Prolonging charge carrier lifetime via reinforcing molecular stacking for high-efficiency organic solar cells

Ya-hui Bai, Ke Wang, Xiang-xi Wu, Dan He, Xiao-jun Li, Jian-qi Zhang, Yong-fang Li, Fu-wen Zhao

Journal of Central South University ›› 2024

Journal of Central South University ›› 2024 DOI: 10.1007/s11771-024-5776-3
Article

Prolonging charge carrier lifetime via reinforcing molecular stacking for high-efficiency organic solar cells

Author information +
History +

Abstract

Limited charge carrier lifetime (τ) leads to the short charge carrier diffusion length (L D) and thus impedes the improvement of power conversion efficiencies (PCEs) of organic solar cells (OSCs). Herein, anthracene (AN) as the additive is introduced into classical donor: acceptor pairs to increase the τ. Introducing AN efficiently enhances the crystallinity of the PM6:BTP-eC9+ blend film to reduce the trap density and increase the τ to 1.48 µs, achieving the prolonged L D. The prolonged L D enables the PM6:BTP-eC9+ blend film to gain weaker charge carrier recombination, reduced leakage current, and shorter charge carrier extraction time in devices, compared with PM6: BTP-eC9 counterparts. Therefore, PM6:BTP-eC9+ based OSCs achieve higher PCEs of 18.41%±0.16% than PM6:BTP-eC9 based ones (17.08%±0.11%). Moreover, the PM6:L8-BO+ based OSC presents an impressive PCE of 19.14%. It demonstrates that introducing AN is an efficient method to increase the τ for prolonged L D, boosting PCEs of OSCs.

Cite this article

Download citation ▾
Ya-hui Bai, Ke Wang, Xiang-xi Wu, Dan He, Xiao-jun Li, Jian-qi Zhang, Yong-fang Li, Fu-wen Zhao. Prolonging charge carrier lifetime via reinforcing molecular stacking for high-efficiency organic solar cells. Journal of Central South University, 2024 https://doi.org/10.1007/s11771-024-5776-3

