Prolonging charge carrier lifetime via reinforcing molecular stacking for high-efficiency organic solar cells

Ya-hui Bai , Ke Wang , Xiang-xi Wu , Dan He , Xiao-jun Li , Jian-qi Zhang , Yong-fang Li , Fu-wen Zhao

Journal of Central South University ›› : 1 -12.

PDF
Journal of Central South University ›› : 1 -12. DOI: 10.1007/s11771-024-5776-3
Article

Prolonging charge carrier lifetime via reinforcing molecular stacking for high-efficiency organic solar cells

Author information +
History +
PDF

Abstract

Limited charge carrier lifetime (τ) leads to the short charge carrier diffusion length (L D) and thus impedes the improvement of power conversion efficiencies (PCEs) of organic solar cells (OSCs). Herein, anthracene (AN) as the additive is introduced into classical donor: acceptor pairs to increase the τ. Introducing AN efficiently enhances the crystallinity of the PM6:BTP-eC9+ blend film to reduce the trap density and increase the τ to 1.48 µs, achieving the prolonged L D. The prolonged L D enables the PM6:BTP-eC9+ blend film to gain weaker charge carrier recombination, reduced leakage current, and shorter charge carrier extraction time in devices, compared with PM6: BTP-eC9 counterparts. Therefore, PM6:BTP-eC9+ based OSCs achieve higher PCEs of 18.41%±0.16% than PM6:BTP-eC9 based ones (17.08%±0.11%). Moreover, the PM6:L8-BO+ based OSC presents an impressive PCE of 19.14%. It demonstrates that introducing AN is an efficient method to increase the τ for prolonged L D, boosting PCEs of OSCs.

Cite this article

Download citation ▾
Ya-hui Bai, Ke Wang, Xiang-xi Wu, Dan He, Xiao-jun Li, Jian-qi Zhang, Yong-fang Li, Fu-wen Zhao. Prolonging charge carrier lifetime via reinforcing molecular stacking for high-efficiency organic solar cells. Journal of Central South University 1-12 DOI:10.1007/s11771-024-5776-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brinkmann K O, Wang P, Lang F, et al.. Perovskite-organic tandem solar cells [J]. Nature Reviews Materials, 2024, 9(3): 202-217

[2]

Li G, Zhu R, Yang Y. Polymer solar cells [J]. Nature Photonics, 2012, 6(3): 153-161

[3]

Zhao F-W, Zhang H-T, Zhang R, et al.. Emerging approaches in enhancing the efficiency and stability in non-fullerene organic solar cells [J]. Advanced Energy Materials, 2020, 10(47): 2002746

[4]

He D, Zhou J-X, Zhu Y-F, et al.. Manipulating vertical phase separation enables pseudoplanar heterojunction organic solar cells over 19% efficiency via ternary polymerization [J]. Advanced Materials, 2024, 36(5): e2308909

[5]

Zhou J-X, He D, Li Y-W, et al.. Reducing trap density in organic solar cells via extending the fused ring donor unit of an A-D-A-type nonfullerene acceptor for over 17% efficiency [J]. Advanced Materials, 2023, 35(3): 2207336

[6]

Li T-F, Zhan X-W. Advances in organic photovoltaics [J]. Acta Chimica Sinica, 2021, 79(3): 257

[7]

Chang J-H, Liu K, Lin S-Y, et al.. Solution-processed perovskite solar cells [J]. Journal of Central South University, 2020, 27(4): 1104-1133

[8]

Liu F, Zhao W, Tumbleston J R, et al.. Understanding the morphology of PTB7: PCBM blends in organic photovoltaics [J]. Advanced Energy Materials, 2014, 4(5): 1301377

[9]

Lin Y-Z, Zhao F-W, Prasad S K K, et al.. Balanced partnership between donor and acceptor components in nonfullerene organic solar cells with >12% efficiency [J]. Advanced Materials, 2018, 30(16): e1706363

[10]

Li T-H, Chen Z-X, Wang Y-Y, et al.. Materials for interfaces in organic solar cells and photodetectors [J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3301-3326

[11]

Mahmood A, Wang J-L. Machine learning for high performance organic solar cells: Current scenario and future prospects [J]. Energy & Environmental Science, 2021, 14(1): 90-105

[12]

Kan B, Kan Y-Y, Zuo L-J, et al.. Recent progress on all-small molecule organic solar cells using small-molecule nonfullerene acceptors [J]. InfoMat, 2021, 3(2): 175-200

[13]

Lin Y-Z, Wang J-Y, Zhang Z-G, et al.. An electron acceptor challenging fullerenes for efficient polymer solar cells [J]. Advanced Materials, 2015, 27(7): 1170-1174

[14]

Yan C-Q, Barlow S, Wang Z-H, et al.. Non-fullerene acceptors for organic solar cells [J]. Nature Reviews Materials, 2018, 3(3): 18003

