Effects of immersion in simulated body fluid on the fatigue and corrosion behavior of biodegradable WE54 magnesium alloy

N. Asgharinezhad Baloochi , A. R. Eivani , M. R. Aboutalebi , H. R. Jafarian

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (11) : 3996 -4012.

PDF
Journal of Central South University ›› 2025, Vol. 31 ›› Issue (11) : 3996 -4012. DOI: 10.1007/s11771-024-5816-z
Article

Effects of immersion in simulated body fluid on the fatigue and corrosion behavior of biodegradable WE54 magnesium alloy

Author information +
History +
PDF

Abstract

Fatigue and tensile behaviors of homogenized WE54 magnesium alloy before and after immersion in simulated body fluid (SBF) were investigated. According to the tensile test, the alloy without immersion in SBF solution has the highest tensile strength of 278 MPa, which decreased to 190 MPa after 336 h of immersion.. The fatigue life of the homogenized WE54 magnesium alloy before immersion in the SBF solution under a constant stress of 15 MPa is 3598 cycles. However, the fatigue life of the alloy decreased to 453 cycles after 336 h of immersion in the SBF solution under the same stress. Examination of the fracture surface of the samples by SEM reveals that the origin of the fatigue crack before immersion is micro-pores and defects. While corrosion pits and cracks are the main reasons for forming the initial fatigue crack after immersion. Moreover, the results obtained from practical work were evaluated and compared to theoretical calculations. The area of the hysteresis loops of the samples after the fatigue test, determined using Triangles and Monte Carlo methods, decreased from 4954.5 MPa and 4842.9 MPa before immersion to 192.0 MPa and 175.8 MPa after 336 h of immersion, respectively.

Cite this article

Download citation ▾
N. Asgharinezhad Baloochi, A. R. Eivani, M. R. Aboutalebi, H. R. Jafarian. Effects of immersion in simulated body fluid on the fatigue and corrosion behavior of biodegradable WE54 magnesium alloy. Journal of Central South University, 2025, 31(11): 3996-4012 DOI:10.1007/s11771-024-5816-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gupta M, Ling S. Magnesium, magnesium alloys, and magnesium composites [M], 2011 accessed February 22, 2023)

[2]

Gunde P, Hänzi A C, Sologubenko A S, et al.. High-strength magnesium alloys for degradable implant applications [J]. Materials Science and Engineering A, 2011, 528(3): 1047-1054

[3]

Kamrani S, Fleck C. Biodegradable magnesium alloys as temporary orthopaedic implants: A review [J]. BioMetals, 2019, 32(2): 185-193

[4]

Staiger M P, Pietak A M, Huadmai J, et al.. Magnesium and its alloys as orthopedic biomaterials: A review [J]. Biomaterials, 2006, 27(9): 1728-1734

[5]

Ye X-Y, Chen M-F, Yang M, et al.. In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg-Zn-Zr composites [J]. Journal of Materials Science Materials in Medicine, 2010, 21(4): 1321-1328

[6]

Haghshenas M. Mechanical characteristics of biodegradable magnesium matrix composites: A review [J]. Journal of Magnesium and Alloys, 2017, 5(2): 189-201

[7]

Jafari S, Singh Raman R K, Davies C H J. Corrosion fatigue of a magnesium alloy in modified simulated body fluid [J]. Engineering Fracture Mechanics, 2015, 137: 2-11

[8]

Singh Raman R K, Birbilis N, Efthimiadis J. Corrosion of Mg alloy AZ91 -The role of microstructure [J]. Corrosion Engineering, Science and Technology, 2004, 39(4): 346-350

[9]

Li H-T, Si S-H, Yang K, et al.. Hexafluoroisopropanol based silk fibroin coatings on AZ31 biometals with enhanced adhesion, corrosion resistance and biocompatibility [J]. Progress in Organic Coatings, 2023, 184: 107881

[10]

Mochizuki A, Kaneda H. Study on the blood compatibility and biodegradation properties of magnesium alloys [J]. Materials Science and Engineering C, 2015, 47: 204-210

[11]

