydroxymethyl acrylamide and acrylate, the other is cross-linkage among polymer molecules via condensation reaction of methylol. The emulsion is of rheological properties of pseudo-plastic fluid and belongs to non-Newtonian fluid.
Novel transition metal complexes of bis(diarylsubstitutedthiophosphoryl)imines ligand derived from O,O-di(p-methoxylphenyl)thiophosphoryl chloride and O,O-di-(p-methoxylphenyl)thiophosphoryl amine with Cu(II), Co(II), Ni(II), Fe(II) and Mn(II) were synthesized. The formation mechanism of complexes and their stereochemistry structures were investigated according to elemental analysis, infrared spectra and 31P-nuclear magnetic resonance spectra. The extractions of the ligand for different divalent metal ions, such as Zn(II), Cd(II), Cu(II), Ni(II), Fe(II), Sn(II), Mn(II), Pd(II), Hg(II) and Fe(III), were investigated in sulphate solution, respectively. The results show the metal atom is coordinated by 4 sulfur atoms in a square-planar fashion, and the titled compound has not only powerful ability to coordinate with cadmium from aqueous solution with a high extractive rate about 61.20% and a relatively weak complexation for other divalent metals with the extractive rate from 2.46% to 36.66%, but also a good selectivity to Fe(III).
A new complex-precursor method was proposed to prepare nanometer-sized BaTiO3 powder. Firstly, [Ti2O(O2)2(ta)2]4− complex ions were prepared by the reaction of H2O2, Ti4+ and ta3− (ta=[C6H6O6N]3−) with a desirable amount of surface active agent, and then the Ba2[Ti2O(O2)2(ta)2]·2H2O precursor was obtained by reaction between [Ti2O(O2)2(ta)2]4− and Ba2+. Finally, the precursor was annealed at 800 °C for 2 h to obtain BaTiO3 powder. The morphology, the particle size distribution, the purity and the molar ratio of Ba to Ti of BaTiO3 powder were investigated systematically by TEM, XRD, IR, Raman and chemical analysis, respectively. The results show that the BaTiO3 powders with the grain size of about 40 nm have a tetragonal crystalline structure at room temperature and a spherical morphology.
Split Hopkinson Pressure Bar(SHPB) test was simulated to investigate the distribution of the first principal stress and damage zone of specimen subjected to dynamic compressive load. Numerical models of plate-type specimen containing cracks with inclined angles of 0°, 45° and 90° were also established to investigate the crack propagation and damage evolution under dynamic loading. The results show that the simulation results are in accordance with the failure patterns of specimens in experimental test. The interactions between stress wave and crack with different inclined angles are different; damage usually appears around the crack tips firstly; and then more damage zones develop away from the foregoing damage zone after a period of energy accumulation; eventually, the damage zones run through the specimen in the direction of applied loading and split the specimen into pieces.
The electromagnetic emission(EME) induced from the rock containing piezoelectric materials was investigated under both static stress and exploding stress wave in the view of piezoelectric effect. The results show that the intensity of the EME induced from the rock under static stress increases with increasing stress level and loading rate; the relationship between the amplitude of the EME from the rock under different modes of stress wave and elastic parameters and propagation distance was presented. The intensity of the EME relates not only to the strength and elastic moduli of rock masses, but also to the initial damage of the rock. The intensity of EME induced by stress wave reaches the highest at the explosion-center and attenuates with the propagation distance. The intensity of EME increases with increasing the elastic modulus and decreases with increasing initial damage. The results are in good agreement with the experimental results.
