Oxygen- and photo-induced decay of perovskite solar cells: Mechanisms and strategies

Xin-xin Peng, Danyal Abdalla, Fei Liu, Walid A. Daoud, Yong-bo Yuan, Yun Lin

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4366-4396.

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4366-4396. DOI: 10.1007/s11771-024-5814-1
Article

Oxygen- and photo-induced decay of perovskite solar cells: Mechanisms and strategies

Author information +
History +

Abstract

Perovskite solar cells (PSCs) have emerged as a promising photovoltaic technology with their rapid improvement in power conversion efficiency from 3.8% to 26.7%. However, the unsatisfactory stability is still a major hurdle to the future commercialization of PSCs. Among various causes of instability, oxygen and photo-induced instability are indispensable aspects to be considered, especially there is a growing demand of manufacturing PSCs with low-cost environmental conditions. This review aims to provide a timely and comprehensive summary of the investigations related to the oxygen- and photo-induced decay (OP-decay) in perovskites. Key factors affecting the OP-decay pathways and decay rate have been discussed. Techniques for the analysis of oxygen and photo-induced decay processes are included. Strategies for improving photo-oxygen stability have been summarized, from the aspects of suppressing the generation yield of superoxide, protecting perovskites from the generated superoxide, and slowing down the oxygen penetration, respectively.

Cite this article

Download citation ▾
Xin-xin Peng, Danyal Abdalla, Fei Liu, Walid A. Daoud, Yong-bo Yuan, Yun Lin. Oxygen- and photo-induced decay of perovskite solar cells: Mechanisms and strategies. Journal of Central South University, 2025, 31(12): 4366‒4396 https://doi.org/10.1007/s11771-024-5814-1

References

[[1]]
Kojima A, Teshima K, Shirai Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
CrossRef Google scholar
[[2]]
Kim M, Jeong J, Lu H-z, et al.. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells [J]. Science, 2022, 375(6578): 302-306.
CrossRef Google scholar
[[3]]
Min H, Lee D Y, Kim J, et al.. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J]. Nature, 2021, 598(7881): 444-450.
CrossRef Google scholar
[[4]]
Green M A, Dunlop E D, Yoshita M, et al.. Solar cell efficiency tables (Version 64) [J]. Progress in Photovoltaics: Research and Applications, 2024, 32(7): 425-441.
CrossRef Google scholar
[[5]]
Zeng Q, Liu L, Xiao Z, et al.. A two-terminal all-inorganic perovskite/organic tandem solar cell [J]. Science Bulletin, 2019, 64(13): 885-887.
CrossRef Google scholar
[[6]]
Wan F, Ke L-l, Yuan Y-b, et al.. Passivation with crosslinkable diamine yields 0.1 V non-radiative V oc loss in inverted perovskite solar cells [J]. Science Bulletin, 2021, 66(5): 417-420.
CrossRef Google scholar
[[7]]
Wang P, Zhao J-j, Liu J-x, et al.. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods [J]. Journal of Power Sources, 2017, 339: 51-60.
CrossRef Google scholar
[[8]]
Guo H-j, Yi S-h, Yang S, et al.. Structural symmetry impressing carrier dynamics of halide perovskite [J]. Advanced Functional Materials, 2023, 33(17): 2214180.
CrossRef Google scholar
[[9]]
Deng W, Wan F, Peng X-x, et al.. Super hydrophilic, ultra bubble repellent substrate for pinhole free Dion-Jacobson perovskite solar cells [J]. Applied Physics Letters, 2022, 121(23): 233902.
CrossRef Google scholar
[[10]]
Cui S-w, Wang J-f, Xie H-p, et al.. Rubidium ions enhanced crystallinity for ruddlesden-popper perovskites [J]. Advanced Science, 2020, 7(24): 2002445.
