Perfect thermal spin filtering effect and excellent spin caloritronic properties in strain-modulated Janus VSTe monolayer

Ye Liu , Jin-tao Xu , Xiao-ge Peng , Meng-qiu Long

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4613 -4624.

PDF
Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4613 -4624. DOI: 10.1007/s11771-024-5826-x
Article

Perfect thermal spin filtering effect and excellent spin caloritronic properties in strain-modulated Janus VSTe monolayer

Author information +
History +
PDF

Abstract

The spin caloritronic properties of the Janus VSTe monolayer were investigated using density functional theory (DFT) and the non-equilibrium Green’s function (NEGF) method, implemented in the Atomistix Toolkit (ATK) package. Our study revealed significant spin-splitting within the Janus VSTe monolayer, which induced spin currents under a temperature gradient across the device. By applying a 1% tensile strain, the Janus VSTe monolayer exhibited a perfect thermal spin filtering effect (SFE), with the spin-up current nearly suppressed to zero. Both the unstrained and strained Janus VSTe monolayers demonstrated excellent spin caloritronic properties, with spin figures of merit of 10.915 and 8.432 at an average temperature of 100 K, respectively. Notably, these properties were found to be sensitive to temperature, performing optimally at lower temperatures. These results suggest a promising avenue for designing spin caloritronic devices aimed at efficient waste heat recovery.

Cite this article

Download citation ▾
Ye Liu, Jin-tao Xu, Xiao-ge Peng, Meng-qiu Long. Perfect thermal spin filtering effect and excellent spin caloritronic properties in strain-modulated Janus VSTe monolayer. Journal of Central South University, 2025, 31(12): 4613-4624 DOI:10.1007/s11771-024-5826-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Voloshchuk I, Babich A, Pereverzeva S, et al.. Flexible thermoelectric generator fabricated by screen printing method from suspensions based on Bi2Te2.8Se0.2 and Bi0.5Sb1.5Te3 [J]. Journal of Central South University, 2023, 30(9): 2906-2918.

[2]

Omeiza L A, Abid M, Subramanian Y, et al.. Limitations and challenges of heat transfer enhancement techniques in solar thermal collectors: A review [J]. Journal of Central South University, 2023, 30(11): 3538-3574.

[3]

Tian C, Zhao S-h, Feng Y, et al.. Research progress and prospect of silicon nanotubes in new energy field [J]. Journal of Central South University, 2023, 30(7): 2133-2148.

[4]

Zhang P-p, Tan S-h, Long M-q, et al.. Thermoelectric performance of adenine and porphine [J]. Applied Physics Express, 2019, 12(12): 125005.

[5]

Zhang S-d, Li Y, Wang Y-p, et al.. The spin-polarized edge states of blue phosphorene nanoribbons induced by electric field and electron doping [J]. Journal of Physics Condensed Matter, 2021, 33(10): 105302.

[6]

Yang G-s, Sang L-n, Zhang C, et al.. The role of spin in thermoelectricity [J]. Nature Reviews Physics, 2023, 5: 466-482.

[7]

Elahi E, Al-Kahtani A A, Dastgeer G, et al.. Recent advances in thermomagnetic devices for spin-caloritronic phenomena [J]. Applied Materials Today, 2023, 32: 101846.

[8]

Kikkawa T, Saitoh E. Spin seebeck effect: Sensitive probe for elementary excitation, spin correlation, transport, magnetic order, and domains in solids [J]. Annual Review of Condensed Matter Physics, 2023, 14: 129-151.

[9]

Chen X-f, Hu P-j, Guo A-m, et al.. Chirality-dependent spin transport and spin Seebeck effect in the spiral spin chains [J]. Applied Physics Letters, 2023, 123(15): 152405.

[10]

Long M-qiu. Edge passivation oxidation-enhanced spin caloritronics in zigzag blue phosphorus nanoribbons [J]. Journal of Physics D: Applied Physics, 2023, 56(44): 445301.

[11]

Ni Y, Li J, Tao W, et al.. The spin-dependent transport properties of defected zigzag graphene nanoribbons with graphene nanobubbles [J]. Physical Chemistry Chemical Physics, 2021, 23(4): 2753-2761.

[12]

Ni Y, Chen K, Hu N, et al.. The spin caloritronic transport properties of newly designed devices consisting of a sawtooth graphene nanoribbon and its derived five-member ring structure [J]. Physical Chemistry Chemical Physics, 2023, 25(24): 16578-16586.

[13]

Guo X-d, Zhang X-r, Zhang K-b, et al.. Effect of DNA bases on the thermoelectric performance in graphene nanoribbons [J]. Results in Physics, 2023, 51: 106610.

[14]

Ni Y, Hua H, Li J, et al.. Perfect spin Seebeck effect, spin-valve, spin-filter and spin-rectification based on the heterojunction of sawtooth graphene and graphyne nanoribbons [J]. Nanoscale, 2022, 14(10): 3818-3825.

