Effects of immersion in simulated body fluid on the fatigue and corrosion behavior of biodegradable WE54 magnesium alloy

N. Asgharinezhad Baloochi, A. R. Eivani, M. R. Aboutalebi, H. R. Jafarian

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (11) : 3996-4012.

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (11) : 3996-4012. DOI: 10.1007/s11771-024-5816-z
Article

Effects of immersion in simulated body fluid on the fatigue and corrosion behavior of biodegradable WE54 magnesium alloy

Author information +
History +

Abstract

Fatigue and tensile behaviors of homogenized WE54 magnesium alloy before and after immersion in simulated body fluid (SBF) were investigated. According to the tensile test, the alloy without immersion in SBF solution has the highest tensile strength of 278 MPa, which decreased to 190 MPa after 336 h of immersion.. The fatigue life of the homogenized WE54 magnesium alloy before immersion in the SBF solution under a constant stress of 15 MPa is 3598 cycles. However, the fatigue life of the alloy decreased to 453 cycles after 336 h of immersion in the SBF solution under the same stress. Examination of the fracture surface of the samples by SEM reveals that the origin of the fatigue crack before immersion is micro-pores and defects. While corrosion pits and cracks are the main reasons for forming the initial fatigue crack after immersion. Moreover, the results obtained from practical work were evaluated and compared to theoretical calculations. The area of the hysteresis loops of the samples after the fatigue test, determined using Triangles and Monte Carlo methods, decreased from 4954.5 MPa and 4842.9 MPa before immersion to 192.0 MPa and 175.8 MPa after 336 h of immersion, respectively.

Cite this article

Download citation ▾
N. Asgharinezhad Baloochi, A. R. Eivani, M. R. Aboutalebi, H. R. Jafarian. Effects of immersion in simulated body fluid on the fatigue and corrosion behavior of biodegradable WE54 magnesium alloy. Journal of Central South University, 2025, 31(11): 3996‒4012 https://doi.org/10.1007/s11771-024-5816-z