CrossRef Google scholar
[[11]]
Lin Y, Bai Y, Fang Y-j, et al.. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures [J]. Journal of Physical Chemistry Letters, 2018, 9(3): 654-658.
CrossRef Google scholar
[[12]]
Deng Y-h, Xu S, Chen S-s, et al.. Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini-modules with improved photostability [J]. Nature Energy, 2021, 6(6): 633-641.
CrossRef Google scholar
[[13]]
Ma C-q, Park N G. Paradoxical approach with a hydrophilic passivation layer for moisture-stable, 23% efficient perovskite solar cells [J]. ACS Energy Letters, 2020, 5(10): 3268-3275.
CrossRef Google scholar
[[14]]
Jung H J, Kim D, Kim S, et al.. Stability of halide perovskite solar cell devices: in situ observation of oxygen diffusion under biasing [J]. Advanced Materials, 2018, 30(39): e1802769.
CrossRef Google scholar
[[15]]
Sun Q, Fassl P, Becker-Koch D, et al.. Role of microstructure in oxygen induced photodegradation of methylammonium lead triiodide perovskite films [J]. Advanced Energy Materials, 2017, 7(20): 1700977.
CrossRef Google scholar
[[16]]
Meng L, You J-b, Yang Yang. Addressing the stability issue of perovskite solar cells for commercial applications [J]. Nature Communications, 2018, 9(1): 5265.
CrossRef Google scholar
[[17]]
Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, et al.. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers [J]. Angewandte Chemie (International Ed), 2015, 54(28): 8208-8212.
CrossRef Google scholar
[[18]]
Berhe T A, Su W N, Chen C H, et al.. Organometal halide perovskite solar cells: Degradation and stability [J]. Energy & Environmental Science, 2016, 9(2): 323-356.
CrossRef Google scholar
[[19]]
Zhao X, Chen J-z, Park N G. Importance of oxygen partial pressure in annealing NiO film for high efficiency inverted perovskite solar cells [J]. Solar RRL, 2019, 3(4): 1800339.
CrossRef Google scholar
[[20]]
Hawash Z, Ono L K, Qi Y-bing. Moisture and oxygen enhance conductivity of LiTFSI-doped spiro-MeOTAD hole transport layer in perovskite solar cells [J]. Advanced Materials Interfaces, 2021, 8(23): 1600117.
CrossRef Google scholar
[[21]]
Cappel U B, Daeneke T, Bach U. Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance [J]. Nano Letters, 2012, 12(9): 4925-4931.
CrossRef Google scholar
[[22]]
Yang L, Xu B, Bi D-q, et al.. Initial light soaking treatment enables hole transport material to outperform spiro-OMeTAD in solid-state dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2013, 135(19): 7378-7385.
CrossRef Google scholar
[[23]]
Yuan Y-b, Li T, Wang Q, et al.. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells [J]. Science Advances, 2017, 3(3): e1602164.
CrossRef Google scholar
[[24]]
Godding J S W, Ramadan A J, Lin Y H, et al.. Oxidative passivation of metal halide perovskites [J]. Joule, 2019, 3(11): 2716-2731.
CrossRef Google scholar
[[25]]
Fan W-s, Shi Y-l, Shi T-f, et al.. Suppression and reversion of light-induced phase separation in mixed-halide perovskites by oxygen passivation [J]. ACS Energy Letters, 2019, 4(9): 2052-2058.
CrossRef Google scholar
[[26]]
Liu S-c, Li Z-b, Yang Y-s, et al.. Investigation of oxygen passivation for high-performance all-inorganic perovskite solar cells [J]. Journal of the American Chemical Society, 2019, 141(45): 18075-18082.
CrossRef Google scholar
[[27]]
Zhang Z-l, Liu Y-y, Zhang P-y, et al.. Natural passivation of the perovskite layer by oxygen in ambient air to improve the efficiency and stability of perovskite solar cells simultaneously [J]. Organic Electronics, 2021, 88: 106007.
