Oxygen- and photo-induced decay of perovskite solar cells: Mechanisms and strategies

Xin-xin Peng , Danyal Abdalla , Fei Liu , Walid A. Daoud , Yong-bo Yuan , Yun Lin

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4366 -4396.

PDF
Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4366 -4396. DOI: 10.1007/s11771-024-5814-1
Article

Oxygen- and photo-induced decay of perovskite solar cells: Mechanisms and strategies

Author information +
History +
PDF

Abstract

Perovskite solar cells (PSCs) have emerged as a promising photovoltaic technology with their rapid improvement in power conversion efficiency from 3.8% to 26.7%. However, the unsatisfactory stability is still a major hurdle to the future commercialization of PSCs. Among various causes of instability, oxygen and photo-induced instability are indispensable aspects to be considered, especially there is a growing demand of manufacturing PSCs with low-cost environmental conditions. This review aims to provide a timely and comprehensive summary of the investigations related to the oxygen- and photo-induced decay (OP-decay) in perovskites. Key factors affecting the OP-decay pathways and decay rate have been discussed. Techniques for the analysis of oxygen and photo-induced decay processes are included. Strategies for improving photo-oxygen stability have been summarized, from the aspects of suppressing the generation yield of superoxide, protecting perovskites from the generated superoxide, and slowing down the oxygen penetration, respectively.

Cite this article

Download citation ▾
Xin-xin Peng, Danyal Abdalla, Fei Liu, Walid A. Daoud, Yong-bo Yuan, Yun Lin. Oxygen- and photo-induced decay of perovskite solar cells: Mechanisms and strategies. Journal of Central South University, 2025, 31(12): 4366-4396 DOI:10.1007/s11771-024-5814-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kojima A, Teshima K, Shirai Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.

[2]

Kim M, Jeong J, Lu H-z, et al.. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells [J]. Science, 2022, 375(6578): 302-306.

[3]

Min H, Lee D Y, Kim J, et al.. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J]. Nature, 2021, 598(7881): 444-450.

[4]

Green M A, Dunlop E D, Yoshita M, et al.. Solar cell efficiency tables (Version 64) [J]. Progress in Photovoltaics: Research and Applications, 2024, 32(7): 425-441.

[5]

Zeng Q, Liu L, Xiao Z, et al.. A two-terminal all-inorganic perovskite/organic tandem solar cell [J]. Science Bulletin, 2019, 64(13): 885-887.

[6]

Wan F, Ke L-l, Yuan Y-b, et al.. Passivation with crosslinkable diamine yields 0.1 V non-radiative V oc loss in inverted perovskite solar cells [J]. Science Bulletin, 2021, 66(5): 417-420.

[7]

Wang P, Zhao J-j, Liu J-x, et al.. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods [J]. Journal of Power Sources, 2017, 339: 51-60.

[8]

Guo H-j, Yi S-h, Yang S, et al.. Structural symmetry impressing carrier dynamics of halide perovskite [J]. Advanced Functional Materials, 2023, 33(17): 2214180.

[9]

Deng W, Wan F, Peng X-x, et al.. Super hydrophilic, ultra bubble repellent substrate for pinhole free Dion-Jacobson perovskite solar cells [J]. Applied Physics Letters, 2022, 121(23): 233902.

[10]

Cui S-w, Wang J-f, Xie H-p, et al.. Rubidium ions enhanced crystallinity for ruddlesden-popper perovskites [J]. Advanced Science, 2020, 7(24): 2002445.

[11]

Lin Y, Bai Y, Fang Y-j, et al.. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures [J]. Journal of Physical Chemistry Letters, 2018, 9(3): 654-658.

[12]

Deng Y-h, Xu S, Chen S-s, et al.. Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini-modules with improved photostability [J]. Nature Energy, 2021, 6(6): 633-641.

[13]

Ma C-q, Park N G. Paradoxical approach with a hydrophilic passivation layer for moisture-stable, 23% efficient perovskite solar cells [J]. ACS Energy Letters, 2020, 5(10): 3268-3275.

