Electrochemical behavior of Fe(III) in Na2SiO3-SiO2-Fe2O3 molten salt

Sen Feng, Jun-jie Zhang, Mouhamadou Aziz Diop, Ai-min Liu, Zhao-wen Wang, Miroslav Boča, Zhong-ning Shi

Journal of Central South University ›› 2024, Vol. 31 ›› Issue (9) : 3024-3033.

Journal of Central South University All Journals
Journal of Central South University ›› 2024, Vol. 31 ›› Issue (9) : 3024-3033. DOI: 10.1007/s11771-024-5803-4
Article

Electrochemical behavior of Fe(III) in Na2SiO3-SiO2-Fe2O3 molten salt

Author information +
History +

Abstract

The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges. This study investigates the electrochemical reduction of Fe(III) in a novel low-temperature electrolyte, Na2SiO3-SiO2-Fe2O3, utilizing cyclic voltammetry and square wave voltammetry techniques. The results show that Fe(III) reduction occurs in two steps: Fe(III)+e→Fe(II), Fe(II)+2e→Fe, and that the redox process of Fe(III)/Fe(II) at the tungsten electrode is an irreversible reaction controlled by diffusion. The diffusion coefficients of Fe(III) in the molten Na2SiO3-SiO2-Fe2O3 in the temperature range of 1248–1278 K are between 1.86×10−6 cm2/s and 1.58×10−4 cm2/s. The diffusion activation energy of Fe(III) in the molten salt is 1825.41 kJ/mol. As confirmed by XRD analysis, potentiostatic electrolysis at −0.857 V (vs. O2/O(complex)2) for 6 h produces metallic iron on the cathode.

Cite this article

Download citation ▾
Sen Feng, Jun-jie Zhang, Mouhamadou Aziz Diop, Ai-min Liu, Zhao-wen Wang, Miroslav Boča, Zhong-ning Shi. Electrochemical behavior of Fe(III) in Na2SiO3-SiO2-Fe2O3 molten salt. Journal of Central South University, 2024, 31(9): 3024‒3033 https://doi.org/10.1007/s11771-024-5803-4
This is a preview of subscription content, contact us for subscripton.