CrossRef Google scholar
[[28]]
He J-l, Fang W-h, Long R, et al.. Superoxide/peroxide chemistry extends charge carriers’ lifetime but undermines chemical stability of CH3NH3PbI3 exposed to oxygen: Time-domain ab initio analysis [J]. Journal of the American Chemical Society, 2019, 141(14): 5798-5807.
CrossRef Google scholar
[[29]]
Yang J-m, Yuan Z-c, Liu X-j, et al.. Oxygen- and water-induced energetics degradation in organometal halide perovskites [J]. ACS Applied Materials & Interfaces, 2018, 10(18): 16225-16230.
CrossRef Google scholar
[[30]]
Luo D-y, Li X-y, Dumont A, et al.. Recent progress on perovskite surfaces and interfaces in optoelectronic devices [J]. Advanced Materials, 2021, 33(30): e2006004.
CrossRef Google scholar
[[31]]
Aziz A, Aristidou N, Bu X-n, et al.. Understanding the enhanced stability of bromide substitution in lead iodide perovskites [J]. Chemistry of Materials, 2020, 32(1): 400-409.
CrossRef Google scholar
[[32]]
Wang K, Ecker B R, Ghosh M, et al.. Light-enhanced oxygen degradation of MAPbBr3 single crystal [J]. Physical Chemistry Chemical Physics, 2024, 26(6): 5027-5037.
CrossRef Google scholar
[[33]]
Ma X-x, Li Z-sheng. The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles calculation [J]. Applied Surface Science, 2018, 428: 140-147.
CrossRef Google scholar
[[34]]
Abdelmageed G, Jewell L, Hellier K, et al.. Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells [J]. Applied Physics Letters, 2016, 109(23): 233905.
CrossRef Google scholar
[[35]]
Ruan S, Surmiak M A, Ruan Y-l, et al.. Light induced degradation in mixed-halide perovskites [J]. Journal of Materials Chemistry C, 2019, 7(30): 9326-9334.
CrossRef Google scholar
[[36]]
Nickel N H, Lang F, Brus V V, et al.. Unraveling the light-induced degradation mechanisms of CH3NH3PbI3 perovskite films [J]. Advanced Electronic Materials, 2017, 3(12): 1700158.
CrossRef Google scholar
[[37]]
Bryant D, Aristidou N, Pont S, et al.. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells [J]. Energy & Environmental Science, 2016, 9(5): 1655-1660.
CrossRef Google scholar
[[38]]
Aristidou N, Eames C, Islam M S, et al.. Insights into the increased degradation rate of CH3NH3PbI3 solar cells in combined water and O2 environments [J]. Journal of Materials Chemistry A, 2017, 5(48): 25469-25475.
CrossRef Google scholar
[[39]]
Péan E V, de Castro C S, Dimitrov S, et al.. Investigating the superoxide formation and stability in mesoporous carbon perovskite solar cells with an aminovaleric acid additive [J]. Advanced Functional Materials, 2020, 30(12): 1909839.
CrossRef Google scholar
[[40]]
Zhou Q, Gao Y-f, Cai C-s, et al.. Dually-passivated perovskite solar cells with reduced voltage loss and increased super oxide resistance [J]. Angewandte Chemie (International Ed), 2021, 60(15): 8303-8312.
CrossRef Google scholar
[[41]]
Chin D H, Chiericato G, Nanni E J, et al.. Proton-induced disproportionation of superoxide ion in aprotic media [J]. Journal of the American Chemical Society, 1982, 104(5): 1296-1299.
CrossRef Google scholar
[[42]]
Hayyan M, Hashim M A, Alnashef I M. Superoxide ion: Generation and chemical implications [J]. Chemical Reviews, 2016, 116(5): 3029-3085.