[14]

Jung H J, Kim D, Kim S, et al.. Stability of halide perovskite solar cell devices: in situ observation of oxygen diffusion under biasing [J]. Advanced Materials, 2018, 30(39): e1802769.

[15]

Sun Q, Fassl P, Becker-Koch D, et al.. Role of microstructure in oxygen induced photodegradation of methylammonium lead triiodide perovskite films [J]. Advanced Energy Materials, 2017, 7(20): 1700977.

[16]

Meng L, You J-b, Yang Yang. Addressing the stability issue of perovskite solar cells for commercial applications [J]. Nature Communications, 2018, 9(1): 5265.

[17]

Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, et al.. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers [J]. Angewandte Chemie (International Ed), 2015, 54(28): 8208-8212.

[18]

Berhe T A, Su W N, Chen C H, et al.. Organometal halide perovskite solar cells: Degradation and stability [J]. Energy & Environmental Science, 2016, 9(2): 323-356.

[19]

Zhao X, Chen J-z, Park N G. Importance of oxygen partial pressure in annealing NiO film for high efficiency inverted perovskite solar cells [J]. Solar RRL, 2019, 3(4): 1800339.

[20]

Hawash Z, Ono L K, Qi Y-bing. Moisture and oxygen enhance conductivity of LiTFSI-doped spiro-MeOTAD hole transport layer in perovskite solar cells [J]. Advanced Materials Interfaces, 2021, 8(23): 1600117.

[21]

Cappel U B, Daeneke T, Bach U. Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance [J]. Nano Letters, 2012, 12(9): 4925-4931.

[22]

Yang L, Xu B, Bi D-q, et al.. Initial light soaking treatment enables hole transport material to outperform spiro-OMeTAD in solid-state dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2013, 135(19): 7378-7385.

[23]

Yuan Y-b, Li T, Wang Q, et al.. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells [J]. Science Advances, 2017, 3(3): e1602164.

[24]

Godding J S W, Ramadan A J, Lin Y H, et al.. Oxidative passivation of metal halide perovskites [J]. Joule, 2019, 3(11): 2716-2731.

[25]

Fan W-s, Shi Y-l, Shi T-f, et al.. Suppression and reversion of light-induced phase separation in mixed-halide perovskites by oxygen passivation [J]. ACS Energy Letters, 2019, 4(9): 2052-2058.

[26]

Liu S-c, Li Z-b, Yang Y-s, et al.. Investigation of oxygen passivation for high-performance all-inorganic perovskite solar cells [J]. Journal of the American Chemical Society, 2019, 141(45): 18075-18082.

[27]

Zhang Z-l, Liu Y-y, Zhang P-y, et al.. Natural passivation of the perovskite layer by oxygen in ambient air to improve the efficiency and stability of perovskite solar cells simultaneously [J]. Organic Electronics, 2021, 88: 106007.

[28]

He J-l, Fang W-h, Long R, et al.. Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: Time-domain ab initio analysis [J]. Journal of the American Chemical Society, 2019, 141(14): 5798-5807.

[29]

Yang J-m, Yuan Z-c, Liu X-j, et al.. Oxygen- and water-induced energetics degradation in organometal halide perovskites [J]. ACS Applied Materials & Interfaces, 2018, 10(18): 16225-16230.

[30]

Luo D-y, Li X-y, Dumont A, et al.. Recent progress on perovskite surfaces and interfaces in optoelectronic devices [J]. Advanced Materials, 2021, 33(30): e2006004.

[31]

Aziz A, Aristidou N, Bu X-n, et al.. Understanding the enhanced stability of bromide substitution in lead iodide perovskites [J]. Chemistry of Materials, 2020, 32(1): 400-409.

[32]

Wang K, Ecker B R, Ghosh M, et al.. Light-enhanced oxygen degradation of MAPbBr3 single crystal [J]. Physical Chemistry Chemical Physics, 2024, 26(6): 5027-5037.

