Interface engineering of FAPbI3 for passivating defects and improving stability with lead chalcogenides

Yun-hao Li, Xiang-xiang Feng, Meng-qiu Long, Meng-qiu Cai, Jun-liang Yang, Biao Liu

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4625-4637.

Journal of Central South University ›› 2025, Vol. 31 ›› Issue (12) : 4625-4637. DOI: 10.1007/s11771-024-5768-3
Article

Interface engineering of FAPbI3 for passivating defects and improving stability with lead chalcogenides

Author information +
History +

Abstract

Interface engineering is widely employed to enhance the performance of formamidinium lead triiodide (FAPbI3) perovskite solar cells. In this study, six different FAPbI3/PbX (X=S, Se and Te) heterostructures are constructed, including the PbI interface and I interface perovskite. In addition, the lead vacancies (V-Pb) and iodine vacancies (V-I) are designed at the perovskite interface. The results show that the PbI interface is more stable than I interface in the heterostructures. The PbX covering layer on the surface of the FAPbI3 perovskite stabilizes the perovskite octahedral structure by interface interactions and charge reconstruction that are beneficial to passivate perovskite interface defects and inhibit the phase transition. It shows that the PbTe covering layer exhibits the best passivation effect for lead vacancy defects, while PbS covering layer shows the best passivation effect for iodine vacancy defects. Additionally, appropriate structural stress can strengthen the thermal stability of defective perovskite. This work reveals the FAPbI3/PbX interface engineering, and offers new insights into effectively passivating defects and improving the stability of FAPbI3.

Cite this article

Download citation ▾
Yun-hao Li, Xiang-xiang Feng, Meng-qiu Long, Meng-qiu Cai, Jun-liang Yang, Biao Liu. Interface engineering of FAPbI3 for passivating defects and improving stability with lead chalcogenides. Journal of Central South University, 2025, 31(12): 4625‒4637 https://doi.org/10.1007/s11771-024-5768-3

