Modification of NASICON electrolyte in solid sodium-ion batteries—A short review

Si-hao Wu, Hai-qing Yu, Chen-yang Hu, Yu Fu, Fu-liang Chen, Wei-jie Li

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4510-4535.

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4510-4535. DOI: 10.1007/s11771-024-5847-5
Article

Modification of NASICON electrolyte in solid sodium-ion batteries—A short review

Author information +
History +

Abstract

In recent years, the development and research of electrochemical energy storage systems that can efficiently transform chemical energy into electrical energy with a long service life have become a key area of study. Sodium-ion batteries, leveraging their chemical similarity to lithium-ion batteries, along with their abundant resources and low cost, are seen as a viable alternative to lithium-ion batteries. Additionally, all-solid-state sodium-ion batteries have drawn significant attention due to safety considerations. Among the solid electrolytes for all-solid-state sodium-ion batteries, the NASICON solid-state electrolyte emerges as one of the most promising choices for sodium battery solid electrolytes. However, to date, there has not been a comprehensive review summarizing the existing problems of NASICON electrolyte materials and the corresponding specific modification methods. This review simply summarizes the present issues of NASICON for all-solid-state sodium-ion batteries, such as, the low ionic conductivity, the poor interface stability and compatibility, and the dendrite formation. Then, the corresponding solutions to address these issues are discussed, including the ion doping, the interface modification, the sintering parameters optimization, and the composite electrolytes regulation. Finally, the perspectives of NASICON solid-state electrolyte are discussed.

Cite this article

Download citation ▾
Si-hao Wu, Hai-qing Yu, Chen-yang Hu, Yu Fu, Fu-liang Chen, Wei-jie Li. Modification of NASICON electrolyte in solid sodium-ion batteries—A short review. Journal of Central South University, 2025, 31(12): 4510‒4535 https://doi.org/10.1007/s11771-024-5847-5