CrossRef Google scholar
[[43]]
Dąbrowski J M. Reactive oxygen species in photodynamic therapy: Mechanisms of their generation and potentiation [M]. Advances in Inorganic Chemistry, 2017 Amsterdam Elsevier 343-394
[[44]]
Song Z-n, Wang C-l, Phillips A B, et al.. Probing the origins of photodegradation in organic-inorganic metal halide perovskites with time-resolved mass spectrometry [J]. Sustainable Energy & Fuels, 2018, 2(11): 2460-2467.
CrossRef Google scholar
[[45]]
Hoke E T, Slotcavage D J, Dohner E R, et al.. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics [J]. Chemical Science, 2015, 6(1): 613-617.
CrossRef Google scholar
[[46]]
Anaya M, Galisteo-López J F, Calvo M E, et al.. Origin of light-induced photophysical effects in organic metal halide perovskites in the presence of oxygen [J]. The Journal of Physical Chemistry Letters, 2018, 9(14): 3891-3896.
CrossRef Google scholar
[[47]]
Dimesso L, Wittich C, Mayer T, et al.. Phase-change behavior of hot-pressed methylammonium lead bromide hybrid perovskites [J]. Journal of Materials Science, 2019, 54(3): 2001-2015.
CrossRef Google scholar
[[48]]
Zhang L-h, Sit P H L. Ab initio study of the role of oxygen and excess electrons in the degradation of CH3NH3PbI3 [J]. Journal of Materials Chemistry A, 2017, 5(19): 9042-9049.
CrossRef Google scholar
[[49]]
He J-l, Fang W-h, Long R, et al.. Why oxygen increases carrier lifetimes but accelerates degradation of CH3NH3PbI3 under light irradiation: Time-domain ab initio analysis [J]. Journal of the American Chemical Society, 2020, 142(34): 14664-14673.
CrossRef Google scholar
[[50]]
Tsvetkov D S, Mazurin M O, Sereda V V, et al.. Formation thermodynamics, stability, and decomposition pathways of CsPbX 3 (X=Cl, Br, I) photovoltaic materials [J]. The Journal of Physical Chemistry C, 2020, 124(7): 4252-4260.
CrossRef Google scholar
[[51]]
Duan X-x, Duan J-l, Liu N-m, et al.. Inhibited superoxide-induced halide oxidation with a bioactive factor for stabilized inorganic perovskite solar cells [J]. SusMat, 2024, 4(4): e233.
CrossRef Google scholar
[[52]]
Scheidt R A, Kerns E, Kamat P V. Interfacial charge transfer between excited CsPbBr3 nanocrystals and TiO2: Charge injection versus photodegradation [J]. Journal of Physical Chemistry Letters, 2018, 9(20): 5962-5969.
CrossRef Google scholar
[[53]]
Zhang L-q, Yang X-l, Jiang Q, et al.. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes [J]. Nature Communications, 2017, 8: 15640.
CrossRef Google scholar
[[54]]
Quan L-n, Ma D-x, Zhao Y-b, et al.. Edge stabilization in reduced-dimensional perovskites [J]. Nature Communications, 2020, 11(1): 170.
CrossRef Google scholar
[[55]]
Liang D, Peng Y-l, Fu Y-p, et al.. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates [J]. ACS Nano, 2016, 10(7): 6897-6904.
CrossRef Google scholar
[[56]]
Blancon J C, Tsai H, Nie W, et al.. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites [J]. Science, 2017, 355(6331): 1288-1292.
CrossRef Google scholar
[[57]]
Shi E-z, Deng S-b, Yuan B, et al.. Extrinsic and dynamic edge states of two-dimensional lead halide perovskites [J]. ACS Nano, 2019, 13(2): 1635-1644.
CrossRef Google scholar
[[58]]
Aristidou N, Eames C, Sanchez-Molina I, et al.. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells [J]. Nature Communications, 2017, 8(1): 15218.
CrossRef Google scholar
[[59]]
Ni Z-y, Bao C-x, Liu Y, et al.. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells [J]. Science, 2020, 367(6484): 1352-1358.