In order to investigate the influence of complex conditions of in-situ surrounding rocks on the settlement behavior of nubbly coal mine waste subjected to high gravity pressure, four kinds of loading chambers made of different similar materials with different elastic moduli in experiments were used to simulate the deformation features of in-site rocks, including soft, moderate hardness, hard and extra-hard rocks. The results show that all the settlement-axial load (or axial strain-stress) curves obtained under four different surrounding rock conditions present power-exponential function feature. The final settlement of coal mine waste under the same axial load is closely related to the lumpiness gradations and the deformation behavior of chamber materials used to simulate behaviors of different in-situ surrounding rocks. In the same surrounding rock condition, the final settlement under the same maximum axial load decreases with the decrease of the proportion of larger gradation of coal mine waste. While for the same lumpiness gradation case, the settlement increases with the decrease of elastic modulus of simulated surrounding rocks and the lateral pressure induced by axial load increases with the increase of elastic modulus of loading chambers that are used to simulate different surrounding rocks. The test results also reveal that both the compaction curve and lateral pressure curve show a three-stage behavior, and the duration of each stage, which is closely related to gradations and the deformation feature of loading chamber materials, decreases with the increase of the proportion of the small size of coal mine waste and elastic modulus of the simulated rock materials.
With the help of similar material simulation test, time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similarity theory, a two-dimensional similar simulation test-bed was constructed. The stress and displacement that change along with the advance of mining were acquired and analyzed automatically by data system. The processes of continuous mining of ore-block in 5 intervals and artificial induced caving of roof were simulated. The results of the test show that ore body remained as safety roof in thickness of 15 m guarantees the safe advance of stoping work face. Caving of safety roof puts in practice at the first two mining intervals when the third interval of continuous mining is finished, and one interval as the safety distance should be kept all the time between stopping and caving. While mining in the last interval, pre-slotting should be implemented first of all, and the roof of the last two mining intervals is caved simultaneously. Only this kind of time series system can be an efficient and safe way for induced caving of roof in continuous mining.
A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based combustible mixture gas. In the code, Young’s technique was employed to track the interface between the explosion products and air, and combustible function model was adopted to simulate ignition process. The code was employed to study explosion flow field inside and outside the duct and to obtain peak pressures in different boundary conditions and ignition positions. Numerical results suggest that during the propagation in a duct, for point initiation, the curvature of spherical wave front gradually decreases and evolves into plane wave. Due to the multiple reflections on the duct wall, multi-peak values appear on pressure—time curve, and peak pressure strongly relies on the duct boundary conditions and ignition position. When explosive wave reaches the exit of the duct, explosion products expand outward and forms shock wave in air. Multiple rarefaction waves also occur and propagate upstream along the duct to decrease the pressure in the duct. The results are in agreement with one-dimensional isentropic gas flow theory of the explosion products, and indicate that the ignition model and multi-material interface treatment method are feasible.
The hydrophobic aggregation of ultrafine kaolinite in cationic surfactant suspension was investigated by sedimentation test, zeta potential measurement and SEM observation. SEM images reveal that kaolinite particles show the self-aggregation of edge-face in acidic media, the aggregation of edge-face and edge-edge in neutral media, and the dispersion in alkaline media due to electrostatic repulsion. In the presence of the dodecylammonium acetate cationic surfactant and in neutral and alkaline suspension, the hydrophobic aggregation of face-face is demonstrated. The zeta potential of kaolinite increases with increasing the concentration of cationic surfactant. The small and loose aggregation at a low concentration but big and tight aggregation at a high concentration is presented. At pH=7 alkyl quarterly amine salt CTAB has the best hydrophobic aggregation among three cationic surfactants, namely, dodecylammonium acetate, alkyl quarterly amine salts 1227 and CTAB.
The flocculation behavior of ultrafine kaolinite suspension was investigated through settlement tests and FTIR method was employed to probe the adsorption mechanism of flocculant on kaolinite. The results show that the maximum settling rate of kaolinite occurs at pH value of 3.33, which is close to the point of zero charge(PZC) of kaolinite (3.5). This result is in good agreement with the double electric layer theory. Kaolinite suspension reaches the largest settling rate at a low concentration of 39 g/t for poly diallyl-dimethyl-ammonium chloride(PDADMA) flocculant, whereas for polyacrylamides(PAM) the dosage is required to be 500 g/t. When macromolecule polymer is adsorbed on surface, kaolinite particles may be flocculant due to the bridging effect. There are cation flocculant characteristic bands on the spectrum of kaolinite but no obvious shifting. Thus, the adsorption of poly diallyl-dimethyl-ammonium chloride on kaolinite surface is physical adsorption.