References

[[1]]
Hu Z-w, Liu L-y, Wang X, et al.. Current progress of anode-free rechargeable sodium metal batteries: Origin, challenges, strategies, and perspectives [J]. Advanced Functional Materials, 2024, 34(22): 2313823.
CrossRef Google scholar
[[2]]
Carbonate Lithium Industry Network. [N/OL] http://tsl.100ppi.com.
[[3]]
Li W-j, Han C, Gu Q-f, et al.. Three-dimensional electronic network assisted by TiN conductive pillars and chemical adsorption to boost the electrochemical performance of red phosphorus [J]. ACS Nano, 2020, 14(4): 4609-4617.
CrossRef Google scholar
[[4]]
Li W-j, Han C, Wang W-l, et al.. Commercial prospects of existing cathode materials for sodium ion storage [J]. Advanced Energy Materials, 2017, 7(24): 1700274.
CrossRef Google scholar
[[5]]
Li W-j, Han C, Wang W-l, et al.. Stress distortion restraint to boost the sodium ion storage performance of a novel binary hexacyanoferrate [J]. Advanced Energy Materials, 2020, 10(4): 1903006.
CrossRef Google scholar
[[6]]
Wang F, Jiang Z-m, Zhang Y-y, et al.. Revitalizing sodium-ion batteries via controllable microstructures and advanced electrolytes for hard carbon [J]. eScience, 2024, 4(3): 100181.
CrossRef Google scholar
[[7]]
Cao X-x, Zhou J, Pan A-q, et al.. Research progress of phosphate cathode materials for sodium ion batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 24-49
[[8]]
Wen C-jian. Composition, structure and conductivity of NASICON Na3Zr2Si2PO12 ceramic electrolyte [D], 2023 Changsha Central South University (in Chinese)
[[9]]
Wang S. Construction and electrochemical properties of sodium ferric vanadium phosphate as anode material for sodium ion batteries [D], 2022 Changsha Central South University (in Chinese)
[[10]]
Xu L-q, Li J-y, Liu C, et al.. Research progress in inorganic solid-state electrolytes for sodium-ion batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 75-82
[[11]]
Anantharamulu N, Koteswara Rao K, Rambabu G, et al.. A wide-ranging review on Nasicon type materials [J]. Journal of Materials Science, 2011, 46(9): 2821-2837.
CrossRef Google scholar
[[12]]
Goodenough J B, Hong H Y P, Kafalas J A. Fast Na+-ion transport in skeleton structures [J]. Materials Research Bulletin, 1976, 11(2): 203-220.
CrossRef Google scholar
[[13]]
Hong H Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12 [J]. Materials Research Bulletin, 1976, 11(2): 173-182.
CrossRef Google scholar
[[14]]
Hua Z-s, Feng X-j, Wang X-r, et al.. The effect of ion doping on the electrochemical properties of NASICON type compounds [J]. J Chin Ceram Soc, 2017, 45(6): 756-764
[[15]]
Deng Y, Eames C, Nguyen L H B, et al.. Crystal structures, local atomic environments, and ion diffusion mechanisms of scandium-substituted sodium superionic conductor (NASICON) solid electrolytes [J]. Chemistry of Materials, 2018, 30(8): 2618-2630.
CrossRef Google scholar
[[16]]
Jolley A G, Taylor D D, Schreiber N J, et al.. Structural investigation of monoclinic-rhombohedral phase transition in Na3Zr2Si2PO12 and doped NASICON [J]. J Am Ceram Soc, 2015, 98(9): 2902-2907.
CrossRef Google scholar
[[17]]
Hull S. Superionics: Crystal structures and conduction processes [J]. Reports on Progress in Physics, 2004, 67(7): 1233-1314.
CrossRef Google scholar
[[18]]
Liu G-z, Yang J, Wu J-h, et al.. Inorganic sodium solid electrolytes: Structure design, interface engineering and application [J]. Advanced Materials, 2024, 36(37): 2311475.
CrossRef Google scholar
[[19]]
He X-f, Zhu Y-z, Mo Y-fei. Origin of fast ion diffusion in super-ionic conductors [J]. Nature Communications, 2017, 8: 15893.
CrossRef Google scholar
[[20]]