CrossRef Google scholar
[[60]]
Lin D-x, Shi T-t, Xie H-p, et al.. Ion migration accelerated reaction between oxygen and metal halide perovskites in light and its suppression by cesium incorporation [J]. Advanced Energy Materials, 2021, 11(8): 2002552.
CrossRef Google scholar
[[61]]
Sawyer D T, Valentine J. How super is superoxide [J]. Accounts of Chemical Research, 1981, 14: 393-400.
CrossRef Google scholar
[[62]]
Siegler T D, Dunlap-Shohl W A, Meng Y-h, et al.. Water-accelerated photooxidation of CH3NH3PbI3 perovskite [J]. Journal of the American Chemical Society, 2022, 144(12): 5552-5561.
CrossRef Google scholar
[[63]]
Ouyang Y-x, Shi L, Li Q, et al.. Role of water and defects in photo-oxidative degradation of methylammonium lead iodide perovskite [J]. Small Methods, 2019, 3(7): 1900154.
CrossRef Google scholar
[[64]]
Wang S-h, Jiang Y, Juarez-Perez E J, et al.. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour [J]. Nature Energy, 2017, 2(1): 16195.
CrossRef Google scholar
[[65]]
Ren X-x, Wang J-f, Lin Y, et al.. Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells [J]. Nature Materials, 2024, 23(6): 810-817.
CrossRef Google scholar
[[66]]
Huang W-x, Manser J S, Kamat P V, et al.. Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions [J]. Chemistry of Materials, 2016, 28(1): 303-311.
CrossRef Google scholar
[[67]]
Tang X-f, Brandl M, May B, et al.. Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors [J]. Journal of Materials Chemistry A, 2016, 4(41): 15896-15903.
CrossRef Google scholar
[[68]]
Wang Z-p, Mcmeekin D P, Sakai N, et al.. Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers [J]. Advanced Materials, 2017, 29(5): 1604186.
CrossRef Google scholar
[[69]]
Shi X-q, Ding Y, Zhou S-j, et al.. Enhanced interfacial binding and electron extraction using boron-doped TiO2 for highly efficient hysteresis-free perovskite solar cells [J]. Advanced Science, 2019, 6(21): 1901213.
CrossRef Google scholar
[[70]]
Xu G-y, Wang S-h, Bi P-q, et al.. Hydrophilic fullerene derivative doping in active layer and electron transport layer for enhancing oxygen stability of perovskite solar cells [J]. Solar RRL, 2020, 4(2): 1900249.
CrossRef Google scholar
[[71]]
Shahiduzzaman M, Kulkarni A, Visal S, et al.. A single-phase brookite TiO2 nanoparticle bridge enhances the stability of perovskite solar cells [J]. Sustainable Energy & Fuels, 2020, 4(4): 2009-2017.
CrossRef Google scholar
[[72]]
Luo J-q, Chen J-z, Wu B, et al.. Surface rutilization of anatase TiO2 for efficient electron extraction and stable P max output of perovskite solar cells [J]. Chem, 2018, 4(4): 911-923.
CrossRef Google scholar
[[73]]
He J-l, Zhu Y-h, Fang W-h, et al.. Preventing superoxide generation on molecule-protected CH3NH3PbI3 perovskite: A time-domain ab initio study [J]. Journal of Physical Chemistry Letters, 2021, 12(6): 1664-1670.
CrossRef Google scholar
[[74]]
Geng C, Zhang K-x, Wang C-h, et al.. Crystallization modulation and holistic passivation enables efficient two-terminal perovskite/CuIn(Ga)Se2 tandem solar cells [J]. Nano-Micro Letters, 2024, 17(1): 8.
CrossRef Google scholar
[[75]]
Bai S, Da P-m, Li C, et al.. Planar perovskite solar cells with long-term stability using ionic liquid additives [J]. Nature, 2019, 571(7764): 245-250.