References

[1]
ZhaoY-q, ZhouW-t, LyuX-j, et al. . Effect of reducing agents on reducing atmosphere in coal-based direct reduction of beach titanomagnetite [J]. Journal of Central South University, 2022, 29(11): 3670-3677
CrossRef Google scholar
[2]
WuS-c, LiZ-y, SunT-c, et al. . Effect of calcium compounds on direct reduction and phosphorus removal of high-phosphorus iron ore [J]. Journal of Central South University, 2022, 29(2): 443-454
CrossRef Google scholar
[3]
RechbergerK, SpanlangA, Sasiain CondeA, et al. . Green hydrogen-based direct reduction for low-carbon steelmaking [J]. Steel Research International, 2020, 91(11): 2000110-2000120
CrossRef Google scholar
[4]
MeijerK, DenysM, LasarJ, et al. . ULCOS: Ultra-low CO2 steelmaking [J]. Ironmaking & Steelmaking, 2009, 36(4): 249-251
CrossRef Google scholar
[5]
LiH, GuoX-y, ShiY, et al. . Selective hydrogen reduction of binary iron-cobalt chlorides [J]. Journal of Central South University, 2023, 30(12): 3991-4003
CrossRef Google scholar
[6]
WuJ-t, XuB, DongZ-l, et al. . Preparation of high-purity reduced iron powder by Höganäs process from ultra-pure magnetite concentrate [J]. Journal of Central South University, 2023, 30(9): 3006-3020
CrossRef Google scholar
[7]
YuanB-y, Edvard KongsteinO, HaarbergG M. Electrowinning of iron in aqueous alkaline solution using a rotating cathode [J]. Journal of the Electrochemical Society, 2009, 156(2): D64
CrossRef Google scholar
[8]
HeZ, GudavarthyR V, KozaJ A, et al. . Room-temperature electrochemical reduction of epitaxial magnetite films to epitaxial iron films [J]. Journal of the American Chemical Society, 2011, 133(32): 12358-12361
CrossRef Google scholar
[9]
BurheimO, HaarbergG M. Effects of inert anodes in the FFC Cambridge reduction of hematite [J]. Mineral Processing and Extractive Metallurgy, 2010, 119(2): 77-81
CrossRef Google scholar
[10]
LiG-m, WangD-h, ChenZhen. Direct reduction of solid Fe2O3 in molten CaCl2 by potentially green process [J]. Journal of Materials Science & Technology, 2009, 25(6): 767-771
[11]
CoxA, FrayD J. Mechanistic investigation into the electrolytic formation of iron from iron(III) oxide in molten sodium hydroxide [J]. Journal of Applied Electrochemistry, 2008, 38(10): 1401-1407
CrossRef Google scholar
[12]
YinH-y, TangD-y, ZhuH, et al. . Production of iron and oxygen in molten K2CO3-Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode [J]. Electrochemistry Communications, 2011, 13(12): 1521-1524
CrossRef Google scholar
[13]
TangD-y, YinH-y, XiaoW, et al. . Reduction mechanism and carbon content investigation for electrolytic production of iron from solid Fe2O3 in molten K2CO3-Na2CO3 using an inert anode [J]. Journal of Electroanalytical Chemistry, 2013, 689: 109-116
CrossRef Google scholar
[14]
ZhuY-l, KatayamaY, MiuraT. Electrochemical preparation of nickel and iron nanoparticles in a hydrophobic ionic liquid [J]. Electrochemical and Solid-State Letters, 2011, 14(12): D110
CrossRef Google scholar
[15]
LoN C, ChungP C, ChuangW J, et al. . Voltammetric study and electrodeposition of Ni(II)/Fe(II) in the ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide [J]. Journal of the Electrochemical Society, 2015, 163(2): D9-D16
CrossRef Google scholar
[16]
YamagataM, TachikawaN, KatayamaY, et al. . Electrochemical behavior of several iron complexes in hydrophobic room-temperature ionic liquids [J]. Electrochimica Acta, 2007, 52(9): 3317-3322
CrossRef Google scholar
[17]
WangS-a, HaarbergG M, KvalheimE. Electrochemical behavior of dissolved Fe2O3 in molten CaCl2-KF [J]. Journal of Iron and Steel Research International, 2008, 15(6): 48-51
CrossRef Google scholar
[18]
HaarbergG M, KvalheimE, RolsethS, et al. . Electrodeposition of iron from molten mixed chloride/fluoride electrolytes [J]. ECS Transactions, 2007, 3(35): 341-345
CrossRef Google scholar
[19]
CuiB-c, LichtS. Critical STEP advances for sustainable iron production [J]. Green Chemistry, 2013, 15(4): 881-884
CrossRef Google scholar
[20]
AllanoreA, YinL, SadowayD R. A new anode material for oxygen evolution in molten oxide electrolysis [J]. Nature, 2013, 497: 353-356
CrossRef Google scholar
[21]
WangD-h, GmitterA J, SadowayD R. Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide [J]. Journal of the Electrochemical Society, 2011, 158(6): E51
CrossRef Google scholar
[22]
ZhouZ-g, JiaoH-d, TuJ-g, et al. . Direct production of Fe and Fe-Ni alloy via molten oxides electrolysis [J]. Journal of the Electrochemical Society, 2017, 164(6): E113-E116
CrossRef Google scholar
[23]
ZhangK, JiaoH-d, ZhouZ-g, et al. . Electrochemical behavior of Fe (III) ion in CaO-MgO-SiO2-Al2O3-NaF-Fe2O3 Melts at 1673 K [J]. Journal of the Electrochemical Society, 2016, 163(13): D710-D714
CrossRef Google scholar
[24]
LichtS, WangB-hui. High solubility pathway for the carbon dioxide free production of iron [J]. Chemical Communications, 2010, 46(37): 7004-7006
CrossRef Google scholar
[25]
LichtS, WuH-j, ZhangZ-h, et al. . Chemical mechanism of the high solubility pathway for the carbon dioxide free production of iron [J]. Chemical Communications, 2011, 47(11): 3081-3083
CrossRef Google scholar
[26]
LuX, ZhangZ-y, HirakiT, et al. . A solid-state electrolysis process for upcycling aluminium scrap [J]. Nature, 2022, 606: 511-515
CrossRef Google scholar
[27]
GaoY-m, HeL, QinQ-w, et al. . ZrO2 Solid electrolyte aided investigation on electrodeposition in Na3AlF6-SiO2 melt [J]. Acta Metallurgica Sinica, 2022, 58(10): 1292-1304
[28]
KuznetsovaS V, DolmatovV S, KuznetsovS A. Voltammetric study of electroreduction of silicon complexes in a chloride-fluoride melt [J]. Russian Journal of Electrochemistry, 2009, 45(7): 742-748
CrossRef Google scholar
[29]
CaiZ-y, LiY-g, HeX-f, et al. . Electrochemical behavior of silicon in the (NaCl-KCl-NaF-SiO2) molten salt [J]. Metallurgical and Materials Transactions B, 2010, 41(5): 1033-1037
CrossRef Google scholar
[30]
HuY-j, WangX, XiaoJ-s, et al. . Electrochemical behavior of silicon (IV) ion in BaF2-CaF2-SiO2 melts at 1573 K [J]. Journal of the Electrochemical Society, 2013, 160(3): D81-D84
CrossRef Google scholar
[31]
LiJ-d, RenH, GuoF, et al. . Research on the electrochemical behavior of Si(IV) on the tungsten electrode in CaCl2-CaF2-CaO molten melt [J]. Russian Journal of Non-Ferrous Metals, 2018, 59(5): 486-492
CrossRef Google scholar
[32]
LiJ-d, RenH, YinX, et al. . Electrochemical behavior of Si(IV) on the Mo electrode in the CaCl2-CaF2-CaO-SiO2 melt [J]. Russian Journal of Electrochemistry, 2019, 55(5): 392-400
CrossRef Google scholar
[33]
HaarbergG M, FamiyehL, MartinezA M, et al. . Electrodeposition of silicon from fluoride melts [J]. Electrochimica Acta, 2013, 100: 226-228
CrossRef Google scholar
[34]
BardA J, FaulknerL R. Electrochemical methods: Fundamentals and applications[M], 2005 2nd Ed. New York John Wiley & Sons Inc.
[35]
WangY-c, QuanM-y, ZhangS, et al. . Electrochemical extraction of gadolinium on Sn electrode and preparation of Sn-Gd intermetallic compounds in LiCl-KCl melts [J]. Journal of Alloys and Compounds, 2022, 907: 164220
CrossRef Google scholar
[36]
WangY-c, LiuQ, ZhangS, et al. . Electrolytic extraction of yttrium using recycle liquid gallium electrode from molten LiCl-KCl [J]. Separation and Purification Technology, 2022, 294: 120972
CrossRef Google scholar
[37]
ZhangJ-suo. Electrochemistry of actinides and fission products in molten salts—Data review [J]. Journal of Nuclear Materials, 2014, 447(1–3): 271-284
CrossRef Google scholar

25

Accesses

0

Citations

Detail

Sections
Recommended

/