[15]

Ding G-q, Wei M, Surucu G, et al.. Transition metal-doped Janus monolayer SMoSe with excellent thermal spin filter and spin Seebeck effect [J]. Applied Surface Science, 2019, 491: 750-756.

[16]

NIAN L L, ZHANG Rong, TANG F R, et al. Thermally driven spin-Seebeck transport in chiral dsDNA-based molecular devices [J]. 2018, 123(9): 094302. DOI: https://doi.org/10.1063/1.5019753.

[17]

Zhang B, Zhang S-d, Long M-qiu. Magnetothermoelectric properties of Al-Porphyrin sandwiched by graphene nanoribbon electrode based on quantum interference [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 139: 115189.

[18]

Li J, Niquet Y M, Delerue C. Spin Seebeck effect and thermal properties of zigzag graphene nanoribbons with edge magnetism [J]. Physical Review B, 2023, 107(24): 245417.

[19]

Song L-l, Yuan L-w, Yang Z-h, et al.. Generating pure spin current in zigzag graphene nanoribbons by a thermal gradient: The effect of edge doping with BN pairs [J]. Journal of Physics D: Applied Physics, 2020, 53(48): 485304.

[20]

Wu X-m, Hu L, Gu D-d, et al.. Spin transport and spin thermoelectric transport in 2D Mn-doped blue phosphorene with high curie temperature and half-metallicity [J]. The Journal of Physical Chemistry C, 2021, 125(11): 6341-6350.

[21]

Farghadan R, Ildarabadi F. Gate-voltage induced giant spin Seebeck effect in phosphorene nanoribbons [J]. Physical Review B, 2020, 102(3): 035430.

[22]

Zou F, Zhu L, Gao G-y, et al.. Temperature-controlled spin filter and spin valve based on Fe-doped monolayer MoS2 [J]. Physical Chemistry Chemical Physics, 2016, 18(8): 6053-6058.

[23]

QIN Dan, JIANG Zheng-ting, YAN Peng, et al. Superior spin transport properties based on VS2 and VCl2 ferromagnetic monolayers [J]. 2022, 132(21): 213902. DOI: https://doi.org/10.1063/5.0124820.

[24]

Musle V, Kumar A, Choudhary S. Temperature dependent spin transport investigations in single layer VTe2 [J]. Journal of Alloys and Compounds, 2019, 770: 345-349.

[25]

Pandey N, Kumar A, Chakrabarti S. First principle study of temperature-dependent spin transport in VSe2 monolayer [J]. Applied Surface Science, 2020, 504: 144411.

[26]

Lebègue S, Eriksson O. Electronic structure of two-dimensional crystals from ab initio theory [J]. Physical Review B, 2009, 79(11): 115409.

[27]

Ovchinnikov D, Allain A, Huang Y-s, et al.. Electrical transport properties of single-layer WS2 [J]. ACS Nano, 2014, 8(8): 8174-8181.

[28]

Trivedi D B, Turgut G, Qin Y, et al.. Room-temperature synthesis of 2D Janus crystals and their heterostructures [J]. Advanced Materials, 2020, 32(50): 2006320.

[29]

Zhang J, Jia S, Kholmanov I, et al.. Janus monolayer transition-metal dichalcogenides [J]. ACS Nano, 2017, 11(8): 8192-8198.

[30]

Lu A-y, Zhu H-y, Xiao J, et al.. Janus monolayers of transition metal dichalcogenides [J]. Nature Nanotechnology, 2017, 12(8): 744-749.

[31]

Patel A, Singh D, Sonvane Y, et al.. High thermoelectric performance in two-dimensional Janus monolayer material WS-X (X=Se and Te) [J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46212-46219.

[32]

Li J-l, Li M-m, Shi X-r, et al.. Stacking order-dependent electronic, optical, and charge transport properties of van der waals GaS/WXY (X/Y=S, Se, Te) heterostructures [J]. The Journal of Physical Chemistry C, 2023, 127(33): 16588-16597.

[33]

Huang H-h, Sun Z-x, Hu C-c, et al.. Janus penta-PdSeTe: A two-dimensional candidate with high thermoelectric performance [J]. Journal of Alloys and Compounds, 2022, 924: 166581.

[34]

Cai H-f, Guo Y-f, Gao H-j, et al.. Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: A first-principles study [J]. Nano Energy, 2019, 56: 33-39.

[35]

Dong L, Lou J, Shenoy V B. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides [J]. ACS Nano, 2017, 11(8): 8242-8248.

[36]

Hu T, Jia F-h, Zhao G-d, et al.. Intrinsic and anisotropic Rashba spin splitting in Janus transition-metal dichalcogenide monolayers [J]. Physical Review B, 2018, 97(23): 235404.

[37]

Sino P A L, Feng L-y, Villaos R A B, et al.. Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X, Y=S, Se, or Te) [J]. Nanoscale Advances, 2021, 3(23): 6608-6616.