Zhang Z, Zou Z, Kaup K. Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes [J]. Adv. Energy Mater, 2019, 9: 1902373.
CrossRef Google scholar
[[21]]
Wang H, Zhao G-f, Wang S-m, et al.. Enhanced ionic conductivity of a Na3Zr2Si2PO12 solid electrolyte with Na2SiO3 obtained by liquid phase sintering for solid-state Na+ batteries [J]. Nanoscale, 2022, 14(3): 823-832.
CrossRef Google scholar
[[22]]
Park H, Jung K, Nezafati M, et al.. Sodium ion diffusion in nasicon (Na3Zr2Si2PO12) solid electrolytes: Effects of excess sodium [J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27814-27824.
CrossRef Google scholar
[[23]]
Li C, Li R, Liu K-n, et al.. NaSICON: A promising solid electrolyte for solid-state sodium batteries [J]. Interdisciplinary Materials, 2022, 1(3): 396-416.
CrossRef Google scholar
[[24]]
Lu H-y, Li W-jie. The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries [J]. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334.
CrossRef Google scholar
[[25]]
Zhou C-t, Bag S, Thangadurai V. Engineering materials for progressive all-solid-state Na batteries [J]. ACS Energy Letters, 2018, 3(9): 2181-2198.
CrossRef Google scholar
[[26]]
Ma Q-l, Guin M, Naqash S, et al.. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors [J]. Chemistry of Materials, 2016, 28(13): 4821-4828.
CrossRef Google scholar
[[27]]
Oh J A S, He L, Plewa A, et al.. Composite NASICON (Na3Zr2Si2PO12) solid-state electrolyte with enhanced Na+ ionic conductivity: Effect of liquid phase sintering [J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40125-40133.
CrossRef Google scholar
[[28]]
Fu H-y, Yin Q-y, Huang Y, et al.. Reducing interfacial resistance by Na-SiO2 composite anode for NASICON-based solid-state sodium battery [J]. ACS Materials Letters, 2020, 2(2): 127-132.
CrossRef Google scholar
[[29]]
Ma Q-l, Tietz F. Solid-state electrolyte materials for sodium batteries: Towards practical applications [J]. ChemElectroChem, 2020, 7(13): 2693-2713.
CrossRef Google scholar
[[30]]
Xing Y-zhi. Research on NASICON solid electrolyte of sodium ion Battery [D], 2022 Tianjin Tianjin University (in Chinese)
[[31]]
Cheng Z, Liu M, Ganapathy S, et al.. Revealing the impact of space-charge layers on the Li-ion transport in all-solid-state batteries [J]. Joule, 2020, 4(6): 1311-1323.
CrossRef Google scholar
[[32]]
Cai Shen. NASICON electrolyte interface optimization and its application in solid state sodium batteries [D], 2022 Tangshan North China University of Science and Technology (in Chniese)
[[33]]
Su J-w, Liu L-m, Zhou X-l, et al.. Research Progress of NASICON type sodium ion conductor solid electrolyte [J]. Journal of the Chinese Ceramics, 2023, 51(6): 1611-1625
[[34]]
Tian H Q. Study on synthesis and electrochemical properties of sodium ion solid electrolyte [D], 2022 Tangshan North China University of Science and Technology (in Chinese)
[[35]]
Li F-p, Hou M-j, Zhao L-q, et al.. Electrolyte and interface engineering for solid-state sodium batteries [J]. Energy Storage Materials, 2024, 65: 103181.
CrossRef Google scholar
[[36]]
TAKAHASHI T, KUWABARA K, SHIBATA M. Solid-state ionics -conductivities of Na+ ion conductors based on NASICON [J]. Solid State Ionics, 1(3, 4): 163–175. DOI: 1016/0167-2738(80)90001-6.
[[37]]
Shen L, Yang J, Liu G, et al.. High ionic conductivity and dendrite-resistant NASICON solid electrolyte for all-solidstate sodium batteries [J]. Materials Today Energy, 2021, 20: 100691.
CrossRef Google scholar
[[38]]
BENNOUNA L, ARSALANE S, BROCHU R. Spécificités des ions NbIV et MoIVdans les monophosphates de type Nasicon [J]. Journal of Solid State Chemistry, 1(114): 224–229.
[[39]]
Jolley A G, Cohn G, Hitz G T, et al.. Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12 [J]. Ionics, 2015, 21(11): 3031-3038.
