Electrochemical behavior of Fe(III) in Na2SiO3-SiO2-Fe2O3 molten salt

Sen Feng , Jun-jie Zhang , Mouhamadou Aziz Diop , Ai-min Liu , Zhao-wen Wang , Miroslav Boča , Zhong-ning Shi

Journal of Central South University ›› 2024, Vol. 31 ›› Issue (9) : 3024 -3033.

PDF
Journal of Central South University ›› 2024, Vol. 31 ›› Issue (9) : 3024 -3033. DOI: 10.1007/s11771-024-5803-4
Article

Electrochemical behavior of Fe(III) in Na2SiO3-SiO2-Fe2O3 molten salt

Author information +
History +
PDF

Abstract

The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges. This study investigates the electrochemical reduction of Fe(III) in a novel low-temperature electrolyte, Na2SiO3-SiO2-Fe2O3, utilizing cyclic voltammetry and square wave voltammetry techniques. The results show that Fe(III) reduction occurs in two steps: Fe(III)+e→Fe(II), Fe(II)+2e→Fe, and that the redox process of Fe(III)/Fe(II) at the tungsten electrode is an irreversible reaction controlled by diffusion. The diffusion coefficients of Fe(III) in the molten Na2SiO3-SiO2-Fe2O3 in the temperature range of 1248–1278 K are between 1.86×10−6 cm2/s and 1.58×10−4 cm2/s. The diffusion activation energy of Fe(III) in the molten salt is 1825.41 kJ/mol. As confirmed by XRD analysis, potentiostatic electrolysis at −0.857 V (vs. $\mathrm{O}_{2}/\mathrm{O}_{(\text{complex})}^{2-}$) for 6 h produces metallic iron on the cathode.

Keywords

molten oxide electrolysis (MOE) / electrochemical behavior / cyclic voltammetry / potentiostatic electrolysis / diffusion coefficients / Fe(III)

Cite this article

Download citation ▾
Sen Feng, Jun-jie Zhang, Mouhamadou Aziz Diop, Ai-min Liu, Zhao-wen Wang, Miroslav Boča, Zhong-ning Shi. Electrochemical behavior of Fe(III) in Na2SiO3-SiO2-Fe2O3 molten salt. Journal of Central South University, 2024, 31(9): 3024-3033 DOI:10.1007/s11771-024-5803-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao Y-q, Zhou W-t, Lyu X-j, et al. Effect of reducing agents on reducing atmosphere in coal-based direct reduction of beach titanomagnetite [J]. Journal of Central South University, 2022, 29(11): 3670-3677

[2]

Wu S-c, Li Z-y, Sun T-c, et al. Effect of calcium compounds on direct reduction and phosphorus removal of high-phosphorus iron ore [J]. Journal of Central South University, 2022, 29(2): 443-454

[3]

Rechberger K, Spanlang A, Sasiain Conde A, et al. Green hydrogen-based direct reduction for low-carbon steelmaking [J]. Steel Research International, 2020, 91(11): 2000110-2000120

[4]

Meijer K, Denys M, Lasar J, et al. ULCOS: Ultra-low CO2 steelmaking [J]. Ironmaking & Steelmaking, 2009, 36(4): 249-251

[5]

Li H, Guo X-y, Shi Y, et al. Selective hydrogen reduction of binary iron-cobalt chlorides [J]. Journal of Central South University, 2023, 30(12): 3991-4003

[6]

Wu J-t, Xu B, Dong Z-l, et al. Preparation of high-purity reduced iron powder by Höganäs process from ultra-pure magnetite concentrate [J]. Journal of Central South University, 2023, 30(9): 3006-3020

[7]

Yuan B-y, Edvard Kongstein O, Haarberg G M. Electrowinning of iron in aqueous alkaline solution using a rotating cathode [J]. Journal of the Electrochemical Society, 2009, 156(2): D64

[8]

He Z, Gudavarthy R V, Koza J A, et al. Room-temperature electrochemical reduction of epitaxial magnetite films to epitaxial iron films [J]. Journal of the American Chemical Society, 2011, 133(32): 12358-12361

[9]

Burheim O, Haarberg G M. Effects of inert anodes in the FFC Cambridge reduction of hematite [J]. Mineral Processing and Extractive Metallurgy, 2010, 119(2): 77-81

[10]

Li G-m, Wang D-h, Chen Zhen. Direct reduction of solid Fe2O3 in molten CaCl2 by potentially green process [J]. Journal of Materials Science & Technology, 2009, 25(6): 767-771

[11]

Cox A, Fray D J. Mechanistic investigation into the electrolytic formation of iron from iron(III) oxide in molten sodium hydroxide [J]. Journal of Applied Electrochemistry, 2008, 38(10): 1401-1407

[12]

Yin H-y, Tang D-y, Zhu H, et al. Production of iron and oxygen in molten K2CO3-Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode [J]. Electrochemistry Communications, 2011, 13(12): 1521-1524

[13]

Tang D-y, Yin H-y, Xiao W, et al. Reduction mechanism and carbon content investigation for electrolytic production of iron from solid Fe2O3 in molten K2CO3-Na2CO3 using an inert anode [J]. Journal of Electroanalytical Chemistry, 2013, 689: 109-116

[14]