References

[[1]]
Brinkmann K O, Wang P, Lang F, et al.. Perovskite-organic tandem solar cells [J]. Nature Reviews Materials, 2024, 9(3): 202-217
CrossRef Google scholar
[[2]]
Li G, Zhu R, Yang Y. Polymer solar cells [J]. Nature Photonics, 2012, 6(3): 153-161
CrossRef Google scholar
[[3]]
Zhao F-W, Zhang H-T, Zhang R, et al.. Emerging approaches in enhancing the efficiency and stability in non-fullerene organic solar cells [J]. Advanced Energy Materials, 2020, 10(47): 2002746
CrossRef Google scholar
[[4]]
He D, Zhou J-X, Zhu Y-F, et al.. Manipulating vertical phase separation enables pseudoplanar heterojunction organic solar cells over 19% efficiency via ternary polymerization [J]. Advanced Materials, 2024, 36(5): e2308909
CrossRef Google scholar
[[5]]
Zhou J-X, He D, Li Y-W, et al.. Reducing trap density in organic solar cells via extending the fused ring donor unit of an A-D-A-type nonfullerene acceptor for over 17% efficiency [J]. Advanced Materials, 2023, 35(3): 2207336
CrossRef Google scholar
[[6]]
Li T-F, Zhan X-W. Advances in organic photovoltaics [J]. Acta Chimica Sinica, 2021, 79(3): 257
CrossRef Google scholar
[[7]]
Chang J-H, Liu K, Lin S-Y, et al.. Solution-processed perovskite solar cells [J]. Journal of Central South University, 2020, 27(4): 1104-1133
CrossRef Google scholar
[[8]]
Liu F, Zhao W, Tumbleston J R, et al.. Understanding the morphology of PTB7: PCBM blends in organic photovoltaics [J]. Advanced Energy Materials, 2014, 4(5): 1301377
CrossRef Google scholar
[[9]]
Lin Y-Z, Zhao F-W, Prasad S K K, et al.. Balanced partnership between donor and acceptor components in nonfullerene organic solar cells with >12% efficiency [J]. Advanced Materials, 2018, 30(16): e1706363
CrossRef Google scholar
[[10]]
Li T-H, Chen Z-X, Wang Y-Y, et al.. Materials for interfaces in organic solar cells and photodetectors [J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3301-3326
CrossRef Google scholar
[[11]]
Mahmood A, Wang J-L. Machine learning for high performance organic solar cells: Current scenario and future prospects [J]. Energy & Environmental Science, 2021, 14(1): 90-105
CrossRef Google scholar
[[12]]
Kan B, Kan Y-Y, Zuo L-J, et al.. Recent progress on all-small molecule organic solar cells using small-molecule nonfullerene acceptors [J]. InfoMat, 2021, 3(2): 175-200
CrossRef Google scholar
[[13]]
Lin Y-Z, Wang J-Y, Zhang Z-G, et al.. An electron acceptor challenging fullerenes for efficient polymer solar cells [J]. Advanced Materials, 2015, 27(7): 1170-1174
CrossRef Google scholar
[[14]]
Yan C-Q, Barlow S, Wang Z-H, et al.. Non-fullerene acceptors for organic solar cells [J]. Nature Reviews Materials, 2018, 3(3): 18003
CrossRef Google scholar
[[15]]
Wang J-Y, Xue P-Y, Jiang Y-T, et al.. The principles, design and applications of fused-ring electron acceptors [J]. Nature Reviews Chemistry, 2022, 6(9): 614-634
CrossRef Google scholar
[[16]]
Wang J-Y, Xie Y, Chen K, et al.. Physical insights into non-fullerene organic photovoltaics [J]. Nature Reviews Physics, 2024, 6: 365-381
CrossRef Google scholar
[[17]]
Sun Y-D, Wang L, Guo C-H, et al.. π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency [J]. Journal of the American Chemical Society, 2024, 146(17): 12011-12019
CrossRef Google scholar
[[18]]
Liu L, Xiao H-R, Jin K, et al.. 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency [J]. Nano-Micro Letters, 2022, 15(1): 23
CrossRef Google scholar
[[19]]
Cao R, Chen Y, Cai F-F, et al.. A new chlorinated non-fullerene acceptor based organic photovoltaic cells over 12% efficiency [J]. Journal of Central South University, 2020, 27(12): 3581-3593
CrossRef Google scholar
[[20]]
Li Z, Chen H-G, Yuan J, et al.. A new low-bandgap polymer acceptor based on benzotriazole for efficient all-polymer solar cells [J]. Journal of Central South University, 2021, 28(7): 1919-1931
CrossRef Google scholar
[[21]]
He D, Zhao F-W, Wang C-R, et al.. Non-radiative recombination energy losses in non-fullerene organic solar cells [J]. Advanced Functional Materials, 2022, 32(19): 2111855
CrossRef Google scholar
