Hetero-metallic lithiophilic sites to assist sustained diffusion-deposition of Li+ toward stable lithium metal anodes

Shao-zhen Huang , Pan He , Hua-ming Yu , Hui-miao Li , Li-bao Chen

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4437 -4448.

PDF
Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4437 -4448. DOI: 10.1007/s11771-024-5829-7
Article

Hetero-metallic lithiophilic sites to assist sustained diffusion-deposition of Li+ toward stable lithium metal anodes

Author information +
History +
PDF

Abstract

Lithium metal stands out as an exceptionally promising anode material, boasting an extraordinarily high theoretical capacity and impressive energy density. Despite these advantageous characters, the issues of dendrite formation and volume expansion of lithium metal anodes lead to performance decay and safety concerns, significantly impeding their advancement towards widespread commercial viability. Herein, a lithium-rich Li-B-In composite anode with abundant lithophilic sites and outstanding structural stability is reported to address the mentioned challenges. The evenly distributed Li-In alloy in the bulk phase of anodes act as mixed ion/electron conductors and nucleation sites, facilitating accelerated Li ions transport dynamics and suppressing lithium dendrite formation. Additionally, these micron-sized Li-In particles in LiB fibers framework can enhance overall structural integrity and provide sufficient interior space to accommodate the volume changes during cycling. The electrochemical performance of Li-B-In composite anode exhibits long-term cyclability, superior rate performance and high-capacity retention. This work confirms that the synergy between a 3D skeleton and hetero-metallic lithiophilic sites can achieve stable and durable lithium metal anodes, offering innovative insights for the practical deployment of lithium metal batteries.

Cite this article

Download citation ▾
Shao-zhen Huang, Pan He, Hua-ming Yu, Hui-miao Li, Li-bao Chen. Hetero-metallic lithiophilic sites to assist sustained diffusion-deposition of Li+ toward stable lithium metal anodes. Journal of Central South University, 2025, 31(12): 4437-4448 DOI:10.1007/s11771-024-5829-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He Z-q, Yu H-m, Chen D-p, et al.. Achieving dendrite-free zinc metal anodes via molecule anchoring and lon-transport pumping [J]. Chemistry, 2024, 30(29): e202400567.

[2]

Fang M-m, Yue X-y, Dong Y-t, et al.. A temperature-dependent solvating electrolyte for wide-temperature and fast-charging lithium metal batteries [J]. Joule, 2024, 8(1): 91-103.

[3]

Yu H-m, Lv C-d, Yan C-s, et al.. Interface engineering for aqueous aluminum metal batteries: Current progresses and future prospects [J]. Small Methods, 2024, 8(6): e2300758.

[4]

Guo J, Ali S, Xu Ming. Recycling is not enough to make the world a greener place: Prospects for the circular economy [J]. Green Carbon, 2023, 1(2): 150-153.

[5]

Ni X-y, Zhou J-q, Ji H-q, et al.. Excluding the trouble from interfacial water by covalent organic polymer to realize extremely reversible Zn anode [J]. Advanced Functional Materials, 2023, 33(37): 2302293.

[6]

Huang S-z, Jiang L-l, Chen Y-j, et al.. Cryogenic-rolling ultrathin lithium metal driving the high- energy-density era [J]. The Innovation Materials, 2024, 2(3): 100077.

[7]

Chen F-y, Xu Z-long. Design and manufacture of high-performance microbatteries: Lithium and beyond [J]. Microstructures, 2022, 2(3): 12.

[8]

Wang Z-z, Yang L, Xu C-l, et al.. Advances in reactive co-precipitation technology for preparing high-performance cathodes [J]. Green Carbon, 2023, 1(2): 193-209.

[9]

Li W-h, Huang S-z, Zhang Y, et al.. Molybdenum dialkyphosphorodithioate-derived artificial solid-electrolyte interface enabling stable lithium metal anodes [J]. Energy Storage Materials, 2024, 65: 103185.

[10]

Tan L, Chen P, Chen Q-y, et al.. A Li3Bi/LiF interfacial layer enabling highly stable lithium metal anode [J]. Rare Metals, 2023, 42(12): 4081-4090.

[11]

Ni X-y, Zhou J-q, Long K-c, et al.. Progress on application of covalent organic frameworks for advanced lithium metal batteries [J]. Energy Storage Materials, 2024, 67: 103295.

[12]

Chen C, Zhou Q-f, Li X-d, et al.. Organic nitrate additive for high-rate and large-capacity lithium metal anode in carbonate electrolyte [J]. Small Methods, 2024, 8(1): 2300839.

[13]

Chen C, Zhang J-m, Hu B-r, et al.. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode [J]. Nature Communications, 2023, 14(1): 4018.

[14]

Liu J, Qian T, Xu N, et al.. Dendrite-free and ultrahigh energy lithium sulfur battery enabled by dimethyl polysulfide intermediates [J]. Energy Storage Materials, 2020, 24: 265-271.

[15]

Chen H-l, Liu J, Zhou X, et al.. Rapid leakage responsive and self-healing Li-metal batteries [J]. Chemical Engineering Journal, 2021, 404: 126470.

[16]

Liu X-j, Qian T, Liu J, et al.. High Coulombic efficiency cathode with nitryl grafted sulfur for Li-S battery [J]. Energy Storage Materials, 2019, 17: 260-265.

[17]

Liao J-l, Zhang S, Bai T-s, et al.. A ZnO decorated 3D copper foam as a lithiophilic host to construct composite lithium metal anodes for Li-O2 batteries [J]. Rare Metals, 2023, 42(6): 1969-1982.