[15]

Wang J-Y, Xue P-Y, Jiang Y-T, et al.. The principles, design and applications of fused-ring electron acceptors [J]. Nature Reviews Chemistry, 2022, 6(9): 614-634

[16]

Wang J-Y, Xie Y, Chen K, et al.. Physical insights into non-fullerene organic photovoltaics [J]. Nature Reviews Physics, 2024, 6: 365-381

[17]

Sun Y-D, Wang L, Guo C-H, et al.. π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency [J]. Journal of the American Chemical Society, 2024, 146(17): 12011-12019

[18]

Liu L, Xiao H-R, Jin K, et al.. 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency [J]. Nano-Micro Letters, 2022, 15(1): 23

[19]

Cao R, Chen Y, Cai F-F, et al.. A new chlorinated non-fullerene acceptor based organic photovoltaic cells over 12% efficiency [J]. Journal of Central South University, 2020, 27(12): 3581-3593

[20]

Li Z, Chen H-G, Yuan J, et al.. A new low-bandgap polymer acceptor based on benzotriazole for efficient all-polymer solar cells [J]. Journal of Central South University, 2021, 28(7): 1919-1931

[21]

He D, Zhao F-W, Wang C-R, et al.. Non-radiative recombination energy losses in non-fullerene organic solar cells [J]. Advanced Functional Materials, 2022, 32(19): 2111855

[22]

He D, Li Y-W, Zhao F-W, et al.. Trap suppression in ordered organic photovoltaic heterojunctions [J]. Chemical Communications, 2024, 60(4): 364-373

[23]

Zhao F-W, He D, Zou C, et al.. Fullerene-liquid-crystal-induced micrometer-scale charge-carrier diffusion in organic bulk heterojunction [J]. Advanced Materials, 2023, 35(9): e2210463

[24]

Chang Y-L, Zhu X-W, Lu K, et al.. Progress and prospects of thick-film organic solar cells [J]. Journal of Materials Chemistry A, 2021, 9(6): 3125-3150

[25]

Xue P-Y, Cheng P, Han R P S, et al.. Printing fabrication of large-area non-fullerene organic solar cells [J]. Materials Horizons, 2022, 9(1): 194-219

[26]

Johnston M B, Herz L M. Hybrid perovskites for photovoltaics: Charge-carrier recombination, diffusion, and radiative efficiencies [J]. Accounts of Chemical Research, 2016, 49(1): 146-154

[27]

Jahn U, Dhar S, Hey R, et al.. Influence of localization on the carrier diffusion in GaAs/(Al, Ga)As and (In, Ga)(As, N)/GaAs quantum wells: A comparative study [J]. Physical Review B, 2006, 73: 125303

[28]

Steinhauser B, Niewelt T, Richter A, et al.. Extraordinarily high minority charge carrier lifetime observed in crystalline silicon [J]. Solar RRL, 2021, 5(11): 2100605

[29]

Nguyen T L, Choi H, Ko S J, et al.. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ∼300 nm thick conventional single-cell device [J]. Energy & Environmental Science, 2014, 7(9): 3040-3051

[30]

Zhao F-W, Zhou J-X, He D, et al.. Low-cost materials for organic solar cells [J]. Journal of Materials Chemistry C, 2021, 9(43): 15395-15406

[31]

Tokmoldin N, Hosseini S M, Raoufi M, et al.. Extraordinarily long diffusion length in PM6: Y6 organic solar cells [J]. Journal of Materials Chemistry A, 2020, 8(16): 7854-7860

[32]

Baumann A, Lorrmann J, Rauh D, et al.. A new approach for probing the mobility and lifetime of photogenerated charge carriers in organic solar cells under real operating conditions [J]. Advanced Materials, 2012, 24(32): 4381-4386

[33]

Pivrikas A, Neugebauer H, Sariciftci N S. Charge carrier lifetime and recombination in bulk heterojunction solar cells [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(6): 1746-1758

[34]

Zhao F-W, Wang C-R, Zhan X-W. Morphology control in organic solar cells [J]. Advanced Energy Materials, 2018, 8(28): 1703147

[35]

Lu H, Chen K, Bobba R S, et al.. Simultaneously enhancing exciton/charge transport in organic solar cells by an organoboron additive [J]. Advanced Materials, 2022, 34(42): e2205926

[36]

Dai S-X, Zhao F-W, Zhang Q-Q, et al.. Fused nonacyclic electron acceptors for efficient polymer solar cells [J]. Journal of the American Chemical Society, 2017, 139(3): 1336-1343

[37]

Li Y-M, Shi J-J, Yu B-C, et al.. Exploiting electrical transients to quantify charge loss in solar cells [J]. Joule, 2020, 4(2): 472-489

[38]