CrossRef Google scholar
[[40]]
Chakir M, El Jazouli A, De Waal D. Synthesis, crystal structure and spectroscopy properties of Na3AZr(PO4)3 (A=Mg, Ni) and Li2.6Na0.4NiZr(PO4)3 phosphates [J]. Journal of Solid State Chemistry, 2006, 179(6): 1883-1891.
CrossRef Google scholar
[[41]]
Ma C, Wang L-w, Zhang Y-y, et al.. Mixed-potential type triethylamine sensor based on NASICON utilizing SmMO3 (M=Al, Cr, Co) sensing electrodes [J]. Sensors and Actuators B: Chemical, 2019, 284: 110-117.
CrossRef Google scholar
[[42]]
Bonizzoni S, Ferrara C, Berbenni V, et al.. NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries [J]. Physical Chemistry Chemical Physics, 2019, 21(11): 6142-6149.
CrossRef Google scholar
[[43]]
Maldonado-Manso P, Aranda M A G, Bruque S, et al.. Nominal vs. actual stoichiometries in Al-doped NASICONs: A study of the Na1.4Al0.4M1.6(PO4)3 (M=Ge, Sn, Ti, Hf, Zr) family [J]. Solid State Ionics, 2005, 176(1718): 1613-1625.
CrossRef Google scholar
[[44]]
Chen D, Luo F, Zhou W-c, et al.. Influence of Nb5+, Ti4+, Y3+ and Zn2+ doped Na3Zr2Si2PO12 solid electrolyte on its conductivity [J]. Journal of Alloys and Compounds, 2018, 757: 348-355.
CrossRef Google scholar
[[45]]
Ran L-b, Baktash A, Li M, et al.. Sc, Ge co-doping NASICON boosts solid-state sodium ion batteries’ performance [J]. Energy Storage Materials, 2021, 40: 282-291.
CrossRef Google scholar
[[46]]
Aatiq A, Bakri R, Sakulich A R. Preparation and crystal structure of Sb1.5In0.5In (PO4)3 [J]. Powder Diffraction, 2008, 23(3): 232-240.
CrossRef Google scholar
[[47]]
Bykov D M, Konings R J M, Apostolidis C, et al.. Synthesis and investigation of neptunium zirconium phosphate, a member of the NZP family: Crystal structure, thermal behaviour and Mössbauer spectroscopy studies [J]. Dalton Transactions, 2017, 46(35): 11626-11635.
CrossRef Google scholar
[[48]]
DEDELMAS C, VIALA J C, OLAZCUAGA R, et al. Ioni conductivity in Nasicontype phases Na1+xZr2−xLx(PO4)3 (L= Cr, In, Yb) [J] 4(3): 209–214.
[[49]]
Miyajima Y. Ionic conductivity of NASICON-type Na1+xMxZr2−xP3O12 (M: Yb, Er, Dy) [J]. Solid State Ionics, 1996, 84(12): 61-64.
CrossRef Google scholar
[[50]]
Zhang Q-x, Wen Z-y, Liu Y, et al.. Na+ ion conductors of glass-ceramics in the system Na1+xAlxGe2−xP3O12 (0.3≤x≤1.0) [J]. Journal of Alloys and Compounds, 2009, 479(12): 494-499.
CrossRef Google scholar
[[51]]
PERTHUIS H, COLOMBAN P. Well densified NASICON type ceramics, elaborated using sol-gel process and sintering at low temperatures[J]. Mater. Res Bull, 1984, (19): 621–631. DOI: https://doi.org/10.1016/0025-5408(84)90130-2.
[[52]]
Kim J, Oh T, Lee M, et al.. Effects of Al2O3 addition on the sinterability and ionic conductivity of NASICON [J]. J Mater Sci, 1993, 28: 1573-1577.
CrossRef Google scholar
[[53]]
Shao Y, Zhong G, Lu Y, et al.. A novel NASICON-based glass-ceramic composite electrolyte with enhanced Naion conductivity [J]. Energy Storage Mater, 2019, 23: 514-521.
CrossRef Google scholar
[[54]]
Song S-f, Duong H M, Korsunsky A M, et al.. A Na(+) superionic conductor for room-temperature sodium batteries [J]. Scientific Reports, 2016, 6: 32330.
CrossRef Google scholar
[[55]]
Wang W-j, Wang S-b, Rao L, et al.. Study of Na1+x+yZr2−yNdySixP3−xO12 fast ion conductors [J]. Solid State Ionics, 1988, 28: 424-426.
CrossRef Google scholar
[[56]]
Schäf O, Weibel A, Llewellyn P L, et al.. Preparation and electrical properties of dense ceramics with NASICON composition sintered at reduced temperatures, J. Electroceram, 2004, 13: 817-823.
CrossRef Google scholar
[[57]]