[[22]]
He D, Li Y-W, Zhao F-W, et al.. Trap suppression in ordered organic photovoltaic heterojunctions [J]. Chemical Communications, 2024, 60(4): 364-373
CrossRef Google scholar
[[23]]
Zhao F-W, He D, Zou C, et al.. Fullerene-liquid-crystal-induced micrometer-scale charge-carrier diffusion in organic bulk heterojunction [J]. Advanced Materials, 2023, 35(9): e2210463
CrossRef Google scholar
[[24]]
Chang Y-L, Zhu X-W, Lu K, et al.. Progress and prospects of thick-film organic solar cells [J]. Journal of Materials Chemistry A, 2021, 9(6): 3125-3150
CrossRef Google scholar
[[25]]
Xue P-Y, Cheng P, Han R P S, et al.. Printing fabrication of large-area non-fullerene organic solar cells [J]. Materials Horizons, 2022, 9(1): 194-219
CrossRef Google scholar
[[26]]
Johnston M B, Herz L M. Hybrid perovskites for photovoltaics: Charge-carrier recombination, diffusion, and radiative efficiencies [J]. Accounts of Chemical Research, 2016, 49(1): 146-154
CrossRef Google scholar
[[27]]
Jahn U, Dhar S, Hey R, et al.. Influence of localization on the carrier diffusion in GaAs/(Al, Ga)As and (In, Ga)(As, N)/GaAs quantum wells: A comparative study [J]. Physical Review B, 2006, 73: 125303
CrossRef Google scholar
[[28]]
Steinhauser B, Niewelt T, Richter A, et al.. Extraordinarily high minority charge carrier lifetime observed in crystalline silicon [J]. Solar RRL, 2021, 5(11): 2100605
CrossRef Google scholar
[[29]]
Nguyen T L, Choi H, Ko S J, et al.. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ∼300 nm thick conventional single-cell device [J]. Energy & Environmental Science, 2014, 7(9): 3040-3051
CrossRef Google scholar
[[30]]
Zhao F-W, Zhou J-X, He D, et al.. Low-cost materials for organic solar cells [J]. Journal of Materials Chemistry C, 2021, 9(43): 15395-15406
CrossRef Google scholar
[[31]]
Tokmoldin N, Hosseini S M, Raoufi M, et al.. Extraordinarily long diffusion length in PM6: Y6 organic solar cells [J]. Journal of Materials Chemistry A, 2020, 8(16): 7854-7860
CrossRef Google scholar
[[32]]
Baumann A, Lorrmann J, Rauh D, et al.. A new approach for probing the mobility and lifetime of photogenerated charge carriers in organic solar cells under real operating conditions [J]. Advanced Materials, 2012, 24(32): 4381-4386
CrossRef Google scholar
[[33]]
Pivrikas A, Neugebauer H, Sariciftci N S. Charge carrier lifetime and recombination in bulk heterojunction solar cells [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(6): 1746-1758
CrossRef Google scholar
[[34]]
Zhao F-W, Wang C-R, Zhan X-W. Morphology control in organic solar cells [J]. Advanced Energy Materials, 2018, 8(28): 1703147
CrossRef Google scholar
[[35]]
Lu H, Chen K, Bobba R S, et al.. Simultaneously enhancing exciton/charge transport in organic solar cells by an organoboron additive [J]. Advanced Materials, 2022, 34(42): e2205926
CrossRef Google scholar
[[36]]
Dai S-X, Zhao F-W, Zhang Q-Q, et al.. Fused nonacyclic electron acceptors for efficient polymer solar cells [J]. Journal of the American Chemical Society, 2017, 139(3): 1336-1343
CrossRef Google scholar
[[37]]
Li Y-M, Shi J-J, Yu B-C, et al.. Exploiting electrical transients to quantify charge loss in solar cells [J]. Joule, 2020, 4(2): 472-489
CrossRef Google scholar
[[38]]
Zhang L-L, Zhu X-W, Deng D, et al.. High miscibility compatible with ordered molecular packing enables an excellent efficiency of 16.2% in all-small-molecule organic solar cells [J]. Advanced Materials, 2022, 34(5): e2106316
CrossRef Google scholar
[[39]]
Zhao Q-Q, Liu J-G, Wang H-Y, et al.. Balancing the H- and J-aggregation in DTS(PTTh2)2/PC70BM to yield a high photovoltaic efficiency [J]. Journal of Materials Chemistry C, 2015, 3(31): 8183-8192
CrossRef Google scholar
[[40]]
Spano F C. The spectral signatures of Frenkel polarons in H- and J-aggregates [J]. Accounts of Chemical Research, 2010, 43(3): 429-439
CrossRef Google scholar
[[41]]
Han Z-Q, Wang K, Chai Y-Q, et al.. Regulating the miscibility of donors/acceptors to manipulate the morphology and reduce non-radiative recombination energy loss enables efficient organic solar cells [J]. Journal of Materials Chemistry C, 2024, 12(11): 3873-3880