Elsentriecy H H, Qu J, Luo H-M, et al.. Improving corrosion resistance of AZ31B magnesium alloy via a conversion coating produced by a protic ammoniumphosphate ionic liquid [J]. Thin Solid Films, 2014, 568: 44-51

[12]

Sudholz A D, Gusieva K, Chen X B, et al.. Electrochemical behaviour and corrosion of Mg-Y alloys [J]. Corrosion Science, 2011, 53(6): 2277-2282

[13]

Yun Y, Dong Z-Y, Lee N, et al.. Revolutionizing biodegradable metals [J]. Materials Today, 2009, 12(10): 22-32

[14]

Witte F, Hort N, Vogt C, et al.. Degradable biomaterials based on magnesium corrosion [J]. Current Opinion in Solid State and Materials Science, 2008, 12(5–6): 63-72

[15]

Xin Y, Hu T, Chu P K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review [J]. Acta Biomaterialia, 2011, 7(4): 1452-1459

[16]

James B A, Sire R A. Fatigue-life assessment and validation techniques for metallic vascular implants [J]. Biomaterials, 2010, 31(2): 181-186

[17]

Azevedo C R F. Failure analysis of a commercially pure titanium plate for osteosynthesis [J]. Engineering Failure Analysis, 2003, 10(2): 153-164

[18]

Magnissalis E A, Zinelis S, Karachalios T, et al.. Failure analysis of two Ti-alloy total hip arthroplasty femoral stems fractured in vivo [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2003, 66B(1): 299-305

[19]

Gu X N, Zhou W R, Zheng Y F, et al.. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43-In simulated body fluid [J]. Acta Biomaterialia, 2010, 6(12): 4605-4613

[20]

Liu M-Y, Wang J-F, Zhu S-J, et al.. Corrosion fatigue of the extruded Mg-Zn-Y-Nd alloy in simulated body fluid [J]. Journal of Magnesium and Alloys, 2020, 8(1): 231-240

[21]

Rozali S, Mutoh Y, Nagata K. Effect of frequency on fatigue crack growth behavior of magnesium alloy AZ61 under immersed 3.5 mass% NaCl environment [J]. Materials Science and Engineering A, 2011, 528(6): 2509-2516

[22]

Chamos A N, Pantelakis S G, Spiliadis V. Fatigue behaviour of bare and pre-corroded magnesium alloy AZ31 [J]. Materials & Design, 2010, 31(9): 4130-4137

[23]

Ali Ashraf Talesh S, Azadi M. Impact of corrosion in simulated body fluid on fatigue characteristics of 3D-printed polylactic acid-coated AM60 magnesium alloys [J]. Surfaces, 2024, 7(1): 88-107

[24]

OLIYA A Y P, AZADI M, PARAST M S A, et al. Effect of heat-treating on microstructure and high cycle bending fatigue behavior of AZ91 and AZE911 magnesium alloys [J]. Advances in Materials Science and Engineering, 2022: 4030062. DOI: https://doi.org/10.1155/2022/4030062.

[25]

Yu K, Li W-X, Wang R-C, et al.. Effect of T5 and T6 tempers on a hot-rolled WE43 magnesium alloy [J]. Materials Transactions, 2008, 49(8): 1818-1821

[26]

Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? [J]. Biomaterials, 2006, 27(15): 2907-2915

[27]

Standard test methods for tension testing of metallic materials: ASTM E8/E8M-24 [S/OL]. [2024-05-20]. https://www.astm.org/e0008_e0008m-24.html.

[28]

Standard practice for strain-controlled fatigue testing: ASTM E606-04e1 [S/OL]. [2023-02-23]. https://www.astm.org/e0606-04e01.html.

[29]

Nie J F, Muddle B C. Precipitation in magnesium alloy WE54 during isothermal ageing at 250 °C [J]. Scripta Materialia, 1999, 40(10): 1089-1094

[30]

Antion C, Donnadieu P, Perrard F, et al.. Hardening precipitation in a Mg-4Y-3RE alloy [J]. Acta Materialia, 2003, 51(18): 5335-5348

[31]

Apps P J, Karimzadeh H, King J F, et al.. Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium [J]. Scripta Materialia, 2003, 48(5): 475-481

[32]

RZYCHOŃ T, KIELBUS A. Microstructure of WE43 casting magnesium alloy [J]. Journal of Achievements of Materials and Manufacturing Engineering, 2007. https://www.researchgate.net/publication/40624937.

