Research progress of permanent ferrite magnet materials

Bin Xu, Yu-feng Chen, Yu-juan Zhou, Bi-yun Luo, Shou-guo Zhong, Xing-ao Liu

Journal of Central South University ›› 2024, Vol. 31 ›› Issue (6) : 1723-1762. DOI: 10.1007/s11771-024-5640-5
Article

Research progress of permanent ferrite magnet materials

Author information +
History +

Abstract

Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness. The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials. This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years. The emergence of new raw material, the advancement of perparation methods and manufacturing techniques, and the potential applications of permanent ferrite materials are introduced and discussed. Specifically, nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources, and therefore it could be a promising development trendency.

Keywords

permanent ferrite / magnetic materials / high-performance / nanosizing

Cite this article

Download citation ▾
Bin Xu, Yu-feng Chen, Yu-juan Zhou, Bi-yun Luo, Shou-guo Zhong, Xing-ao Liu. Research progress of permanent ferrite magnet materials. Journal of Central South University, 2024, 31(6): 1723‒1762 https://doi.org/10.1007/s11771-024-5640-5

References

[[1]]
Li S-H. Origine de la boussole [J]. Isis, 1954, 45(1): 78-94.
CrossRef Google scholar
[[2]]
NEEDHAM J, WANG L, LU G. Science and civilisation in China: Physics and physical Technology. Civil Engineering and Nautics[M]. Cambridge University Press, 1971.
[[3]]
Mills A A. The lodestone: History, physics, and formation [J]. Annals of Science, 2004, 61(3): 273-319.
CrossRef Google scholar
[[4]]
Keithley J F. The story of electrical and magnetic measurements: from 500 B. C. to the 1940s [M], 1999 New York IEEE Press.
CrossRef Google scholar
[[5]]
Martirosyan K S, Martirosyan N S, Chalykh A E. Structure and properties of hard-magnetic Barium, strontium, and lead ferrites [J]. Inorganic Materials, 2003, 39(8): 866-870.
CrossRef Google scholar
[[6]]
Vinnik D A, Zhivulin V E, Sherstyuk D P, et al. Electromagnetic properties of zinc-nickel ferrites in the frequency range of 0.05–10 GHz [J]. Materials Today Chemistry, 2021, 20: 100460.
CrossRef Google scholar
[[7]]
Zdorovets M V, Kozlovskiy A L, Shlimas D I, et al. Phase transformations in FeCo-Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application [J]. Journal of Materials Science: Materials in Electronics, 2021, 32(12): 16694-16705.
[[8]]
Trukhanov S V, Trukhanov A V, Kostishin V G, et al. Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12−xAl xO19 (x≤1.2) at room temperature [J]. JETP Letters, 2016, 103(2): 100-105.
CrossRef Google scholar
[[9]]
Granados-Miralles C, Jenuš P. On the potential of hard ferrite ceramics for permanent magnet technology—A review on sintering strategies [J]. Journal of Physics D: Applied Physics, 2021, 54(30): 303001.
CrossRef Google scholar
[[10]]
LIU Z. Fundamental principles and advanced technologies of permanent magnetic materials [M]. South China University of Technology Press, 2017.
[[11]]
Trukhanov A V, Trukhanov S V, Panina L V, et al. Strong corelation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites ceramics [J]. Ceramics International, 2017, 43(7): 5635-5641.
CrossRef Google scholar
[[12]]
Vitalii T, Bondyakov A S, Sergei T, et al. Microscopic mechanism of ferroelectric properties in Barium hexaferrites [J]. Journal of Alloys and Compounds, 2023, 931: 167433.
CrossRef Google scholar
[[13]]