[33]

Ma X-x, Li Z-sheng. The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles calculation [J]. Applied Surface Science, 2018, 428: 140-147.

[34]

Abdelmageed G, Jewell L, Hellier K, et al.. Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells [J]. Applied Physics Letters, 2016, 109(23): 233905.

[35]

Ruan S, Surmiak M A, Ruan Y-l, et al.. Light induced degradation in mixed-halide perovskites [J]. Journal of Materials Chemistry C, 2019, 7(30): 9326-9334.

[36]

Nickel N H, Lang F, Brus V V, et al.. Unraveling the light-induced degradation mechanisms of CH3NH3PbI3 perovskite films [J]. Advanced Electronic Materials, 2017, 3(12): 1700158.

[37]

Bryant D, Aristidou N, Pont S, et al.. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells [J]. Energy & Environmental Science, 2016, 9(5): 1655-1660.

[38]

Aristidou N, Eames C, Islam M S, et al.. Insights into the increased degradation rate of CH3NH3PbI3 solar cells in combined water and O2 environments [J]. Journal of Materials Chemistry A, 2017, 5(48): 25469-25475.

[39]

Péan E V, de Castro C S, Dimitrov S, et al.. Investigating the superoxide formation and stability in mesoporous carbon perovskite solar cells with an aminovaleric acid additive [J]. Advanced Functional Materials, 2020, 30(12): 1909839.

[40]

Zhou Q, Gao Y-f, Cai C-s, et al.. Dually-passivated perovskite solar cells with reduced voltage loss and increased super oxide resistance [J]. Angewandte Chemie (International Ed), 2021, 60(15): 8303-8312.

[41]

Chin D H, Chiericato G, Nanni E J, et al.. Proton-induced disproportionation of superoxide ion in aprotic media [J]. Journal of the American Chemical Society, 1982, 104(5): 1296-1299.

[42]

Hayyan M, Hashim M A, Alnashef I M. Superoxide ion: Generation and chemical implications [J]. Chemical Reviews, 2016, 116(5): 3029-3085.

[43]

Dąbrowski J M. Reactive oxygen species in photodynamic therapy: Mechanisms of their generation and potentiation [M]. Advances in Inorganic Chemistry, 2017 Amsterdam Elsevier 343-394

[44]

Song Z-n, Wang C-l, Phillips A B, et al.. Probing the origins of photodegradation in organic-inorganic metal halide perovskites with time-resolved mass spectrometry [J]. Sustainable Energy & Fuels, 2018, 2(11): 2460-2467.

[45]

Hoke E T, Slotcavage D J, Dohner E R, et al.. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics [J]. Chemical Science, 2015, 6(1): 613-617.

[46]

Anaya M, Galisteo-López J F, Calvo M E, et al.. Origin of light-induced photophysical effects in organic metal halide perovskites in the presence of oxygen [J]. The Journal of Physical Chemistry Letters, 2018, 9(14): 3891-3896.

[47]

Dimesso L, Wittich C, Mayer T, et al.. Phase-change behavior of hot-pressed methylammonium lead bromide hybrid perovskites [J]. Journal of Materials Science, 2019, 54(3): 2001-2015.

[48]

Zhang L-h, Sit P H L. Ab initio study of the role of oxygen and excess electrons in the degradation of CH3NH3PbI3 [J]. Journal of Materials Chemistry A, 2017, 5(19): 9042-9049.

[49]

He J-l, Fang W-h, Long R, et al.. Why oxygen increases carrier lifetimes but accelerates degradation of CH3NH3PbI3 under light irradiation: Time-domain ab initio analysis [J]. Journal of the American Chemical Society, 2020, 142(34): 14664-14673.

[50]

Tsvetkov D S, Mazurin M O, Sereda V V, et al.. Formation thermodynamics, stability, and decomposition pathways of CsPbX 3 (X=Cl, Br, I) photovoltaic materials [J]. The Journal of Physical Chemistry C, 2020, 124(7): 4252-4260.