CrossRef Google scholar
[[76]]
Ni Z-y, Jiao H-y, Fei C-b, et al.. Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination [J]. Nature Energy, 2022, 7(1): 65-73.
CrossRef Google scholar
[[77]]
Yuan Y-b, Wang Q, Shao Y-c, et al.. Electric-field-driven reversible conversion between methylammonium lead triiodide perovskites and lead iodide at elevated temperatures [J]. Advanced Energy Materials, 2016, 6(2): 1501803.
CrossRef Google scholar
[[78]]
Kerner R A, Xu Z-j, Larson B W, et al.. The role of halide oxidation in perovskite halide phase separation [J]. Joule, 2021, 5(9): 2273-2295.
CrossRef Google scholar
[[79]]
Lin Y H, Sakai N, Da P-m, et al.. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells [J]. Science, 2020, 369(6499): 96-102.
CrossRef Google scholar
[[80]]
Fu F, Pisoni S, Jeangros Q, et al.. I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat-light soaking conditions [J]. Energy & Environmental Science, 2019, 12(10): 3074-3088.
CrossRef Google scholar
[[81]]
Bu X-n, Westbrook R J E, Lanzetta L, et al.. Surface passivation of perovskite films via iodide salt coatings for enhanced stability of organic lead halide perovskite solar cells [J]. Solar RRL, 2019, 3(2): 1800282.
CrossRef Google scholar
[[82]]
Yang Y, Peng H-r, Liu C, et al.. Bi-functional additive engineering for high-performance perovskite solar cells with reduced trap density [J]. Journal of Materials Chemistry A, 2019, 7(11): 6450-6458.
CrossRef Google scholar
[[83]]
Ouyang Y-x, Li Y-j, Zhu P-c, et al.. Photo-oxidative degradation of methylammonium lead iodide perovskite: Mechanism and protection [J]. Journal of Materials Chemistry A, 2019, 7(5): 2275-2282.
CrossRef Google scholar
[[84]]
Wang J-f, Luo S-q, Lin Y, et al.. Templated growth of oriented layered hybrid perovskites on 3D-like perovskites [J]. Nature Communications, 2020, 11(1): 582.
CrossRef Google scholar
[[85]]
Pont S, Bryant D, Lin C T, et al.. Tuning CH3NH3Pb(I1−xBrx)3 perovskite oxygen stability in thin films and solar cells [J]. Journal of Materials Chemistry A, 2017, 5(20): 9553-9560.
CrossRef Google scholar
[[86]]
Saidaminov M I, Kim J, Jain A, et al.. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air [J]. Nature Energy, 2018, 3(8): 648-654.
CrossRef Google scholar
[[87]]
Zhong Y, Yang J, Wang X-y, et al.. Inhibition of ion migration for highly efficient and stable perovskite solar cells [J]. Advanced Materials, 2023, 35(52): e2302552.
CrossRef Google scholar
[[88]]
Cheng Y-h, Ding L-ming. Pushing commercialization of perovskite solar cells by improving their intrinsic stability [J]. Energy & Environmental Science, 2021, 14(6): 3233-3255.
CrossRef Google scholar
[[89]]
Zhu H-w, Teale S, Lintangpradipto M N, et al.. Long-term operating stability in perovskite photovoltaics [J]. Nature Reviews Materials, 2023, 8: 569-586.
CrossRef Google scholar
[[90]]
Xiang W-c, Liu S-z, Tress W. A review on the stability of inorganic metal halide perovskites: Challenges and opportunities for stable solar cells [J]. Energy & Environmental Science, 2021, 14(4): 2090-2113.
CrossRef Google scholar
[[91]]
Lin C T, Pont S, Kim J, et al.. Passivation against oxygen and light induced degradation by the PCBM electron transport layer in planar perovskite solar cells [J]. Sustainable Energy & Fuels, 2018, 2(8): 1686-1692.