Agayev F G, Trukhanov S V, Trukhanov A V, et al. Study of structural features and thermal properties of Barium hexaferrite upon indium doping [J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(24): 14107-14114.
CrossRef Google scholar
[[14]]
FENG Xin-shuo. Domestic Iron ore market review 2023 and outlook 2024[EB/OL]. Https://Tks.Mysteel.Com/
[[15]]
Semaida Ashraf M, Darwish Moustafa A, Salem Mohamed M, et al. Impact of Nd3+ substitutions on the structure and magnetic properties of nanostructured SrFe12O19 hexaferrite [J]. Nanomaterials, 2022, 12(19): 3452.
CrossRef Google scholar
[[16]]
SURASHE V K, WAGHULE N N, RAUT A V, et al. Ceramic synthesis and X-ray diffraction characterization of copper ferrite [C]// AIP Conference Proceedings: AIP Publishing, 2021.
[[17]]
HENAISH A. Physical and spectral studies of Mg-Zn ferrite prepared by different methods [J]. Arab Journal of Nuclear Sciences and Applications, 2019. DOI: https://doi.org/10.21608/ajnsa.2019.11102.1195.
[[18]]
Zheng J-W, Zheng D-N, Qiao L, et al. High permeability and low core loss Fe-based soft magnetic composites with Co-Ba composite ferrite insulation layer obtained by sol-gel method [J]. Journal of Alloys and Compounds, 2022, 893: 162107.
CrossRef Google scholar
[[19]]
Karthikeyan P, Vigneshwaran S, Preethi J, et al. Preparation of novel cobalt ferrite coated-porous carbon composite by simple chemical co-precipitation method and their mechanistic performance [J]. Diamond & Related Materials, 2020, 108(prepublish): 107922.
CrossRef Google scholar
[[20]]
Andhare D D, Andhare D D, Jadhav S A, et al. Structural and chemical properties of ZnFe2O4 nanoparticles synthesised by chemical co-precipitation technique [J]. Journal of Physics Conference Series, 2020, 1644(1): 12014.
CrossRef Google scholar
[[21]]
Rendón-Angeles J C, Yoko A, Seong G, et al. Process intensification for fast SrFe12O19 nanoparticle production from celestite under supercritical hydrothermal conditions [J]. The Journal of Supercritical Fluids, 2023, 192: 105810.
CrossRef Google scholar
[[22]]
Refat N M, Nassar M Y, Sadeek S A. A controllable one-pot hydrothermal synthesis of spherical cobalt ferrite nanoparticles: Synthesis, characterization, and optical properties [J]. RSC Advances, 2022, 12(38): 25081-25095.
CrossRef Google scholar
[[23]]
Shebl A, Hassan A, Salama D M, et al. Template-free microwave-assisted hydrothermal synthesis of manganese zinc ferrite as a nanofertilizer for squash plant (Cucurbita pepo L) [J]. Heliyon, 2020, 6(3): e03596.
CrossRef Google scholar
[[24]]
Wang Z-H, Yang M, Zheng B-Y, et al. Tunable magnetization of single domain M-type Barium hexagonal ferrite nano powders by Co-Ti substitution via chemical co-precipitation plus molten salts method [J]. Ceramics International, 2022, 48(19): 27779-27784.
CrossRef Google scholar
[[25]]
Mouhib Y, Belaiche M. Cobalt nano-ferrite synthesized by molten salt process: Structural, morphological and magnetic studies [J]. Applied Physics A, 2021, 127(8): 613.
CrossRef Google scholar
[[26]]
Leon-Flores J, Perez-Mazariego J L, Olmedoresendiz E T, et al. Rapid synthesis of nickel ferrite nanoparticles by the molten salt method [J]. Materials Research Express, 2023, 10(7): 076102.
CrossRef Google scholar
[[27]]
Janasi S, Emura M, Landgraf F, et al. The effects of synthesis variables on the magnetic properties of coprecipitated Barium ferrite powders [J]. Journal of Magnetism and Magnetic Materials, 2002, 238(2): 168-172.
CrossRef Google scholar