[51]

Duan X-x, Duan J-l, Liu N-m, et al.. Inhibited superoxide-induced halide oxidation with a bioactive factor for stabilized inorganic perovskite solar cells [J]. SusMat, 2024, 4(4): e233.

[52]

Scheidt R A, Kerns E, Kamat P V. Interfacial charge transfer between excited CsPbBr3 nanocrystals and TiO2: Charge injection versus photodegradation [J]. Journal of Physical Chemistry Letters, 2018, 9(20): 5962-5969.

[53]

Zhang L-q, Yang X-l, Jiang Q, et al.. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes [J]. Nature Communications, 2017, 8: 15640.

[54]

Quan L-n, Ma D-x, Zhao Y-b, et al.. Edge stabilization in reduced-dimensional perovskites [J]. Nature Communications, 2020, 11(1): 170.

[55]

Liang D, Peng Y-l, Fu Y-p, et al.. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates [J]. ACS Nano, 2016, 10(7): 6897-6904.

[56]

Blancon J C, Tsai H, Nie W, et al.. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites [J]. Science, 2017, 355(6331): 1288-1292.

[57]

Shi E-z, Deng S-b, Yuan B, et al.. Extrinsic and dynamic edge states of two-dimensional lead halide perovskites [J]. ACS Nano, 2019, 13(2): 1635-1644.

[58]

Aristidou N, Eames C, Sanchez-Molina I, et al.. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells [J]. Nature Communications, 2017, 8(1): 15218.

[59]

Ni Z-y, Bao C-x, Liu Y, et al.. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells [J]. Science, 2020, 367(6484): 1352-1358.

[60]

Lin D-x, Shi T-t, Xie H-p, et al.. Ion migration accelerated reaction between oxygen and metal halide perovskites in light and its suppression by cesium incorporation [J]. Advanced Energy Materials, 2021, 11(8): 2002552.

[61]

Sawyer D T, Valentine J. How super is superoxide [J]. Accounts of Chemical Research, 1981, 14: 393-400.

[62]

Siegler T D, Dunlap-Shohl W A, Meng Y-h, et al.. Water-accelerated photooxidation of CH3NH3PbI3 perovskite [J]. Journal of the American Chemical Society, 2022, 144(12): 5552-5561.

[63]

Ouyang Y-x, Shi L, Li Q, et al.. Role of water and defects in photo-oxidative degradation of methylammonium lead iodide perovskite [J]. Small Methods, 2019, 3(7): 1900154.

[64]

Wang S-h, Jiang Y, Juarez-Perez E J, et al.. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour [J]. Nature Energy, 2017, 2(1): 16195.

[65]

Ren X-x, Wang J-f, Lin Y, et al.. Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells [J]. Nature Materials, 2024, 23(6): 810-817.

[66]

Huang W-x, Manser J S, Kamat P V, et al.. Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions [J]. Chemistry of Materials, 2016, 28(1): 303-311.

[67]

Tang X-f, Brandl M, May B, et al.. Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors [J]. Journal of Materials Chemistry A, 2016, 4(41): 15896-15903.

[68]

Wang Z-p, Mcmeekin D P, Sakai N, et al.. Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers [J]. Advanced Materials, 2017, 29(5): 1604186.

[69]

Shi X-q, Ding Y, Zhou S-j, et al.. Enhanced interfacial binding and electron extraction using boron-doped TiO2 for highly efficient hysteresis-free perovskite solar cells [J]. Advanced Science, 2019, 6(21): 1901213.

[70]

Xu G-y, Wang S-h, Bi P-q, et al.. Hydrophilic fullerene derivative doping in active layer and electron transport layer for enhancing oxygen stability of perovskite solar cells [J]. Solar RRL, 2020, 4(2): 1900249.