[18]

Tao M-l, Du G-y, Zou W-w, et al.. Li ions traffic controller on thin lithium metal anode: Regulating deposition, optimizing and protecting solid electrolyte interphase [J]. Journal of Colloid and Interface Science, 2024, 663: 532-540.

[19]

Yang H, Zheng H-f, Yu H-m, et al.. Coordinating ionic and electronic conductivity on 3D porous host enabling deep dense lithium deposition toward high-capacity lithium metal anodes [J]. Nanoscale, 2022, 14(37): 13722-13730.

[20]

Li Q-h, Wang X-f, Zhu S-y, et al.. Fast Li-ion conduction enabled by graphite fluoride flakes in solid polymer electrolyte [J]. Rare Metals, 2023, 42(10): 3337-3344.

[21]

Sanchez P, Belin C, Crepy C, et al.. Electrochemical studies of lithium-boron alloys in non-aqueous media—Comparison with pure lithium [J]. Journal of Applied Electrochemistry, 1989, 19(3): 421-428.

[22]

Chen D-p, Qing P, Tang F-c, et al.. A self-supported hierarchic 3D double skeleton host for highly stable lithium metal batteries [J]. Materials Today Energy, 2023, 33: 101272.

[23]

He P, Huang S-z, Qing P, et al.. Li - B - Cu anodes with a stable three-dimensional composite skeleton for lithium metal batteries [J]. Energy & Fuels, 2023, 37(23): 17988-17996.

[24]

Ma B, Zhang Y-l, Liu X-hua. Concept of hydrophobic Li+-solvated structure for high performances lithium metal batteries [J]. Rare Metals, 2023, 42(5): 1427-1430.

[25]

Jin C-b, Huang Y-y, Li L-h, et al.. A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries [J]. Nature Communications, 2023, 14(1): 8269.

[26]

Lv Y-y, Han Z-b, Jia R-r, et al.. Porous interface for fast charging silicon anode [J]. Battery Energy, 2022, 1(3): 20220009.

[27]

Yu H-m, Li Q-y, Liu W, et al.. Fast ion diffusion alloy layer facilitating 3D mesh substrate for dendrite-free zinc-ion hybrid capacitors [J]. Journal of Energy Chemistry, 2022, 73: 565-574.

[28]

An X-f, Liu Y, Yang K, et al.. Dielectric filler-induced hybrid interphase enabling robust solid-state Li metal batteries at high areal capacity [J]. Advanced Materials, 2024, 36(13): e2311195.

[29]

Huang S-z, Long K-c, Chen Y-j, et al.. In situ formed tribofilms as efficient organic/inorganic hybrid interlayers for stabilizing lithium metal anodes [J]. Nano-Micro Letters, 2023, 15(1): 235.

[30]

Zhang T-y, Yang J-c, Wang H, et al.. A solubility-limited, non-protonic polar small molecule co-solvent reveals additive selection in inorganic zinc salts [J]. Energy Storage Materials, 2024, 65: 103085.

[31]

Ma X-p, Yu H-m, Yan C-s, et al.. Nitroxyl radical triggered the construction of a molecular protective layer for achieving durable Zn metal anodes [J]. Journal of Colloid and Interface Science, 2024, 664: 539-548.

[32]

Fu M, Yu H-m, Huang S-z, et al.. Building sustainable saturated fatty acid-zinc interfacial layer toward ultra-stable zinc metal anodes [J]. Nano Letters, 2023, 23(8): 3573-3581.

[33]

Huang S-z, Wu Z-b, Johannessen B, et al.. Interfacial friction enabling≤20 µm thin free-standing lithium strips for lithium metal batteries [J]. Nature Communications, 2023, 14: 5678.

[34]

Liu J-d, Li X, Huang J-d, et al.. Additive-guided solvation-regulated flame-retardant electrolyte enables high-voltage lithium metal batteries with robust electrode electrolyte interphases [J]. Advanced Functional Materials, 2024, 34(16): 2312762.

[35]

Cho S, Kim D Y, Lee J I, et al.. Highly reversible lithium host materials for high-energy-density anode-free lithium metal batteries [J]. Advanced Functional Materials, 2022, 32(47): 2208629.

[36]

Huang S-z, He Z-y, Li C-l, et al.. Preparation and application of thin-sodium metal [J]. Small Science, 2024, 4(6): 2300362.

[37]

Ye Y-s, Xu R, Huang W-x, et al.. Quadruple the rate capability of high-energy batteries through a porous current collector design [J]. Nature Energy, 2024, 9: 643-653.

[38]

Li Z, Hou L-p, Zhang X-q, et al.. A Nafion protective layer for stabilizing lithium metal anodes in working lithium-sulfur batteries [J]. Battery Energy, 2022, 1(3): 20220006.

[39]

Wang X-t, Wang Y-c, Wu M-c, et al.. Ultrasonication-assisted fabrication of porous ZnO@C nanoplates for lithium-ion batteries [J]. Microstructures, 2022, 2(3): 16.

[40]

Kim S H, Choe U J, Kim N Y, et al.. Fibrous skeleton-framed, flexible high-energy-density quasi-solid-state lithium metal batteries [J]. Battery Energy, 2022, 1(1): 20210012.

[41]

Piao Z-h, Wu X-r, Ren H-r, et al.. A semisolvated sole-solvent electrolyte for high-voltage lithium metal batteries [J]. Journal of the American Chemical Society, 2023, 145(44): 24260-24271.

RIGHTS & PERMISSIONS

Central South University

AI Summary AI Mindmap
PDF

250

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/