[38]

Pan L-j, Wang Z, Carrete J, et al.. Thermoelectric properties of the Janus PtSTe monolayer compared with its parent structures [J]. Physical Review Materials, 2022, 6(8): 084005.

[39]

Huang S-z, Fang C-g, Feng Q-y, et al.. Strain tunable thermoelectric material: Janus ZrSSe monolayer [J]. Langmuir, 2023, 39(7): 2719-2728.

[40]

Liu H-t, Bao L-h, Zhou Z, et al.. Quasi-2D transport and weak antilocalization effect in few-layered VSe2 [J]. Nano Letters, 2019, 19(7): 4551-4559.

[41]

ZHANG Jun-jun, ZHANG Chen-hui, WANG Zhen-yu, et al. Synergistic interlayer and defect engineering in VS2 nanosheets toward efficient electrocatalytic hydrogen evolution reaction [J]. Small, 2018, 14(9). DOI: https://doi.org/10.1002/smll.201703098. DOI: https://doi.org/10.1002/smll.201703098.

[42]

Taylor J, Guo H, Wang Jian. Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device [J]. Physical Review B, 2001, 63(12): 121104.

[43]

Brandbyge M, Mozos J L, Ordejón P, et al.. Density-functional method for nonequilibrium electron transport [J]. Physical Review B, 2002, 65(16): 165401.

[44]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865-3868.

[45]

Shi H L, Yang J, Han Q Z, et al.. Spin-dependent thermoelectric transport properties of Cr-doped blue phosphorene [J]. Nanotechnology, 2023, 34(37): 375703.

[46]

Büttiker M, Imry Y, Landauer R, et al.. Generalized many-channel conductance formula with application to small rings [J]. Physical Review B, 1985, 31(10): 6207-6215.

[47]

Sidike A, Zhang B, Dong J-w, et al.. Realization of high thermoelectric performance of black phosphorus/black arsenic hybrid heterojunction nanoscale devices by interface engineering [J]. Physica B: Condensed Matter, 2024, 673: 415357.

[48]

Bauer G E, Saitoh E, van Wees B J. Spin caloritronics [J]. Nature Materials, 2012, 11(5): 391-399.

[49]

SHI H L, YANG J, HAN Q Z, et al. Theoretical study on spin-dependent zigzag-direction thermoelectric transport properties of Mn-doped blue phosphorene [J]. 2023, 133(5): 055109. DOI: https://doi.org/10.1063/5.0128189.

[50]

Shi Y-c, Xu J-t, Qiu Y-f, et al.. Interlayer coupling modulated for thermoelectric transport characterization of black arsenic nanoscale devices [J]. Journal of Physics: Condensed Matter, 2024, 36(30): 305701

[51]

Dong J-w, Zhang B, Zhang S-d, et al.. Effects of interface charge-transfer doping on thermoelectric transport properties of black phosphorene-F4TCNQ nanoscale devices [J]. Applied Surface Science, 2022, 579: 152155.

[52]

Jiang Y, Guo Y-d, Lin L-y, et al.. A robust spin-dependent Seebeck effect and remarkable spin thermoelectric performance in graphether nanoribbons [J]. Nanoscale, 2022, 14(28): 10033-10040.

[53]

Lv M-h, Li C-m, Sun W-feng. Spin-orbit coupling and spin-polarized electronic structures of Janus vanadium-dichalcogenide monolayers: First-principles calculations [J]. Nanomaterials, 2022, 12(3): 382.

[54]

He J-j, Li Shuo. Two-dimensional Janus transition-metal dichalcogenides with intrinsic ferromagnetism and half-metallicity [J]. Computational Materials Science, 2018, 152: 151-157.

[55]

Dey D, Botana A S. Structural, electronic, and magnetic properties of vanadium-based Janus dichalcogenide monolayers: A first-principles study [J]. Physical Review Materials, 2020, 4(7): 074002.

[56]

Zhao G-d, Fu W-d, Li Y-c, et al.. Hidden valley polarization, piezoelectricity, and dzyaloshinskiimoriya interactions of Janus vanadium dichalcogenides [J]. ACS Applied Materials & Interfaces, 2024, 16(1): 1268-1275.

[57]

Wang T-x, Li M-x, Tian T, et al.. Strain-controllable high Curie temperature and magnetic anisotropy in two-dimensional Janus 2H-VXY (X, Y=S, Se and Te, X≠Y) [J]. Micro and Nanostructures, 2023, 177: 207537.

[58]

He J, Terry M T. Advances in thermoelectric materials research: Looking back and moving forward [J]. Science, 2017, 357(6358): eaak9997.

[59]

Zhang X, Zhao L-dong. Thermoelectric materials: Energy conversion between heat and electricity [J]. Journal of Materiomics, 2015, 1(2): 92-105.

RIGHTS & PERMISSIONS

Central South University

AI Summary AI Mindmap
PDF

293

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/