Zhu Y-l, Katayama Y, Miura T. Electrochemical preparation of nickel and iron nanoparticles in a hydrophobic ionic liquid [J]. Electrochemical and Solid-State Letters, 2011, 14(12): D110

[15]

Lo N C, Chung P C, Chuang W J, et al. Voltammetric study and electrodeposition of Ni(II)/Fe(II) in the ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide [J]. Journal of the Electrochemical Society, 2015, 163(2): D9-D16

[16]

Yamagata M, Tachikawa N, Katayama Y, et al. Electrochemical behavior of several iron complexes in hydrophobic room-temperature ionic liquids [J]. Electrochimica Acta, 2007, 52(9): 3317-3322

[17]

Wang S-a, Haarberg G M, Kvalheim E. Electrochemical behavior of dissolved Fe2O3 in molten CaCl2-KF [J]. Journal of Iron and Steel Research International, 2008, 15(6): 48-51

[18]

Haarberg G M, Kvalheim E, Rolseth S, et al. Electrodeposition of iron from molten mixed chloride/fluoride electrolytes [J]. ECS Transactions, 2007, 3(35): 341-345

[19]

Cui B-c, Licht S. Critical STEP advances for sustainable iron production [J]. Green Chemistry, 2013, 15(4): 881-884

[20]

Allanore A, Yin L, Sadoway D R. A new anode material for oxygen evolution in molten oxide electrolysis [J]. Nature, 2013, 497: 353-356

[21]

Wang D-h, Gmitter A J, Sadoway D R. Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide [J]. Journal of the Electrochemical Society, 2011, 158(6): E51

[22]

Zhou Z-g, Jiao H-d, Tu J-g, et al. Direct production of Fe and Fe-Ni alloy via molten oxides electrolysis [J]. Journal of the Electrochemical Society, 2017, 164(6): E113-E116

[23]

Zhang K, Jiao H-d, Zhou Z-g, et al. Electrochemical behavior of Fe (III) ion in CaO-MgO-SiO2-Al2O3-NaF-Fe2O3 Melts at 1673 K [J]. Journal of the Electrochemical Society, 2016, 163(13): D710-D714

[24]

Licht S, Wang B-hui. High solubility pathway for the carbon dioxide free production of iron [J]. Chemical Communications, 2010, 46(37): 7004-7006

[25]

Licht S, Wu H-j, Zhang Z-h, et al. Chemical mechanism of the high solubility pathway for the carbon dioxide free production of iron [J]. Chemical Communications, 2011, 47(11): 3081-3083

[26]

Lu X, Zhang Z-y, Hiraki T, et al. A solid-state electrolysis process for upcycling aluminium scrap [J]. Nature, 2022, 606: 511-515

[27]

Gao Y-m, He L, Qin Q-w, et al. ZrO2 Solid electrolyte aided investigation on electrodeposition in Na3AlF6-SiO2 melt [J]. Acta Metallurgica Sinica, 2022, 58(10): 1292-1304

[28]

Kuznetsova S V, Dolmatov V S, Kuznetsov S A. Voltammetric study of electroreduction of silicon complexes in a chloride-fluoride melt [J]. Russian Journal of Electrochemistry, 2009, 45(7): 742-748

[29]

Cai Z-y, Li Y-g, He X-f, et al. Electrochemical behavior of silicon in the (NaCl-KCl-NaF-SiO2) molten salt [J]. Metallurgical and Materials Transactions B, 2010, 41(5): 1033-1037

[30]

Hu Y-j, Wang X, Xiao J-s, et al. Electrochemical behavior of silicon (IV) ion in BaF2-CaF2-SiO2 melts at 1573 K [J]. Journal of the Electrochemical Society, 2013, 160(3): D81-D84

[31]

Li J-d, Ren H, Guo F, et al. Research on the electrochemical behavior of Si(IV) on the tungsten electrode in CaCl2-CaF2-CaO molten melt [J]. Russian Journal of Non-Ferrous Metals, 2018, 59(5): 486-492

[32]

Li J-d, Ren H, Yin X, et al. Electrochemical behavior of Si(IV) on the Mo electrode in the CaCl2-CaF2-CaO-SiO2 melt [J]. Russian Journal of Electrochemistry, 2019, 55(5): 392-400

[33]

Haarberg G M, Famiyeh L, Martinez A M, et al. Electrodeposition of silicon from fluoride melts [J]. Electrochimica Acta, 2013, 100: 226-228

[34]

Bard A J, Faulkner L R. Electrochemical methods: Fundamentals and applications[M], 2005 2nd Ed. New York: John Wiley & Sons Inc.

[35]

Wang Y-c, Quan M-y, Zhang S, et al. Electrochemical extraction of gadolinium on Sn electrode and preparation of Sn-Gd intermetallic compounds in LiCl-KCl melts [J]. Journal of Alloys and Compounds, 2022, 907: 164220

[36]

Wang Y-c, Liu Q, Zhang S, et al. Electrolytic extraction of yttrium using recycle liquid gallium electrode from molten LiCl-KCl [J]. Separation and Purification Technology, 2022, 294: 120972

[37]

Zhang J-suo. Electrochemistry of actinides and fission products in molten salts—Data review [J]. Journal of Nuclear Materials, 2014, 447(1–3): 271-284

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/