Microwave-assisted preparation of Z scheme heterojunction by anchoring ZnFe2O4 on tubular-like g-C3N4 for peroxymonosulfate activation towards levofloxacin degradation
Peng-da Han, Guo-hua Dong, Xin-jia Zhang, Dong-feng Chai, Ting Su, Zhuan-fang Zhang, Ming Zhao, Jin-long Li, Wen-zhi Zhang
Microwave-assisted preparation of Z scheme heterojunction by anchoring ZnFe2O4 on tubular-like g-C3N4 for peroxymonosulfate activation towards levofloxacin degradation
It is still challenging for exploring high-active photocatalysts to efficiently remove Levofloxacin (LFX) by activating peroxymonosulfate (PMS). Herein, we constructed a novel Z scheme ZnFe2O4/g-C3N4/CQDs (ZCC) heterojunction by anchoring ZnFe2O4 on tubular-like g-C3N4 induced by CQDs (denoted as CNC) using microwave-assisted thermal methods. The ZCC exhibits the highest photocatalytic activity in activating PMS for LFX degradation, endowing a removal rate ∼95.3%, which is 4.8 and 7.3 times higher than that of pure ZnFe2O4 (19.8%) and g-C3N4 (13.1%), separately. The enhanced photocatalytic activity of ZCC can be attributed to the distinctive morphology of CNC, enhanced light response, increased specific surface area and abundant pore structure. Besides, the formed Z scheme heterojunction and CQDs acting as a transmission bridge of the photogenerated charges (e− and h+) can accelerate transfer and inhibit recombination of e− and h+. Radical capture experiments and electron spin resonance (ESR) measurements revealed that SO4 •− and O2 •− play a predominant role in degradation process of LFX. Liquid chromatography-mass spectrometry (LC-MS) was applied to identify intermediates and propose feasible degradation pathways of LFX. In conclusion, this study presents a promising strategy for regulating the photocatalytic activity of g-C3N4 by simultaneously integrating CQDs induction and Z scheme heterojunction construction.
[[1]] |
|
[[2]] |
|
[[3]] |
|
[[4]] |
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
ZHONG Yi-wen, SHIH K, DIAO Zeng-hui, et al., Peroxymonosulfate activation through
|
[[9]] |
|
[[10]] |
|
[[11]] |
|
[[12]] |
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
|
[[20]] |
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
|
[[32]] |
|
[[33]] |
|
[[34]] |
|
[[35]] |
|
[[36]] |
|
[[37]] |
|
[[38]] |
|
[[39]] |
|
[[40]] |
|
[[41]] |
|
[[42]] |
|
[[43]] |
|
[[44]] |
|
[[45]] |
|
[[46]] |
|
[[47]] |
|
[[48]] |
|
[[49]] |
|
[[50]] |
|
[[51]] |
|
[[52]] |
|
[[53]] |
|
[[54]] |
|
[[55]] |
|
[[56]] |
|
[[57]] |
|
[[58]] |
|
[[59]] |
|
[[60]] |
|
/
〈 |
|
〉 |