Wang Q, Yu C, Li L-p, et al.. Sc-doping in Na3Zr2Si2PO12 electrolytes enables preeminent performance of solid-state sodium batteries in a wide temperature range [J]. Energy Storage Materials, 2023, 54: 135-145.
CrossRef Google scholar
[[58]]
Park H, Kang M, Park Y C, et al.. Improving ionic conductivity of Nasicon (Na3Zr2Si2PO12) at intermediate temperatures by modifying phase transition behavior [J]. Journal of Power Sources, 2018, 399: 329-336.
CrossRef Google scholar
[[59]]
Xie B-x, Jiang D-y, Wu J, et al.. Effect of substituting Ce for Zr on the electrical properties of NASICON materials [J]. Journal of Physics and Chemistry of Solids, 2016, 88: 104-108.
CrossRef Google scholar
[[60]]
Weng W, Liu G-z, Li Y-m, et al.. Tungsten and oxygen Co-doped stable tetragonal phase Na3SbS4 with ultrahigh ionic conductivity for all-solid-state sodium batteries [J]. Applied Materials Today, 2022, 27: 101448.
CrossRef Google scholar
[[61]]
Liu Y-j, Liu L-m, Peng J-s, et al.. A niobium-substituted sodium superionic conductor with conductivity higher than 5.5 mS cm−1 prepared by solution-assisted solidstate reaction method [J]. Journal of Power Sources, 2022, 518: 230765.
CrossRef Google scholar
[[62]]
Jaschin P W, Tang C R, Wachsman E D. High-rate cycling in 3D dual-doped NASICON architectures toward room-temperature sodium-metal-anode solid-state batteries [J]. Energy & Environmental Science, 2024, 17(2): 727-737.
CrossRef Google scholar
[[63]]
Pal S K, Saha R, Kumar G V, et al.. Designing high ionic conducting NASICON-type Na3Zr2Si2PO12 solid-electrolytes for Na-ion batteries [J]. The Journal of Physical Chemistry C, 2020, 124(17): 9161-9169.
CrossRef Google scholar
[[64]]
SAMIEE M, RADHAKRISHNAN B, RICE Z, et al. Divalent-doped Na3Zr2Si2PO12 natrium superionic conductor: Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases [J]. J Power Sources, 2017, (347): 229–237. DOI: https://doi.org/10.1016/j.jpowsour.2017.02.042.
[[65]]
Yang J, Liu G-z, Avdeev M, et al.. Ultrastable all-solid-state sodium rechargeable batteries [J]. ACS Energy Letters, 2020, 5(9): 2835-2841.
CrossRef Google scholar
[[66]]
Li D-l, Sun C, Wang C-z, et al.. Regulating Na/NASCION electrolyte interface chemistry for stable solidstate Na metal batteries at room temperature [J]. Energy Storage Materials, 2023, 54: 403-409.
CrossRef Google scholar
[[67]]
Lu Y, Alonso J A, Yi Q, et al.. A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte [J]. Adv Energy Mater, 2019, 9: 1901205.
CrossRef Google scholar
[[68]]
Wang X-x, Chen J-j, Mao Z-y, et al.. Effective resistance to dendrite growth of NASICON solid electrolyte with lower electronic conductivity [J]. Chemical Engineering Journal, 2022, 427: 130899.
CrossRef Google scholar
[[69]]
Zhang Z-z, Zou Z-y, Kaup K, et al.. Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes [J]. Advanced Energy Materials, 2019, 9(42): 1902373.
CrossRef Google scholar
[[70]]
Yadav P, Bhatnagar M C. Preparation, structure and conductivity of Sn modified NASICON material [J]. Journal of Electroceramics, 2013, 30(3): 145-151.
CrossRef Google scholar
[[71]]
Li Y, Lu Y, Zhao C, et al.. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage [J]. Energy Storage Mater, 2017, 7: 130-151.
CrossRef Google scholar
[[72]]
Wang C, Sun C, Sun Z, et al.. Optimizing the Na metal/solid electrolyte interface through a grain boundary design [J]. J Mater Chem A, 2022, 10: 5280-5286.
CrossRef Google scholar
[[73]]
Takada K, Ohno T, Ohta N, et al.. Positive and negative aspects of interfaces in solid-state batteries [J]. ACS Energy Lett, 2017, 3: 98-103.
CrossRef Google scholar
[[74]]
Li J, Hu H, Wang J, et al.. Carbon Neutralization, 2022, 1: 96-116.
CrossRef Google scholar
[[75]]