[71]

Shahiduzzaman M, Kulkarni A, Visal S, et al.. A single-phase brookite TiO2 nanoparticle bridge enhances the stability of perovskite solar cells [J]. Sustainable Energy & Fuels, 2020, 4(4): 2009-2017.

[72]

Luo J-q, Chen J-z, Wu B, et al.. Surface rutilization of anatase TiO2 for efficient electron extraction and stable P max output of perovskite solar cells [J]. Chem, 2018, 4(4): 911-923.

[73]

He J-l, Zhu Y-h, Fang W-h, et al.. Preventing superoxide generation on molecule-protected CH3NH3PbI3 perovskite: A time-domain ab initio study [J]. Journal of Physical Chemistry Letters, 2021, 12(6): 1664-1670.

[74]

Geng C, Zhang K-x, Wang C-h, et al.. Crystallization modulation and holistic passivation enables efficient two-terminal perovskite/CuIn(Ga)Se2 tandem solar cells [J]. Nano-Micro Letters, 2024, 17(1): 8.

[75]

Bai S, Da P-m, Li C, et al.. Planar perovskite solar cells with long-term stability using ionic liquid additives [J]. Nature, 2019, 571(7764): 245-250.

[76]

Ni Z-y, Jiao H-y, Fei C-b, et al.. Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination [J]. Nature Energy, 2022, 7(1): 65-73.

[77]

Yuan Y-b, Wang Q, Shao Y-c, et al.. Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures [J]. Advanced Energy Materials, 2016, 6(2): 1501803.

[78]

Kerner R A, Xu Z-j, Larson B W, et al.. The role of halide oxidation in perovskite halide phase separation [J]. Joule, 2021, 5(9): 2273-2295.

[79]

Lin Y H, Sakai N, Da P-m, et al.. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells [J]. Science, 2020, 369(6499): 96-102.

[80]

Fu F, Pisoni S, Jeangros Q, et al.. I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat-light soaking conditions [J]. Energy & Environmental Science, 2019, 12(10): 3074-3088.

[81]

Bu X-n, Westbrook R J E, Lanzetta L, et al.. Surface passivation of perovskite films via iodide salt coatings for enhanced stability of organic lead halide perovskite solar cells [J]. Solar RRL, 2019, 3(2): 1800282.

[82]

Yang Y, Peng H-r, Liu C, et al.. Bi-functional additive engineering for high-performance perovskite solar cells with reduced trap density [J]. Journal of Materials Chemistry A, 2019, 7(11): 6450-6458.

[83]

Ouyang Y-x, Li Y-j, Zhu P-c, et al.. Photo-oxidative degradation of methylammonium lead iodide perovskite: Mechanism and protection [J]. Journal of Materials Chemistry A, 2019, 7(5): 2275-2282.

[84]

Wang J-f, Luo S-q, Lin Y, et al.. Templated growth of oriented layered hybrid perovskites on 3D-like perovskites [J]. Nature Communications, 2020, 11(1): 582.

[85]

Pont S, Bryant D, Lin C T, et al.. Tuning CH3NH3Pb(I1−xBrx)3 perovskite oxygen stability in thin films and solar cells [J]. Journal of Materials Chemistry A, 2017, 5(20): 9553-9560.

[86]

Saidaminov M I, Kim J, Jain A, et al.. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air [J]. Nature Energy, 2018, 3(8): 648-654.

[87]

Zhong Y, Yang J, Wang X-y, et al.. Inhibition of ion migration for highly efficient and stable perovskite solar cells [J]. Advanced Materials, 2023, 35(52): e2302552.

[88]

Cheng Y-h, Ding L-ming. Pushing commercialization of perovskite solar cells by improving their intrinsic stability [J]. Energy & Environmental Science, 2021, 14(6): 3233-3255.

[89]

Zhu H-w, Teale S, Lintangpradipto M N, et al.. Long-term operating stability in perovskite photovoltaics [J]. Nature Reviews Materials, 2023, 8: 569-586.