Tertiary amine was synthesized from fatty amine and formaldehyde. And then the synthesized tertiary amine was used to react with benzyl chloride to synthesize hexadecyl dimethyl benzyl ammonium chloride (1627) at ambient pressure. Using the synthesized 1627 as collector, the flotation properties of diaspore and kaolinite were investigated by single mineral and mixed mineral test. The flotation mechanism of diaspore, kaolinite and 1627 was discussed based on FTIR spectra. The results show that the mass ratio of aluminum to silicate achieves 15.02 and the recovery of alumina in concentrate is 43.07% using 1627 as a collector. The 1627 is found to be a more effective and a promising collector for reverse flotation to remove aluminum-silicate minerals from bauxite.
A retrofitted electro-hydraulic proportional system for hydraulic excavator was introduced firstly. According to the principle and characteristic of load independent flow distribution(LUDV) system, taking boom hydraulic system as an example and ignoring the leakage of hydraulic cylinder and the mass of oil in it, a force equilibrium equation and a continuous equation of hydraulic cylinder were set up. Based on the flow equation of electro-hydraulic proportional valve, the pressure passing through the valve and the difference of pressure were tested and analyzed. The results show that the difference of pressure does not change with load, and it approximates to 2.0 MPa. And then, assume the flow across the valve is directly proportional to spool displacement and is not influenced by load, a simplified model of electro-hydraulic system was put forward. At the same time, by analyzing the structure and load-bearing of boom instrument, and combining moment equivalent equation of manipulator with rotating law, the estimation methods and equations for such parameters as equivalent mass and bearing force of hydraulic cylinder were set up. Finally, the step response of flow of boom cylinder was tested when the electro-hydraulic proportional valve was controlled by the step current. Based on the experiment curve, the flow gain coefficient of valve is identified as 2.825 × 10−4 m3/(s·A) and the model is verified.
As a new ionic polymer-metal composite(IPMC) for artificial muscle, the mechanical performance parameters and the relationship between the deformation and the electrical parameters of the IPMC were studied. With the digital speckle correlation method, the constitutive relationship of the IPMC was confirmed. With non-contact photography measurement, a cantilever setup was designed to confirm the relationship between the deformation of the IPMC film and the applied voltage. The relationship curve of tip displacement of the IPMC cantilever setup vs the voltage was achieved. The results indicate that the IPMC is isotropic, its elastic modulus is 232 MPa and Poisson ratio is 0.163. The curve achieved from the test of the tip displacement of the IPMC cantilever setup shows that the tip displacement reaches the maximum when the stimulated voltage is 5 V. And the tip displacement descends largely when the frequency of the applied voltage is between 30 mHz and 100 mHz.
HashQuery, a Hash-area-based data dissemination protocol, was designed in wireless sensor networks. Using a Hash function which uses time as the key, both mobile sinks and sensors can determine the same Hash area. The sensors can send the information about the events that they monitor to the Hash area and the mobile sinks need only to query that area instead of flooding among the whole network, and thus much energy can be saved. In addition, the location of the Hash area changes over time so as to balance the energy consumption in the whole network. Theoretical analysis shows that the proposed protocol can be energy-efficient and simulation studies further show that when there are 5 sources and 5 sinks in the network, it can save at least 50% energy compared with the existing two-tier data dissemination(TTDD) protocol, especially in large-scale wireless sensor networks.