[[28]]
Kadyrzhanov K K, Shlimas D I, Kozlovskiy A L, et al. Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(14): 11729-11740.
[[29]]
van der Z P J, Fitchorova O, Sokolov A, et al. Ferrite films: Deposition methods and properties in view of applications [C]. Modern Ferrites: Basic Principles, Processing and Properties, 2022, 1: 295-411.
CrossRef Google scholar
[[30]]
Andrei I S, Georgiana B, Silviu G. Rare earth effect on laser produced plasma dynamics during pulsed laser deposition of doped cobalt ferrite [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 198: 106565.
CrossRef Google scholar
[[31]]
Trukhanov S V, Trukhanov A V, Turchenko V A, et al. Magnetic and dipole moments in indium doped Barium hexaferrites [J]. Journal of Magnetism and Magnetic Materials, 2018, 457: 83-96.
CrossRef Google scholar
[[32]]
KOOLS F, MOREL A, TENAUD P, et al. La-Co substituted Sr and Ba M-type ferrites magnet properties versus intrinsic and microstructural factors [C]// Proc. 8th Int. Conf. Ferrites (ICF-8), 2000: 437–439.
[[33]]
Grössinger R, Blanco C T, Küpferling M, et al. Magnetic properties of a new family of rare-earth substituted ferrites [J]. Physica B: Physics of Condensed Matter, 2003, 327(2–4): 202-207.
CrossRef Google scholar
[[34]]
MOREL A, KOOLS F, TENAUD P, et al. Modeling of La-Co Substituted M-Type Ferrite Coercivity of Sr1−xLaxFe12−xCo xO19 [J]. Icf-8: Kyoto, Japan, 2000: 434–436.
[[35]]
Morel A, Le Breton J, Kreisel J, et al. Sublattice occupation in Sr1−xLa xFe12−xCo xO19 hexagonal ferrite analyzed by Mössbauer spectrometry and Raman spectroscopy [J]. Journal of Magnetism and Magnetic Materials, 2002, 242(P2): 1405-1407.
CrossRef Google scholar
[[36]]
Kools F, Morel A, Grössinger R, et al. LaCo-substituted ferrite magnets, a new class of high-grade ceramic magnets; intrinsic and microstructural aspects [J]. Journal of Magnetism and Magnetic Materials, 2002, 242(P2): 1270-1276.
CrossRef Google scholar
[[37]]
Tenaud P, Morel A, Kools F, et al. Recent improvement of hard ferrite permanent magnets based on La-Co substitution [J]. Journal of Alloys and Compounds, 2003, 370(1): 331-334.
[[38]]
Sharma P, Verma A, Sidhu R, et al. Effect of processing parameters on the magnetic properties of strontium ferrite sintered magnets using Taguchi orthogonal array design [J]. Journal of Magnetism and Magnetic Materials, 2006, 307(1): 157-164.
CrossRef Google scholar
[[39]]
Yang Y-J, Liu X-S, Jin D-L. Influence of heat treatment temperatures on structural and magnetic properties of Sr0.50Ca0.20La0.30Fe11.15Co0.25O19 hexagonal ferrites [J]. Journal of Magnetism and Magnetic Materials, 2014, 364: 11-17.
CrossRef Google scholar
[[40]]
Hu J-Y, Liu C-C, Kan X-C, et al. Structure and magnetic performance of Gd substituted Sr-based hexaferrites [J]. Journal of Alloys and Compounds, 2020, 820: 153180.
CrossRef Google scholar
[[41]]
Ch R, Subrahmanya Sarma K, Ch S, et al. Effect of La-Cu co-substitution on structural, microstructural and magnetic properties of M-type strontium hexaferrite (Sr1−xLa xFe12−xCu xO19) [J]. Inorganic Chemistry Communications, 2021, 134: 109053.
CrossRef Google scholar
[[42]]
Huang C C, Jiang A, Hung Y, et al. Influence of CaCO3 and SiO2 additives on magnetic properties of M-type Sr ferrites [J]. Journal of Magnetism and Magnetic Materials, 2018, 451: 288-294.
CrossRef Google scholar
[[43]]
Gordani G R, Ghasemi A, Saidi A-L. Enhanced magnetic properties of substituted Sr-hexaferrite nanoparticles synthesized by co-precipitation method [J]. Ceramics International, 2014, 40(3): 4945-4952.