[33]

Xu D-X, Zhao K-N, Yang C-L, et al.. Effect of heat treatment on microstructure and mechanical properties of the AZ31/WE43 bimetal composites [J]. Metals, 2018, 8(11): 971

[34]

Xin T-Z, Tang S, Ji F, et al.. Phase transformations in an ultralight BCC Mg alloy during anisothermal ageing [J]. Acta Materialia, 2022, 239: 118248

[35]

Ahmadkhaniha D, Fedel M, Heydarzadeh Sohi M, et al.. Corrosion behavior of magnesium and magnesium - hydroxyapatite composite fabricated by friction stir processing in Dulbecco’s phosphate buffered saline [J]. Corrosion Science, 2016, 104: 319-329

[36]

Zhao C-Y, Pan F-S, Zhao S, et al.. Preparation and characterization of as-extruded Mg-Sn alloys for orthopedic applications [J]. Materials & Design, 2015, 70: 60-67

[37]

Zhang S, Zhang X, Zhao C, et al.. Research on an Mg-Zn alloy as a degradable biomaterial [J]. Acta Biomater, 2010, 6(2): 626-640

[38]

Kieke M, Feyerabend F, Lemaitre J, et al.. Degradation rates and products of pure magnesium exposed to different aqueous media under physiological conditions [J]. BioNanoMaterials, 2016, 17(34): 131-143

[39]

Wu G-S, Ibrahim J M, Chu P K. Surface design of biodegradable magnesium alloys—A review [J]. Surface and Coatings Technology, 2013, 233: 2-12

[40]

Ho Y H. In vitro corrosion behavior of magnesium alloy AZ31B-hydroxyapatite metallic matrix composites processed via friction stir processing [D], 2016

[41]

Pogorielov M, Husak E, Solodivnik A, et al.. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements [J]. Interventional Medicine and Applied Science, 2017, 9(1): 27-38

[42]

Wang J, He Y-H, Maitz M F, et al.. A surface-eroding poly(1, 3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: Toward better biofunction, biodegradation and biocompatibility [J]. Acta Biomaterialia, 2013, 9(10): 8678-8689

[43]

Zhao D-W, Jiang C, Zhao K-M. Ultrasonic welding of AZ31B magnesium alloy and pure copper: Microstructure, mechanical properties and finite element analysis [J]. Journal of Materials Research and Technology, 2023, 23: 1273-1284

[44]

Das P, Sampath Kumar T S, Sahu K K, et al.. Corrosion, stress corrosion cracking and corrosion fatigue behavior of magnesium alloy bioimplants [J]. Corrosion Reviews, 2022, 40(4): 289-333

[45]

Harandi S E, Singh Raman R K. Corrosion fatigue of a magnesium alloy under appropriate human physiological conditions for bio-implant applications [J]. Engineering Fracture Mechanics, 2017, 186: 134-142

[46]

Li Z-M, Luo A A, Wang Q-G, et al.. Fatigue characteristics of sand-cast AZ91D magnesium alloy [J]. Journal of Magnesium and Alloys, 2017, 5(1): 1-12

[47]

Bhuiyan M S, Mutoh Y, Murai T, et al.. Corrosion fatigue behavior of extruded magnesium alloy AZ80-T5 in a 5% NaCl environment [J]. Engineering Fracture Mechanics, 2010, 77(10): 1567-1576

[48]

Bian D, Zhou W-R, Liu Y, et al.. Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid [J]. Acta Biomaterialia, 2016, 41: 351-360

[49]

Lukas P, Kunz L. Role of persistent slip bands in fatigue [J]. Philosophical Magazine, 2004, 84(3–5): 317-330

[50]

Manson S S. A complex subject-some simple approximations [J]. Experimental Mechanics, 1965, 5: 193-226

[51]

Suresh S. Fatigue of materials [M], 1998

[52]

Dieter G. Mechanical metallurgical [M], 1986, Boston, MA, Mcgraw-Hill

RIGHTS & PERMISSIONS

Central South University

AI Summary AI Mindmap
PDF

372

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/