Chang H J, Lu X-c, Bonnett J F, et al.. Decorating β″-alumina solid-state electrolytes with micron Pb spherical particles for improving Na wettability at lower temperatures [J]. Journal of Materials Chemistry A, 2018, 6(40): 19703-19711.
CrossRef Google scholar
[[76]]
Gross M M, Percival S J, Small L J, et al.. Low-temperature molten sodium batteries [J]. ACS Applied Energy Materials, 2020, 3(11): 11456-11462.
CrossRef Google scholar
[[77]]
Liu T-h, Xiang P, Li Y-m, et al.. In situ forming Na — Sn alloy/Na2S interface layer for ultrastable solid state sodium batteries [J]. Advanced Functional Materials, 2024, 34(32): 2316528.
CrossRef Google scholar
[[78]]
CAI S, TIAN H, LIU J, et al. Na3Hf2Si2PO12 electrolyte surfaces by metal coating for high-rate and long cycle life solid-state sodium ion batteries [J]. Journal of Materials Chemistry A, 2022, 10(3):. DOI: https://doi.org/10.1039/D1TA09693A.
[[79]]
Hill R C, Peretti A S, Maraschky A M, et al.. Can a coating mitigate molten Na dendrite growth in NaSICON under high current density?. ACS Applied Energy Materials, 2024, 7(2): 810-819.
CrossRef Google scholar
[[80]]
Salgueiro T A, Veloso R C, Ventura J, et al.. Ionic conductivity analysis of NASICON solid electrolyte coated with polyvinyl-based polymers [J]. Batteries, 2024, 10(5): 157.
CrossRef Google scholar
[[81]]
Miao X-g, Wang H-y, Sun R, et al.. Isotropous sulfurized polyacrylonitrile interlayer with homogeneous Na+ flux dynamics for solid-state Na metal batteries [J]. Advanced Energy Materials, 2021, 11(13): 2003469.
CrossRef Google scholar
[[82]]
Yu X, Manthiram A. Sodium-sulfur batteries with a polymer-coated NASICON-type sodium-ion solid electrolyte [J]. Matter, 2019, 1: 439-451.
CrossRef Google scholar
[[83]]
Krauskopf T, Richter F H, Zeier W G, et al.. Physicochemical concepts of the lithium metal anode in solid-state batteries [J]. Chemical Reviews, 2020, 120(15): 7745-7794.
CrossRef Google scholar
[[84]]
Wang H-c, Gao H-w, Chen X-x, et al.. Linking the defects to the formation and growth of Li dendrite in all-solid-state batteries [J]. Advanced Energy Materials, 2021, 11(42): 2102148.
CrossRef Google scholar
[[85]]
Hofstetter K, Samson A J, Narayanan S, et al.. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium [J]. Journal of Power Sources, 2018, 390: 297-312.
CrossRef Google scholar
[[86]]
Ma Q-l, Ortmann T, Yang A-k, et al.. Enhancing the dendrite tolerance of NaSICON electrolytes by suppressing edge growth of Na electrode along ceramic surface [J]. Advanced Energy Materials, 2022, 12(40): 2201680.
CrossRef Google scholar
[[87]]
Yang J, Gao Z, Ferber T, et al.. Guided-formation of a favorable interface for stabilizing Na metal solid-state batteries[J]. J Mater Chem A, 2020, 8: 7828-7835.
CrossRef Google scholar
[[88]]
Miao X, Di H, Ge X, et al.. YinAlF3-modified anode-electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte [J]. Energy Storage Mater., 2020, 30: 170-178.
CrossRef Google scholar
[[89]]
Yang J, Xu H, Wu J, et al.. Improving Na/Na3Zr2Si2PO12 interface via SnOx/Sn film for high-performance solid-state sodium metal batteries [J]. Small Methods, 2021, 5: 2100339.
CrossRef Google scholar
[[90]]
Wang X, Chen J, Mao Z, et al.. In situ construction of a stable interface induced by the SnS2 ultra-thin layer for dendrite restriction in a solid-state sodium metal battery [J]. J Mater Chem A, 2021, 9: 16039-16045.
CrossRef Google scholar
[[91]]
Tian H, Liu S, Deng L, et al.. New-type Hf-based NASICON electrolyte for solid-state Na-ion batteries with superior long-cycling stability and rate capability [J]. Energy Storage Mater, 2021, 39: 232-238.
CrossRef Google scholar
[[92]]