CrossRef Google scholar
[[44]]
Rezlescu N, Doroftei C, Rezlescu E, et al. The influence of heat-treatment on microstructure and magnetic properties of rare-earth substituted SrFe12O19 [J]. Journal of Alloys and Compounds, 2007, 451(1): 492-496.
[[45]]
Khademi F, Poorbafrani A, Kameli P, et al. Structural, magnetic and microwave properties of Eu-doped Barium hexaferrite powders [J]. Journal of Superconductivity and Novel Magnetism, 2012, 25(2): 525-531.
CrossRef Google scholar
[[46]]
Fu Y, Lin C H. Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized by microwave-induced combustion process [J]. Journal of Alloys and Compounds, 2005, 386: 222-227.
CrossRef Google scholar
[[47]]
Qiao L, You L-S, Zheng J-W, et al. The magnetic properties of strontium hexaferrites with La-Cu substitution prepared by SHS method [J]. Journal of Magnetism and Magnetic Materials, 2007, 318(1–2): 74-78.
CrossRef Google scholar
[[48]]
Xu P, Han X-J, Zhao H-T, et al. Effect of stoichiometry on the phase formation and magnetic properties of BaFe12O19 nanoparticles by reverse micelle technique [J]. Materials Letters, 2008, 62(8–9): 1305-1308.
CrossRef Google scholar
[[49]]
Liu B, Zhang S-G, Steenari B M, et al. Controlling the composition and magnetic properties of nano-SrFe12O19 powder synthesized from oily cold mill sludge by the citrate precursor method [J]. Materials, 2019, 12(8): 1250.
CrossRef Google scholar
[[50]]
Ashiq M N, Qureshi R B, Malana M A, et al. Synthesis, structural, magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites [J]. Journal of Alloys and Compounds, 2014, 617: 437-443.
CrossRef Google scholar
[[51]]
Wang H Z, Yao B, Xu Y, et al. Improvement of the coercivity of strontium hexaferrite induced by substitution of Al3+ ions for Fe3+ ions [J]. Journal of Alloys and Compounds, 2012, 537: 43-49.
CrossRef Google scholar
[[52]]
Auwal I A, Güngüneş H, Baykal A, et al. Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3+ substituted strontium hexaferrite [J]. Ceramics International, 2016, 42(7): 8627-8635.
CrossRef Google scholar
[[53]]
Yang Z, Wang C S, Li X H, et al. (Zn, Ni, Ti) substituted Barium ferrite particles with improved temperature coefficient of coercivity [J]. Materials Science and Engineering B, 2002, 90(1–2): 142-145.
CrossRef Google scholar
[[54]]
Huang X, Liu X-S, Yang Y-J, et al. Microstructure and magnetic properties of Ca-substituted M-type SrLaCo hexagonal ferrites [J]. Journal of Magnetism and Magnetic Materials, 2015, 378: 424-428.
CrossRef Google scholar
[[55]]
Liu C-C, Liu X-S, Feng S-J, et al. Microstructure and magnetic properties of M-type strontium hexagonal ferrites with Y-Co substitution [J]. Journal of Magnetism and Magnetic Materials, 2017, 436: 126-129.
CrossRef Google scholar
[[56]]
Ashiq M N, Shakoor S, Najam-Ul-Haq M, et al. Structural, electrical, dielectric and magnetic properties of Gd-Sn substituted Sr-hexaferrite synthesized by sol-gel combustion method [J]. Journal of Magnetism and Magnetic Materials, 2015, 374: 173-178.
CrossRef Google scholar
[[57]]
Moon K S, Kang Y M. Structural and magnetic properties of Ca-Mn-Zn-substituted M-type Sr-hexaferrites [J]. Journal of the European Ceramic Society, 2016, 36(14): 3383-3389.
CrossRef Google scholar
[[58]]
Barrera V, Betancourt I. M-type hexaferrites with enhanced coercivity [J]. IEEE Transactions on Magnetics, 2013, 49(8): 4630-4633.
CrossRef Google scholar
[[59]]
