Experimental investigation of vibration pretreatment-microwave curing process for carbon fiber reinforced resin matrix composites
De-chao Zhang, Li-hua Zhan, Bo-lin Ma, Shun-ming Yao, Jin-zhan Guo, Cheng-long Guan, Shu Liu
Experimental investigation of vibration pretreatment-microwave curing process for carbon fiber reinforced resin matrix composites
The vibration pretreatment-microwave curing process is an efficient, low energy consumption, and high-quality out-of-autoclave curing process for carbon fiber resin matrix composites. This study aims to investigate the impact of vibration pretreatment temperature on the fiber weight content, microscopic morphology and mechanical properties of the composite laminates by using optical digital microscopy, universal tensile testing machine and thermogravimetric analyzer. Additionally, the combined mode of Bragg fiber grating sensor and temperature measurement fiber was employed to explore the effect of vibration pretreatment on the strain process during microwave curing. The study results revealed that the change in vibration pretreatment temperature had a slight impact on the fiber weight content when the vibration acceleration remained constant. The metallographic and interlaminar strength of the specimen formed at a vibration pretreatment temperature of 80 °C demonstrated a porosity of 0.414% and a 10.69% decrease in interlaminar shear strength compared to autoclave curing. Moreover, the introduction of the vibration energy field during the microwave curing process led to a significant reduction in residual strain in both the 0° and 90° fiber directions, when the laminate was cooled to 60 °.
vibration / microwave curing / porosity / interlaminar shear strength / thermo-gravimetric analysis / curing strain
[[1]] |
|
[[2]] |
|
[[3]] |
|
[[4]] |
ELSEIFY L A, MIDANI M, EL-BADAWY A A, et al. Benchmarking automotive nonwoven composites from date palm midrib and spadix fibers in comparison to commercial leaf fibers [J]. Biomass Conversion and Biorefinery, 2023. DOI: https://doi.org/10.1007/s13399-023-03910-w.
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
|
[[10]] |
|
[[11]] |
|
[[12]] |
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
|
[[20]] |
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
|
[[32]] |
|
[[33]] |
|
[[34]] |
|
[[35]] |
|
[[36]] |
|
[[37]] |
|
[[38]] |
|
[[39]] |
|
[[40]] |
|
[[41]] |
|
[[42]] |
|
[[43]] |
|
[[44]] |
|
[[45]] |
|
[[46]] |
|
[[47]] |
|
[[48]] |
|
[[49]] |
|
[[50]] |
|
/
〈 | 〉 |