CrossRef Google scholar
[[42]]
Lin Y-Z, Zhao F-W, Wu Y, et al.. Mapping polymer donors toward high-efficiency fullerene free organic solar cells [J]. Advanced Materials, 2017, 29(3): 1604155
CrossRef Google scholar
[[43]]
Coropceanu V, Cornil J, da Silva Filho D A, et al.. Charge transport in organic semiconductors [J]. Chemical Reviews, 2007, 107(4): 926-952
CrossRef Google scholar
[[44]]
Fraboni B, Femoni C, Mencarelli I, et al.. Solution-grown, macroscopic organic single crystals exhibiting three-dimensional anisotropic charge-transport properties [J]. Advanced Materials, 2009, 21(18): 1835-1839
CrossRef Google scholar
[[45]]
Dequilettes D W, Frohna K, Emin D, et al.. Charge-carrier recombination in halide perovskites [J]. Chemical Reviews, 2019, 119(20): 11007-11019
CrossRef Google scholar
[[46]]
Clarke T M, Lungenschmied C, Peet J, et al.. A comparison of five experimental techniques to measure charge carrier lifetime in polymer/fullerene solar cells [J]. Advanced Energy Materials, 2015, 5(4): 1401345
CrossRef Google scholar
[[47]]
Haneef H F, Zeidell A M, Jurchescu O D. Charge carrier traps in organic semiconductors: A review on the underlying physics and impact on electronic devices [J]. Journal of Materials Chemistry C, 2020, 8(3): 759-787
CrossRef Google scholar
[[48]]
Garcia-Belmonte G, Boix P P, Bisquert J, et al.. Simultaneous determination of carrier lifetime and electron density-of-states in P3HT: PCBM organic solar cells under illumination by impedance spectroscopy [J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 366-375
CrossRef Google scholar
[[49]]
ZHENG Zhong, HU Qin, ZHANG Shao-qing, et al. A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer [J]. Advanced Materials, 2018: e1801801. DOI: https://doi.org/10.1002/adma.201801801.
[[50]]
Guan H, Liao Q-G, Huang T-H, et al.. Solid additive enables organic solar cells with efficiency up to 18.6% [J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25774-25782
CrossRef Google scholar
[[51]]
Deng J-W, Huang B, Li W-H, et al.. Ferroelectric polymer drives performance enhancement of non-fullerene organic solar cells [J]. Angewandte Chemie (International Ed), 2022, 61(25): e202202177
CrossRef Google scholar
[[52]]
Zhu Y-F, He D, Wang C, et al.. Suppressing exciton-vibration coupling to prolong exciton lifetime of nonfullerene acceptors enables high-efficiency organic solar cells [J]. Angewandte Chemie (International Ed), 2024, 63(8): e202316227
CrossRef Google scholar
[[53]]
Lu L-Y, Xu T, Chen W, et al.. Ternary blend polymer solar cells with enhanced power conversion efficiency [J]. Nature Photonics, 2014, 8: 716-722
CrossRef Google scholar
[[54]]
Oh J, Jung S, Kang S H, et al.. Highly efficient layer-by-layer large-scale manufacturing of polymer solar cells with minimized device-to-device variations by employing benzothiadiazole-based solid additives [J]. Journal of Materials Chemistry A, 2022, 10(38): 20606-20615
CrossRef Google scholar
[[55]]
Leong W L, Cowan S R, Heeger A J. Differential resistance analysis of charge carrier losses in organic bulk heterojunction solar cells: Observing the transition from bimolecular to trap-assisted recombination and quantifying the order of recombination [J]. Advanced Energy Materials, 2011, 1(4): 517-522
CrossRef Google scholar
[[56]]
Li Z-Y, Wang X-C, Zheng N, et al.. Over 17% efficiency all-small-molecule organic solar cells based on an organic molecular donor employing a 2D side chain symmetry breaking strategy [J]. Energy & Environmental Science, 2022, 15(10): 4338-4348
CrossRef Google scholar
[[57]]
Ai Q, Lin Z-H, Wu X-X, et al.. Ternary polythiophene enables over 17% efficiency organic solar cells [J]. Journal of Materials Chemistry A, 2024, 12(18): 10984-10990
CrossRef Google scholar
[[58]]
Zeng Q, Liu L, Xiao Z, et al.. A two-terminal all-inorganic perovskite/organic tandem solar cell [J]. Science Bulletin, 2019, 64(13): 885-887
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/