A novel immiscible high entropy alloy strengthened via L12-nanoprecipitate
Zheng-qin Wang, Ming-yu Fan, Yang Zhang, Jun-peng Li, Li-yuan Liu, Ji-hong Han, Xing-hao Li, Zhong-wu Zhang
A novel immiscible high entropy alloy strengthened via L12-nanoprecipitate
The low-cost Fe-Cu, Fe-Ni, and Cu-based high-entropy alloys exhibit a widespread utilization prospect. However, these potential applications have been limited by their low strength. In this study, a novel Fe31Cu31Ni28Al4Ti3Co3 immiscible high-entropy alloy (HEA) was developed. After vacuum arc melting and copper mold suction casting, this HEA exhibits a unique phase separation microstructure, which consists of striped Cu-rich regions and Fe-rich region. Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region. The aging alloy is further strengthened by a L12-Ni3(AlTi) nanoprecipitates, achieving excellent yield strength (1185 MPa) and uniform ductility (∼8.8%). The differential distribution of the L12 nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions, which increased the strain gradient and thus improved hetero-deformation induced (HDI) hardening. This work provides a new route to improve the HDI hardening of Fe-Cu alloys.
heterogeneous microstructure / precipitation strengthening / high-entropy alloy / phase separation / mechanical property
[[1]] |
|
[[2]] |
|
[[3]] |
|
[[4]] |
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
|
[[10]] |
|
[[11]] |
|
[[12]] |
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
|
[[20]] |
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
|
[[32]] |
|
[[33]] |
|
[[34]] |
|
[[35]] |
|
[[36]] |
|
[[37]] |
|
[[38]] |
|
[[39]] |
|
[[40]] |
|
[[41]] |
|
/
〈 | 〉 |