Based on the physical meaning of sensitivity, a new finite element(FE) model updating method was proposed. In this method, a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was established and updated by modifying some design parameters. To further validate the updated FE model, the analytical stress-time histories responses of main members induced by a moving train were compared with the measured ones. The results show that the relative error of maximum stress is 2.49% and the minimum relative coefficient of analytical stress—time histories responses is 0.793. The updated model has a good agreement between the calculated data and the tested data, and provides a current baseline FE model for long-term health monitoring and condition assessment of the NYRB. At the same time, the model is validated by stress—time histories responses to be feasible and practical for railway steel bridge model updating.
Based on the characteristic that the potential sliding surfaces of rock slope are commonly in the shape of either line or fold line, analysis thought of conventional pile foundation in the flat ground under complex load condition was applied and the upper-bound theorem of limit analysis was used to compute thrust of rock layers with all possible distribution shapes. The interaction of slope and pile was considered design load in terms of slope thrust, and the finite difference method was derived to calculate inner-force and displacement of bridge pile foundation in rock slope under complex load condition. The result of example shows that the distribution model of slope thrust has certain impact on displacement and inner-force of bridge pile foundation. The maximum displacement growth rate reaches 54% and the maximum moment and shear growth rates reach only 15% and 20%, respectively, but the trends of inner-force and displacement of bridge pile foundation are basically the same as those of the conventional pile foundation in the flat ground. When the piles bear the same level lateral thrust, the distribution shapes of slope thrust have different influence on inner-force of pile foundation, especially the rectangle distribution, and the triangle thrust has the smallest displacement and inner-force of pile foundation.
An innovative approach to increase structural survivability of concrete and maintain structural durability of concrete was developed in case of earthquakes and typhoons. This approach takes advantage of the superelastic effect of shape memory alloy(SMA) and the cohering characteristic of repairing adhesive. These SMA wires and brittle fibers containing adhesives were embedded into concrete beams during concrete casting to form smart reinforced concrete beams. The self-repairing capacity of smart concrete beams was investigated by three-point bending tests. The experimental results show that SMA wires add self-restoration capacity, the concrete beams recover almost completely after incurring an extremely large deflection and the cracks are closed almost completely by the recovery forces of SMA wires. The number or areas of SMA wires has no influence on the tendency of deformation during loading and the tendency of reversion by the superelasticity. The adhesives released from the broken-open fibers fill voids and cracks. The repaired damage enables continued function and prevents further degradation.
The effects of concrete’s time-variant elastic modulus, casting structural components, assembling temporary shoring framework system, and shock by operating construction equipment on dynamic behavior of the reinforced concrete frame structure during construction were investigated. The dynamic tests of an eight-storey reinforced concrete frame structure during full-scaled stages of the sixth storey construction cycle were carried out by ambient vibration. Natural frequencies, corresponding mode shapes and damping ratio were determined by power spectrum processing the tested signal data in frequency domain. The changes of frequencies, mode shapes and damping ratios at different construction stages were given. The results show that natural frequencies and modal damping ratios reach the maximum at stage of casting fresh concrete, especially for higher modes. Modal damping ratios at each construction stage are less than 5% of those during usage.
Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation, load level, reinforcing ratio and structural type on long term behavior of SCC were investigated. Under the same environmental conditions, the shrinkage—time curve of self-compacting concrete beam is very similar to that of normal concrete beam. For both self-compacting reinforced concrete beams and normal reinforced concrete beams, the rate of shrinkage at early stages is higher, the shrinkage strain at 2 months is about 60% of the maximum value at one year. The shrinkage strain of self-compacting reinforced concrete beam after one year is about 450×10−6. Creep deflection of self-compacting reinforced concrete beam decreases as the tensile reinforcing ratio increases. The deflection creep coefficient of self-compacting reinforced concrete beam after one and a half year is about 1.6, which is very close to that of normal reinforced concrete beams cast with vibration. Extra cautions considering shrinkage and creep behavior are not needed for the use of SCC in engineering practices.