References

[[1]]
Gupta M, Ling S. Magnesium, magnesium alloys, and magnesium composites [M], 2011 accessed February 22, 2023)
CrossRef Google scholar
[[2]]
Gunde P, Hänzi A C, Sologubenko A S, et al.. High-strength magnesium alloys for degradable implant applications [J]. Materials Science and Engineering A, 2011, 528(3): 1047-1054
CrossRef Google scholar
[[3]]
Kamrani S, Fleck C. Biodegradable magnesium alloys as temporary orthopaedic implants: A review [J]. BioMetals, 2019, 32(2): 185-193
CrossRef Google scholar
[[4]]
Staiger M P, Pietak A M, Huadmai J, et al.. Magnesium and its alloys as orthopedic biomaterials: A review [J]. Biomaterials, 2006, 27(9): 1728-1734
CrossRef Google scholar
[[5]]
Ye X-Y, Chen M-F, Yang M, et al.. In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg-Zn-Zr composites [J]. Journal of Materials Science Materials in Medicine, 2010, 21(4): 1321-1328
CrossRef Google scholar
[[6]]
Haghshenas M. Mechanical characteristics of biodegradable magnesium matrix composites: A review [J]. Journal of Magnesium and Alloys, 2017, 5(2): 189-201
CrossRef Google scholar
[[7]]
Jafari S, Singh Raman R K, Davies C H J. Corrosion fatigue of a magnesium alloy in modified simulated body fluid [J]. Engineering Fracture Mechanics, 2015, 137: 2-11
CrossRef Google scholar
[[8]]
Singh Raman R K, Birbilis N, Efthimiadis J. Corrosion of Mg alloy AZ91 -The role of microstructure [J]. Corrosion Engineering, Science and Technology, 2004, 39(4): 346-350
CrossRef Google scholar
[[9]]
Li H-T, Si S-H, Yang K, et al.. Hexafluoroisopropanol based silk fibroin coatings on AZ31 biometals with enhanced adhesion, corrosion resistance and biocompatibility [J]. Progress in Organic Coatings, 2023, 184: 107881
CrossRef Google scholar
[[10]]
Mochizuki A, Kaneda H. Study on the blood compatibility and biodegradation properties of magnesium alloys [J]. Materials Science and Engineering C, 2015, 47: 204-210
CrossRef Google scholar
[[11]]
Elsentriecy H H, Qu J, Luo H-M, et al.. Improving corrosion resistance of AZ31B magnesium alloy via a conversion coating produced by a protic ammoniumphosphate ionic liquid [J]. Thin Solid Films, 2014, 568: 44-51
CrossRef Google scholar
[[12]]
Sudholz A D, Gusieva K, Chen X B, et al.. Electrochemical behaviour and corrosion of Mg-Y alloys [J]. Corrosion Science, 2011, 53(6): 2277-2282
CrossRef Google scholar
[[13]]
Yun Y, Dong Z-Y, Lee N, et al.. Revolutionizing biodegradable metals [J]. Materials Today, 2009, 12(10): 22-32
CrossRef Google scholar
[[14]]
Witte F, Hort N, Vogt C, et al.. Degradable biomaterials based on magnesium corrosion [J]. Current Opinion in Solid State and Materials Science, 2008, 12(5–6): 63-72
CrossRef Google scholar
[[15]]
Xin Y, Hu T, Chu P K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review [J]. Acta Biomaterialia, 2011, 7(4): 1452-1459
CrossRef Google scholar
[[16]]
James B A, Sire R A. Fatigue-life assessment and validation techniques for metallic vascular implants [J]. Biomaterials, 2010, 31(2): 181-186
CrossRef Google scholar
[[17]]
Azevedo C R F. Failure analysis of a commercially pure titanium plate for osteosynthesis [J]. Engineering Failure Analysis, 2003, 10(2): 153-164
CrossRef Google scholar
[[18]]
Magnissalis E A, Zinelis S, Karachalios T, et al.. Failure analysis of two Ti-alloy total hip arthroplasty femoral stems fractured in vivo [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2003, 66B(1): 299-305
CrossRef Google scholar
[[19]]
Gu X N, Zhou W R, Zheng Y F, et al.. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43-In simulated body fluid [J]. Acta Biomaterialia, 2010, 6(12): 4605-4613
CrossRef Google scholar
[[20]]
Liu M-Y, Wang J-F, Zhu S-J, et al.. Corrosion fatigue of the extruded Mg-Zn-Y-Nd alloy in simulated body fluid [J]. Journal of Magnesium and Alloys, 2020, 8(1): 231-240
CrossRef Google scholar
[[21]]
Rozali S, Mutoh Y, Nagata K. Effect of frequency on fatigue crack growth behavior of magnesium alloy AZ61 under immersed 3.5 mass% NaCl environment [J]. Materials Science and Engineering A, 2011, 528(6): 2509-2516
CrossRef Google scholar
[[22]]
Chamos A N, Pantelakis S G, Spiliadis V. Fatigue behaviour of bare and pre-corroded magnesium alloy AZ31 [J]. Materials & Design, 2010, 31(9): 4130-4137
CrossRef Google scholar
[[23]]
Ali Ashraf Talesh S, Azadi M. Impact of corrosion in simulated body fluid on fatigue characteristics of 3D-printed polylactic acid-coated AM60 magnesium alloys [J]. Surfaces, 2024, 7(1): 88-107
CrossRef Google scholar
[[24]]
OLIYA A Y P, AZADI M, PARAST M S A, et al. Effect of heat-treating on microstructure and high cycle bending fatigue behavior of AZ91 and AZE911 magnesium alloys [J]. Advances in Materials Science and Engineering, 2022: 4030062. DOI: https://doi.org/10.1155/2022/4030062.
[[25]]
Yu K, Li W-X, Wang R-C, et al.. Effect of T5 and T6 tempers on a hot-rolled WE43 magnesium alloy [J]. Materials Transactions, 2008, 49(8): 1818-1821