Matios E, Wang H, Wang C-l, et al.. Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability [J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5064-5072.
CrossRef Google scholar
[[93]]
Kehne P, Guhl C, Ma Q, et al.. Sc-substituted NASICON solid electrolyte for an all-solid-state NaxCoO2/Nasicon/Na sodium model battery with stable electrochemical performance [J]. Journal of Power Sources, 2019, 409: 86-93.
CrossRef Google scholar
[[94]]
Guhl C, Kehne P, Ma Q-l, et al.. Interfaces in solidstate sodium-ion batteries: NaCoO2 thin films on solid electrolyte substrates [J]. Electrochimica Acta, 2018, 268: 226-233.
CrossRef Google scholar
[[95]]
Kee Y, Suzuki Y, Ishigaki N, et al.. An appropriate reference and counter electrode in an all-solid-state battery using NASICON-structured solid electrolyte [J]. Electrochemistry Communications, 2021, 130: 107108.
CrossRef Google scholar
[[96]]
Dongrong Y, Da Zhang K R, Fupeng L, et al.. All solid-state sodium batteries and its interface modification [J]. Progress in Chemistry, 2023, 35(8): 1177-1190
[[97]]
Luo W, Lin C-f, Zhao O, et al.. Ultrathin surface coating enables the stable sodium metal anode [J]. Advanced Energy Materials, 2017, 7(2): 1601526.
CrossRef Google scholar
[[98]]
Yang A-k, Yao K, Schaller M, et al.. Enhanced room-temperature Na+ ionic conductivity in Na4.92Y0.92Zr0.08Si4O12 [J]. eScience, 2023, 3(6): 100175.
CrossRef Google scholar
[[99]]
Zhang Z Z. Preparation and modification of NASICON solid electrolyte Na3Zr2Si2PO12 [D], 2013 Hangzhou Zhejiang University of Science and Technology (in Chinese)
[[100]]
Wang X-Xin. Preparation and interface optimization of solid electrolyte Na3Zr2Si2PO12 [D], 2022 Tianjin Tianjin University of Technology (in Chinese)
[[101]]
Jiang P-f, Du G-y, Shi Y-s, et al.. Ultrafast sintering of Na3Zr2Si2PO12 solid electrolyte for long lifespan solid-state sodium ion batteries [J]. Chemical Engineering Journal, 2023, 451: 138771.
CrossRef Google scholar
[[102]]
Noi K, Suzuki K, Tanibata N, et al.. Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive [J]. Journal of the American Ceramic Society, 2018, 101(3): 1255-1265.
CrossRef Google scholar
[[103]]
Kitta M, Sakaeda K, Shinozaki K. Preparation of water-impermeable NASICON solid electrolyte separators for aqueous/nonaqueous hybrid sodium-ion cells using alumina as a sintering aid [J]. Journal of Alloys and Compounds, 2023, 969: 172494.
CrossRef Google scholar
[[104]]
Noi K, Nagata Y, Hakari T, et al.. Oxide-based composite electrolytes using Na3Zr2Si2PO12/Na3PS4 interfacial ion transfer [J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19605-19614.
CrossRef Google scholar
[[105]]
De la Torre-Gamarra C, Appetecchi G B, Ulissi U, et al.. Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries? [J]. Journal of Power Sources, 2018, 383: 157-163.
CrossRef Google scholar
[[106]]
Liu L-l, Qi X-g, Ma Q, et al.. Toothpaste-like electrode: A novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life [J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32631-32636.
CrossRef Google scholar
[[107]]
Niu W, Chen L, Liu Y-c, et al.. All-solidstate sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase [J]. Chemical Engineering Journal, 2020, 384: 123233.
CrossRef Google scholar
[[108]]
Zhang Z-z, Zhang Q-h, Shi J-n, et al.. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life [J]. Advanced Energy Materials, 2017, 7(4): 1601196.
CrossRef Google scholar
[[109]]
Hou M-jie. Basic research on the chemical stability of NASICON solid electrolyte and its application in sodium metal batteries [D], 2023 Kunming, China University of Science and Technology (in Chinese)

Accesses

Citations

Detail

Sections
Recommended

/