Zhang L-L, Zhu X-W, Deng D, et al.. High miscibility compatible with ordered molecular packing enables an excellent efficiency of 16.2% in all-small-molecule organic solar cells [J]. Advanced Materials, 2022, 34(5): e2106316

[39]

Zhao Q-Q, Liu J-G, Wang H-Y, et al.. Balancing the H- and J-aggregation in DTS(PTTh2)2/PC70BM to yield a high photovoltaic efficiency [J]. Journal of Materials Chemistry C, 2015, 3(31): 8183-8192

[40]

Spano F C. The spectral signatures of Frenkel polarons in H- and J-aggregates [J]. Accounts of Chemical Research, 2010, 43(3): 429-439

[41]

Han Z-Q, Wang K, Chai Y-Q, et al.. Regulating the miscibility of donors/acceptors to manipulate the morphology and reduce non-radiative recombination energy loss enables efficient organic solar cells [J]. Journal of Materials Chemistry C, 2024, 12(11): 3873-3880

[42]

Lin Y-Z, Zhao F-W, Wu Y, et al.. Mapping polymer donors toward high-efficiency fullerene free organic solar cells [J]. Advanced Materials, 2017, 29(3): 1604155

[43]

Coropceanu V, Cornil J, da Silva Filho D A, et al.. Charge transport in organic semiconductors [J]. Chemical Reviews, 2007, 107(4): 926-952

[44]

Fraboni B, Femoni C, Mencarelli I, et al.. Solution-grown, macroscopic organic single crystals exhibiting three-dimensional anisotropic charge-transport properties [J]. Advanced Materials, 2009, 21(18): 1835-1839

[45]

Dequilettes D W, Frohna K, Emin D, et al.. Charge-carrier recombination in halide perovskites [J]. Chemical Reviews, 2019, 119(20): 11007-11019

[46]

Clarke T M, Lungenschmied C, Peet J, et al.. A comparison of five experimental techniques to measure charge carrier lifetime in polymer/fullerene solar cells [J]. Advanced Energy Materials, 2015, 5(4): 1401345

[47]

Haneef H F, Zeidell A M, Jurchescu O D. Charge carrier traps in organic semiconductors: A review on the underlying physics and impact on electronic devices [J]. Journal of Materials Chemistry C, 2020, 8(3): 759-787

[48]

Garcia-Belmonte G, Boix P P, Bisquert J, et al.. Simultaneous determination of carrier lifetime and electron density-of-states in P3HT: PCBM organic solar cells under illumination by impedance spectroscopy [J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 366-375

[49]

ZHENG Zhong, HU Qin, ZHANG Shao-qing, et al. A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer [J]. Advanced Materials, 2018: e1801801. DOI: https://doi.org/10.1002/adma.201801801.

[50]

Guan H, Liao Q-G, Huang T-H, et al.. Solid additive enables organic solar cells with efficiency up to 18.6% [J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25774-25782

[51]

Deng J-W, Huang B, Li W-H, et al.. Ferroelectric polymer drives performance enhancement of non-fullerene organic solar cells [J]. Angewandte Chemie (International Ed), 2022, 61(25): e202202177

[52]

Zhu Y-F, He D, Wang C, et al.. Suppressing exciton-vibration coupling to prolong exciton lifetime of nonfullerene acceptors enables high-efficiency organic solar cells [J]. Angewandte Chemie (International Ed), 2024, 63(8): e202316227

[53]

Lu L-Y, Xu T, Chen W, et al.. Ternary blend polymer solar cells with enhanced power conversion efficiency [J]. Nature Photonics, 2014, 8: 716-722

[54]

Oh J, Jung S, Kang S H, et al.. Highly efficient layer-by-layer large-scale manufacturing of polymer solar cells with minimized device-to-device variations by employing benzothiadiazole-based solid additives [J]. Journal of Materials Chemistry A, 2022, 10(38): 20606-20615

[55]

Leong W L, Cowan S R, Heeger A J. Differential resistance analysis of charge carrier losses in organic bulk heterojunction solar cells: Observing the transition from bimolecular to trap-assisted recombination and quantifying the order of recombination [J]. Advanced Energy Materials, 2011, 1(4): 517-522

[56]

Li Z-Y, Wang X-C, Zheng N, et al.. Over 17% efficiency all-small-molecule organic solar cells based on an organic molecular donor employing a 2D side chain symmetry breaking strategy [J]. Energy & Environmental Science, 2022, 15(10): 4338-4348

[57]

Ai Q, Lin Z-H, Wu X-X, et al.. Ternary polythiophene enables over 17% efficiency organic solar cells [J]. Journal of Materials Chemistry A, 2024, 12(18): 10984-10990

[58]

Zeng Q, Liu L, Xiao Z, et al.. A two-terminal all-inorganic perovskite/organic tandem solar cell [J]. Science Bulletin, 2019, 64(13): 885-887

RIGHTS & PERMISSIONS

Central South University

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/