Application and optimization design of non-obstructive particle damping-phononic crystal vibration isolator in viaduct structure-borne noise reduction
Duo-jia Shi, Cai-you Zhao, Xin-hao Zhang, Jun-yuan Zheng, Na-chao Wei, Ping Wang
Journal of Central South University ›› 2024, Vol. 31 ›› Issue (7) : 2513-2531.
Application and optimization design of non-obstructive particle damping-phononic crystal vibration isolator in viaduct structure-borne noise reduction
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance. A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein, which uses the particle damping vibration absorption technology and bandgap vibration control theory. The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control. The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications. The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges. The vibration responses are obtained using the finite element method, while the structural noise radiation is simulated using the frequency-domain boundary element method. Using the particle swarm optimization algorithm, the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range. The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.
non-obstructive particle damping / phononic crystal vibration isolator / band gap optimization / floating-slab track / bridge structure-borne noise control / particle swarm optimization
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
HJ453—2018. Technical guidelines for environmental impact-Aassessment of urban rail transit [S]. (in Chinese)
|
[31] |
|
[32] |
|
[33] |
|
/
〈 |
|
〉 |