References

[[1]]
Lee J W, Tan S, Seok S I, et al.. Rethinking the A cation in halide perovskites [J]. Science, 2022, 375(6583): eabj1186.
CrossRef Google scholar
[[2]]
Tang S-w, Zong P-g, Zhong J, et al.. Efficient carbon-based perovskite solar cells passivated by alkylammonium chloride [J]. Solar RRL, 2024, 8(3): 2300854.
CrossRef Google scholar
[[3]]
Uzurano G, Kuwahara N, Saito T, et al.. 2D/3D perovskite heterostructure solar cell with orientation-controlled Dion-Jacobson 2D phase [J]. Applied Physics Express, 2023, 16(4): 041005.
CrossRef Google scholar
[[4]]
Kim M, Jeong J, Lu H-z, et al.. Conformal quantum dot - SnO2 layers as electron transporters for efficient perovskite solar cells [J]. Science, 2022, 375(6578): 302-306.
CrossRef Google scholar
[[5]]
Wang S-s, Huang M-l, Wu Y-n, et al.. Formation of Bi - Bi dimers in heavily bi-doped lead halide perovskites: Origin of carrier density saturation [J]. Physical Review Applied, 2022, 17(2): 024024.
CrossRef Google scholar
[[6]]
Wang M-r, Ni Z-y, Xiao X, et al.. Strain engineering in metal halide perovskite materials and devices: Influence on stability and optoelectronic properties [J]. Chemical Physics Reviews, 2021, 2(3): 031302.
CrossRef Google scholar
[[7]]
Chen F-l, Sun J, Liu B, et al.. First principles prediction of the carrier mobilities and optical properties of strained lead free perovskite Cs2SnX6(X=Cl, Br) [J]. Solid State Communications, 2022, 353: 114868.
CrossRef Google scholar
[[8]]
Zhou J-j, Tan L-g, Liu Y, et al.. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material [J]. Joule, 2024, 8(6): 1691-1706.
CrossRef Google scholar
[[9]]
Du T, Macdonald T J, Yang R-x, et al.. Additive-free, low-temperature crystallization of stable α-FAPbI3 perovskite [J]. Advanced Materials, 2022, 34(9): 2107850.
CrossRef Google scholar
[[10]]
Zhang D-b, Liu X, Chen Y-z, et al.. Universal surface-defect passivant for perovskite solar cells based on N-phenylglycine for improved photovoltaic performance and stability [J]. Physical Review Applied, 2022, 17(2): 024039.
CrossRef Google scholar
[[11]]
Shrivastava M, Bodnarchuk M I, Hazarika A, et al.. Polaron and spin dynamics in organic - inorganic lead halide perovskite nanocrystals [J]. Advanced Optical Materials, 2020, 8(24): 2001016.
CrossRef Google scholar
[[12]]
Alsalloum A Y, Turedi B, Almasabi K, et al.. 22.8% -Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap [J]. Energy & Environmental Science, 2021, 14(4): 2263-2268.
CrossRef Google scholar
[[13]]
Qiu F-z, Liu Q-j, Liu Y-f, et al.. Managing interface defects via mixed-salt passivation toward efficient and stable perovskite solar cells [J]. Small, 2023, 19(50): 2304834.
CrossRef Google scholar
[[14]]
Zhu T-y, Shu D-jun. Polarization-controlled surface defect formation in a hybrid perovskite [J]. The Journal of Physical Chemistry Letters, 2021, 12(16): 3898-3906.
CrossRef Google scholar
[[15]]
Reichert S, Flemming J, An Q-z, et al.. Ionic-defect distribution revealed by improved evaluation of deep-level transient spectroscopy on perovskite solar cells [J]. Physical Review Applied, 2020, 13(3): 034018.
CrossRef Google scholar
[[16]]
Oner S M, Sezen E, Yordanli M S, et al.. Surface defect formation and passivation in formamidinium lead triiodide (FAPbI3) perovskite solar cell absorbers [J]. The Journal of Physical Chemistry Letters, 2022, 13(1): 324-330.
CrossRef Google scholar
[[17]]
Wang B, Yao S-w, Hu W-j, et al.. Rational control of the typical surface defects of hybrid perovskite using tetrahexylammonium iodide [J]. Physical Chemistry Chemical Physics, 2024, 26(12): 9488-9499.
CrossRef Google scholar
[[18]]
Yang X-y, Ni Y, Zhang Y-z, et al.. Multiple-defect management for efficient perovskite photovoltaics [J]. ACS Energy Letters, 2021, 6(7): 2404-2412.
CrossRef Google scholar
[[19]]
Wu X-j, Ding Y-f, Liu B, et al.. Halogen’s effect on the photoelectric properties of two-dimensional organic-inorganic hybrid perovskite (MTEA)2MAPb2X7 (X= Cl, Br, I) with a Ruddlesden–Popper structure [J]. Applied Physics Letters, 2022, 121(21): 211103.
CrossRef Google scholar
[[20]]
Shi R, Long Run. Atomic model for alkali metal-doped tin-lead mixed perovskites: Insight from quantum dynamics [J]. The Journal of Physical Chemistry Letters, 2023, 14(11): 2878-2885.
CrossRef Google scholar
[[21]]
Feng X-x, Li Y-h, Liu B, et al.. Iodide vacancy defects clustering in pairs rather than in isolation in a lead iodide perovskite: Identification, origin, and implications [J]. The Journal of Physical Chemistry Letters, 2024, 15(8): 2209-2215.
CrossRef Google scholar
[[22]]
Feng X-x, Liu B, Peng Y-y, et al.. Restricting the formation of Pb–Pb dimer via surface Pb site passivation for enhancing the light stability of perovskite [J]. Small, 2022, 18(23): 2201831.
CrossRef Google scholar
[[23]]
Li T-s, Zhao X-g, Yang D-w, et al.. Intrinsic defect properties in halide double perovskites for optoelectronic applications [J]. Physical Review Applied, 2018, 10(4): 041001.
CrossRef Google scholar
[[24]]
Feng X-x, Li Y-h, Long M-q, et al.. The key role of methylenediammonium and tetrahydrotriazinium in the phase stability of FAPbI3 [J]. Applied Physics Letters, 2024, 124(19): 193903.
CrossRef Google scholar
[[25]]
Wang Y-b, Wu T-h, Barbaud J, et al.. Stabilizing heterostructures of soft perovskite semiconductors [J]. Science, 2019, 365(6454): 687-691.
CrossRef Google scholar
[[26]]