CrossRef Google scholar
[[26]]
Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? [J]. Biomaterials, 2006, 27(15): 2907-2915
CrossRef Google scholar
[[27]]
Standard test methods for tension testing of metallic materials: ASTM E8/E8M-24 [S/OL]. [2024-05-20]. https://www.astm.org/e0008_e0008m-24.html.
[[28]]
Standard practice for strain-controlled fatigue testing: ASTM E606-04e1 [S/OL]. [2023-02-23]. https://www.astm.org/e0606-04e01.html.
[[29]]
Nie J F, Muddle B C. Precipitation in magnesium alloy WE54 during isothermal ageing at 250 °C [J]. Scripta Materialia, 1999, 40(10): 1089-1094
CrossRef Google scholar
[[30]]
Antion C, Donnadieu P, Perrard F, et al.. Hardening precipitation in a Mg-4Y-3RE alloy [J]. Acta Materialia, 2003, 51(18): 5335-5348
CrossRef Google scholar
[[31]]
Apps P J, Karimzadeh H, King J F, et al.. Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium [J]. Scripta Materialia, 2003, 48(5): 475-481
CrossRef Google scholar
[[32]]
RZYCHOŃ T, KIELBUS A. Microstructure of WE43 casting magnesium alloy [J]. Journal of Achievements of Materials and Manufacturing Engineering, 2007. https://www.researchgate.net/publication/40624937.
[[33]]
Xu D-X, Zhao K-N, Yang C-L, et al.. Effect of heat treatment on microstructure and mechanical properties of the AZ31/WE43 bimetal composites [J]. Metals, 2018, 8(11): 971
CrossRef Google scholar
[[34]]
Xin T-Z, Tang S, Ji F, et al.. Phase transformations in an ultralight BCC Mg alloy during anisothermal ageing [J]. Acta Materialia, 2022, 239: 118248
CrossRef Google scholar
[[35]]
Ahmadkhaniha D, Fedel M, Heydarzadeh Sohi M, et al.. Corrosion behavior of magnesium and magnesium - hydroxyapatite composite fabricated by friction stir processing in Dulbecco’s phosphate buffered saline [J]. Corrosion Science, 2016, 104: 319-329
CrossRef Google scholar
[[36]]
Zhao C-Y, Pan F-S, Zhao S, et al.. Preparation and characterization of as-extruded Mg-Sn alloys for orthopedic applications [J]. Materials & Design, 2015, 70: 60-67
CrossRef Google scholar
[[37]]
Zhang S, Zhang X, Zhao C, et al.. Research on an Mg-Zn alloy as a degradable biomaterial [J]. Acta Biomater, 2010, 6(2): 626-640
CrossRef Google scholar
[[38]]
Kieke M, Feyerabend F, Lemaitre J, et al.. Degradation rates and products of pure magnesium exposed to different aqueous media under physiological conditions [J]. BioNanoMaterials, 2016, 17(34): 131-143
[[39]]
Wu G-S, Ibrahim J M, Chu P K. Surface design of biodegradable magnesium alloys—A review [J]. Surface and Coatings Technology, 2013, 233: 2-12
CrossRef Google scholar
[[40]]
Ho Y H. In vitro corrosion behavior of magnesium alloy AZ31B-hydroxyapatite metallic matrix composites processed via friction stir processing [D], 2016
[[41]]
Pogorielov M, Husak E, Solodivnik A, et al.. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements [J]. Interventional Medicine and Applied Science, 2017, 9(1): 27-38
CrossRef Google scholar
[[42]]
Wang J, He Y-H, Maitz M F, et al.. A surface-eroding poly(1, 3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: Toward better biofunction, biodegradation and biocompatibility [J]. Acta Biomaterialia, 2013, 9(10): 8678-8689
CrossRef Google scholar
[[43]]
Zhao D-W, Jiang C, Zhao K-M. Ultrasonic welding of AZ31B magnesium alloy and pure copper: Microstructure, mechanical properties and finite element analysis [J]. Journal of Materials Research and Technology, 2023, 23: 1273-1284
CrossRef Google scholar
[[44]]
Das P, Sampath Kumar T S, Sahu K K, et al.. Corrosion, stress corrosion cracking and corrosion fatigue behavior of magnesium alloy bioimplants [J]. Corrosion Reviews, 2022, 40(4): 289-333
CrossRef Google scholar
[[45]]
Harandi S E, Singh Raman R K. Corrosion fatigue of a magnesium alloy under appropriate human physiological conditions for bio-implant applications [J]. Engineering Fracture Mechanics, 2017, 186: 134-142
CrossRef Google scholar
[[46]]
Li Z-M, Luo A A, Wang Q-G, et al.. Fatigue characteristics of sand-cast AZ91D magnesium alloy [J]. Journal of Magnesium and Alloys, 2017, 5(1): 1-12
CrossRef Google scholar
[[47]]
Bhuiyan M S, Mutoh Y, Murai T, et al.. Corrosion fatigue behavior of extruded magnesium alloy AZ80-T5 in a 5% NaCl environment [J]. Engineering Fracture Mechanics, 2010, 77(10): 1567-1576
CrossRef Google scholar
[[48]]
Bian D, Zhou W-R, Liu Y, et al.. Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid [J]. Acta Biomaterialia, 2016, 41: 351-360
CrossRef Google scholar
[[49]]
Lukas P, Kunz L. Role of persistent slip bands in fatigue [J]. Philosophical Magazine, 2004, 84(3–5): 317-330
CrossRef Google scholar
[[50]]
Manson S S. A complex subject-some simple approximations [J]. Experimental Mechanics, 1965, 5: 193-226
CrossRef Google scholar
[[51]]
Suresh S. Fatigue of materials [M], 1998
CrossRef Google scholar
[[52]]
Dieter G. Mechanical metallurgical [M], 1986, Boston, MA, Mcgraw-Hill

Accesses

Citations

Detail

Sections
Recommended

/