CrossRef Google scholar
[[92]]
Lin C T, de Rossi F, Kim J, et al.. Evidence for surface defect passivation as the origin of the remarkable photostability of unencapsulated perovskite solar cells employing aminovaleric acid as a processing additive [J]. Journal of Materials Chemistry A, 2019, 7(7): 3006-3011.
CrossRef Google scholar
[[93]]
Duan X-p, Li X, Tan L-c, et al.. Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells [J]. Advanced Materials, 2020, 32(26): e2000617.
CrossRef Google scholar
[[94]]
Lim C K, Li Q, Zhang T-m, et al.. Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker [J]. Solar Energy Materials and Solar Cells, 2018, 176: 30-35.
CrossRef Google scholar
[[95]]
Dong C, Li X-m, Ma C, et al.. Lycopene-based bionic membrane for stable perovskite photovoltaics [J]. Advanced Functional Materials, 2021, 31(25): 2011242.
CrossRef Google scholar
[[96]]
Zhuang X-m, Zhou D-l, Liu S-n, et al.. Learning from plants: Lycopene additive passivation toward efficient and “fresh” perovskite solar cells with oxygen and ultraviolet resistance [J]. Advanced Energy Materials, 2022, 12(25): 2200614.
CrossRef Google scholar
[[97]]
Liu F, Valencia A, Zhu Y-h, et al.. Melatonin treatment as an anti-aging therapy for UV-related degradation of perovskite solar cells [J]. Journal of Materials Chemistry A, 2024, 12(20): 11986-11994.
CrossRef Google scholar
[[98]]
Lin K-h, Prlj A, Corminboeuf C. How does alkyl chain length modify the properties of triphenylamine-based hole transport materials? [J]. Journal of Materials Chemistry C, 2018, 6(5): 960-965.
CrossRef Google scholar
[[99]]
Jiang T-t, Fu W-fei. Improved performance and stability of perovskite solar cells with bilayer electron-transporting layers [J]. RSC Advances, 2018, 8(11): 5897-5901.
CrossRef Google scholar
[[100]]
Li M, Zhao C, Wang Z-k, et al.. Interface modification by ionic liquid: A promising candidate for indoor light harvesting and stability improvement of planar perovskite solar cells [J]. Advanced Energy Materials, 2018, 8(24): 1801509.
CrossRef Google scholar
[[101]]
Zheng S-z, Li W-l, Su T-t, et al.. Metal oxide CrOx as a promising bilayer electron transport material for enhancing the performance stability of planar perovskite solar cells [J]. Solar RRL, 2018, 2(6): 1700245.
CrossRef Google scholar
[[102]]
Zhang P, Wu J, Wang Y-f, et al.. Enhanced efficiency and environmental stability of planar perovskite solar cells by suppressing photocatalytic decomposition [J]. Journal of Materials Chemistry A, 2017, 5(33): 17368-17378.
CrossRef Google scholar
[[103]]
Shen H-p, Duong T, Peng J, et al.. Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity [J]. Energy & Environmental Science, 2018, 11(2): 394-406.
CrossRef Google scholar
[[104]]
Sanchez R S, Mas-Marza E. Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells [J]. Solar Energy Materials and Solar Cells, 2016, 158: 189-194.
CrossRef Google scholar
[[105]]
Christians J A, Schulz P, Tinkham J S, et al.. Tailored interfaces of unencapsulated perovskite solar cells for >1, 000 hour operational stability [J]. Nature Energy, 2018, 3(1): 68-74.
CrossRef Google scholar
[[106]]
You J-b, Meng L, Song T B, et al.. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers [J]. Nature Nanotechnology, 2016, 11(1): 75-81.
CrossRef Google scholar
[[107]]
Wu C-c, Wang K, Feng X, et al.. Ultrahigh durability perovskite solar cells [J]. Nano Letters, 2019, 19(2): 1251-1259.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/