Gao Y-j, Feng X-x, Chang J-h, et al.. Surface ion exchange and targeted passivation with cesium fluoride for enhancing the efficiency and stability of perovskite solar cells [J]. Applied Physics Letters, 2022, 121(7): 073902.
CrossRef Google scholar
[[27]]
Ri C H, Han H U, Kim Y S, et al.. Enhancing the photocatalytic hydrogen evolution performance of the CsPbI3/MoS2 heterostructure with interfacial defect engineering [J]. The Journal of Physical Chemistry Letters, 2022, 13(18): 4007-4014.
CrossRef Google scholar
[[28]]
Zhang K, Wang Y, Tao M-q, et al.. Efficient inorganic vapor-assisted defects passivation for perovskite solar module (adv. mater. 22/2023) [J]. Advanced Materials, 2023, 35(22): 2370154.
CrossRef Google scholar
[[29]]
Liu D-t, Zheng H-l, Wang Y-f, et al.. Vacancies substitution induced interfacial dipole formation and defect passivation for highly stable perovskite solar cells [J]. Chemical Engineering Journal, 2020, 396: 125010.
CrossRef Google scholar
[[30]]
Feng X-x, Liu B, Long M-q, et al.. Interfacial electronic properties of 2D/3D (PtSe2/CsPbX3) perovskite heterostructure [J]. Journal of Physics: Condensed Matter, 2020, 32(44): 445004
[[31]]
Feng X-x, Liu B, Cai M-q, et al.. Insights into the electron transport performance of the FAPbI3/SnO2 interface [J]. Journal of Materials Chemistry C, 2023, 11(33): 11295-11302.
CrossRef Google scholar
[[32]]
Liu B, Feng X-x, Long M-q, et al.. Designing surface-functionalized Ti3C2T2–Cs3Bi2Br9 (T=O, Cl, OH, or F) heterostructures for perovskite optoelectronic applications [J]. Physical Review Applied, 2022, 18(5): 054036.
CrossRef Google scholar
[[33]]
Yan M-r, Ding Y-f, Liu B, et al.. Effects of component on the photoelectric properties of two-dimensional van der Waals heterostructure Cs2PbI2(1+x) Cl2(1−x)/Pd2Se3 with Ruddlesen - Popper structure [J]. Journal of Physics D: Applied Physics, 2021, 54(35): 355110.
CrossRef Google scholar
[[34]]
Yang S, Chen S-s, Mosconi E, et al.. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts [J]. Science, 2019, 365(6452): 473-478.
CrossRef Google scholar
[[35]]
Chen T, Xie J-s, Wen B, et al.. Inhibition of defect-induced α-to-δ phase transition for efficient and stable formamidinium perovskite solar cells [J]. Nature Communications, 2023, 14(1): 6125.
CrossRef Google scholar
[[36]]
Feng X-x, Liu B, Long M-q, et al.. Improving stability of lead halide perovskite via PbF2 layer covering [J]. The Journal of Physical Chemistry Letters, 2020, 11(15): 6266-6272.
CrossRef Google scholar
[[37]]
Li X-d, Zhang W-x, Guo X-m, et al.. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells [J]. Science, 2022, 375(6579): 434-437.
CrossRef Google scholar
[[38]]
Guo X-m, Lu C-y, Zhang W-x, et al.. In situ surface sulfidation of CsPbI3 for inverted perovskite solar cells [J]. ACS Energy Letters, 2024, 9(1): 329-335.
CrossRef Google scholar
[[39]]
Askarpour V, Maassen J. First-principles analysis of intravalley and intervalley electron-phonon scattering in thermoelectric materials [J]. Physical Review B, 2023, 107(4): 045203.
CrossRef Google scholar
[[40]]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865-3868.
CrossRef Google scholar
[[41]]
Wu T, Yao M-l, Li J-l, et al.. First-principles prediction of the electronic property, carrier mobility and optical absorption in edge-modified pristine sawtooth pentagraphene nanoribbons (SSPGNRs) [J]. Results in Physics, 2020, 17: 103103.
CrossRef Google scholar
[[42]]
Marques M A L, Oliveira M J T, Burnus T. Libxc: A library of exchange and correlation functionals for density functional theory [J]. Computer Physics Communications, 2012, 183(10): 2272-2281.
CrossRef Google scholar
[[43]]
Zhao Y-q, Liu Z-s, Nie G-z, et al.. Structural, electronic, and charge transfer features for two kinds of MoS2/Cs2PbI4 interfaces with optoelectronic applicability: Insights from first-principles [J]. Applied Physics Letters, 2021, 118(17): 173104.
CrossRef Google scholar
[[44]]
Csonka G I, Perdew J P, Ruzsinszky A, et al.. Assessing the performance of recent density functionals for bulk solids [J]. Physical Review B, 2009, 79(15): 155107.
CrossRef Google scholar
[[45]]
Liu B, Long M-q, Cai M-q, et al.. Interface engineering of CsPbI3 black phosphorus van der Waals heterostructure [J]. Applied Physics Letters, 2018, 112(4): 043901.
CrossRef Google scholar
[[46]]
Grimme S, Antony J, Ehrlich S, et al.. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
CrossRef Google scholar
[[47]]
Lang Y-f, Zou D-f, Xu Y, et al.. Electronic characteristics of the two-dimensional van der Waals ferroelectric α-In2Se3/Cs3Bi2I9 heterostructures [J]. Applied Physics Letters, 2024, 124(5): 052903.
CrossRef Google scholar
[[48]]
Wisesa P, Mcgill K A, Mueller T. Efficient generation of generalized Monkhorst-Pack grids through the use of informatics [J]. Physical Review B, 2016, 93(15): 155109.
CrossRef Google scholar
[[49]]
Di Liberto G, Morales-García Á, Bromley S T. An unconstrained approach to systematic structural and energetic screening of materials interfaces [J]. Nature Communications, 2022, 13(1): 6236.
CrossRef Google scholar
[[50]]
Tantardini C, Oganov A R. Thermochemical electronegativities of the elements [J]. Nature Communications, 2021, 12(1): 2087.
CrossRef Google scholar
[[51]]
Kim H S, Park N G. Future research directions in perovskite solar cells: Exquisite photon management and thermodynamic phase stability [J]. Advanced Materials, 2023, 35(43): 2204807.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/