[90]

Xiang W-c, Liu S-z, Tress W. A review on the stability of inorganic metal halide perovskites: Challenges and opportunities for stable solar cells [J]. Energy & Environmental Science, 2021, 14(4): 2090-2113.

[91]

Lin C T, Pont S, Kim J, et al.. Passivation against oxygen and light induced degradation by the PCBM electron transport layer in planar perovskite solar cells [J]. Sustainable Energy & Fuels, 2018, 2(8): 1686-1692.

[92]

Lin C T, de Rossi F, Kim J, et al.. Evidence for surface defect passivation as the origin of the remarkable photostability of unencapsulated perovskite solar cells employing aminovaleric acid as a processing additive [J]. Journal of Materials Chemistry A, 2019, 7(7): 3006-3011.

[93]

Duan X-p, Li X, Tan L-c, et al.. Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells [J]. Advanced Materials, 2020, 32(26): e2000617.

[94]

Lim C K, Li Q, Zhang T-m, et al.. Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker [J]. Solar Energy Materials and Solar Cells, 2018, 176: 30-35.

[95]

Dong C, Li X-m, Ma C, et al.. Lycopene-based bionic membrane for stable perovskite photovoltaics [J]. Advanced Functional Materials, 2021, 31(25): 2011242.

[96]

Zhuang X-m, Zhou D-l, Liu S-n, et al.. Learning from plants: Lycopene additive passivation toward efficient and “fresh” perovskite solar cells with oxygen and ultraviolet resistance [J]. Advanced Energy Materials, 2022, 12(25): 2200614.

[97]

Liu F, Valencia A, Zhu Y-h, et al.. Melatonin treatment as an anti-aging therapy for UV-related degradation of perovskite solar cells [J]. Journal of Materials Chemistry A, 2024, 12(20): 11986-11994.

[98]

Lin K-h, Prlj A, Corminboeuf C. How does alkyl chain length modify the properties of triphenylamine-based hole transport materials? [J]. Journal of Materials Chemistry C, 2018, 6(5): 960-965.

[99]

Jiang T-t, Fu W-fei. Improved performance and stability of perovskite solar cells with bilayer electron-transporting layers [J]. RSC Advances, 2018, 8(11): 5897-5901.

[100]

Li M, Zhao C, Wang Z-k, et al.. Interface modification by ionic liquid: A promising candidate for indoor light harvesting and stability improvement of planar perovskite solar cells [J]. Advanced Energy Materials, 2018, 8(24): 1801509.

[101]

Zheng S-z, Li W-l, Su T-t, et al.. Metal oxide CrOx as a promising bilayer electron transport material for enhancing the performance stability of planar perovskite solar cells [J]. Solar RRL, 2018, 2(6): 1700245.

[102]

Zhang P, Wu J, Wang Y-f, et al.. Enhanced efficiency and environmental stability of planar perovskite solar cells by suppressing photocatalytic decomposition [J]. Journal of Materials Chemistry A, 2017, 5(33): 17368-17378.

[103]

Shen H-p, Duong T, Peng J, et al.. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity [J]. Energy & Environmental Science, 2018, 11(2): 394-406.

[104]

Sanchez R S, Mas-Marza E. Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells [J]. Solar Energy Materials and Solar Cells, 2016, 158: 189-194.

[105]

Christians J A, Schulz P, Tinkham J S, et al.. Tailored interfaces of unencapsulated perovskite solar cells for >1, 000 hour operational stability [J]. Nature Energy, 2018, 3(1): 68-74.

[106]

You J-b, Meng L, Song T B, et al.. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers [J]. Nature Nanotechnology, 2016, 11(1): 75-81.

[107]

Wu C-c, Wang K, Feng X, et al.. Ultrahigh durability perovskite solar cells [J]. Nano Letters, 2019, 19(2): 1251-1259.

RIGHTS & PERMISSIONS

Central South University

AI Summary AI Mindmap
PDF

372

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/