Yang Y-J, Wang F-H, Shao J-X, et al. Structural, spectral, magnetic, and electrical properties of Gd-Co-co-substituted M-type Ca-Sr hexaferrites synthesized by the ceramic method [J]. Applied Physics A, 2018, 125(1): 37.
CrossRef Google scholar
[[60]]
Liu X-S, Zhong W, Yang S, et al. Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites [J]. Journal of Magnetism and Magnetic Materials, 2002, 238(2–3): 207-214.
CrossRef Google scholar
[[61]]
Liu X-S, Hernández-Gómez P, Huang K, et al. Research on La3+-Co2+-substituted strontium ferrite magnets for high intrinsic coercive force [J]. Journal of Magnetism and Magnetic Materials, 2006, 305(2): 524-528.
CrossRef Google scholar
[[62]]
Lechevallier L, Le Breton J M, Teillet J, et al. Mössbauer investigation of Sr1−xLa xFe12−yCo yO19 ferrites [J]. Physica B: Condensed Matter, 2003, 327(2–4): 135-139.
CrossRef Google scholar
[[63]]
Lechevallier L, Le Breton J M, Wang J F, et al. Structural and Mössbauer analyses of ultrafine Sr1 xLa xFe12xZn xO19 and Sr1 xLa xFe12xCo xO19 hexagonal ferrites synthesized by chemical co-precipitation [J]. Journal of Physics: Condensed Matter, 2004, 16(29): 5359-5376.
[[64]]
Liu Y, Drew M G B, Liu Y, et al. Preparation and magnetic properties of La-Mn and La-Co doped Barium hexaferrites prepared via an improved co-precipitation/molten salt method [J]. Journal of Magnetism and Magnetic Materials, 2010, 322(21): 3342-3345.
CrossRef Google scholar
[[65]]
Sharma P, Verma A, Sidhu R K, et al. Influence of Nd3+ and Sm3+ substitution on the magnetic properties of strontium ferrite sintered magnets [J]. Journal of Alloys and Compounds, 2003, 361(1–2): 257-264.
CrossRef Google scholar
[[66]]
Iida K, Minachi Y, Masuzawa K, et al. Hgh-performance ferrite magnets: M-type Sr-ferrite containing lanthanum and cobalt [J]. Journal of the Magnetics Society of Japan, 1999, 23(4–2): 1093-1096.
CrossRef Google scholar
[[67]]
Pang Z-Y, Zhang X-J, Ding B-M, et al. Microstructure and magnetic microstructure of La+Co doped strontium hexaferrites [J]. Journal of Alloys and Compounds, 2010, 492(1–2): 691-694.
CrossRef Google scholar
[[68]]
Chen Z, Wang F, Yan S, et al. Microstructure and magnetic properties of M-type Sr0.61–Xla0.39Caxfe11. 7Co0.3O19 hexaferrite prepared by microwave calcination [J]. Materials Science and Engineering: B, 2014, 182: 69-73.
CrossRef Google scholar
[[69]]
Asti G, Carbucicchio M, Deriu A, et al. Magnetic characterization of Ca substituted Ba and Sr hexaferrites [J]. Journal of Magnetism and Magnetic Materials, 1980, 20(1): 44-46.
CrossRef Google scholar
[[70]]
Seifert D, Töpfer J, Langenhorst F, et al. Synthesis and magnetic properties of La-substituted M-type Sr hexaferrites [J]. Journal of Magnetism and Magnetic Materials, 2009, 321(24): 4045-4051.
CrossRef Google scholar
[[71]]
Kikuchi T, Nakamura T, Yamasaki T, et al. Magnetic properties of La–Co substituted M-type strontium hexaferrites prepared by polymerizable complex method [J]. Journal of Magnetism and Magnetic Materials, 2010, 322(16): 2381-2385.
CrossRef Google scholar
[[72]]
Wiesinger G, Müller M, Grössinger R, et al. Substituted ferrites studied by nuclear methods [J]. Physica Status Solidi(a), 2002, 189(2): 499-508.
CrossRef Google scholar
[[73]]
Töpfer J, Schwarzer S, Senz S, et al. Influence of Sio2 and Cao additions on the microstructure and magnetic properties of sintered Sr-hexaferrite [J]. Journal of the European Ceramic Society, 2005, 25(9): 1681-1688.
CrossRef Google scholar
[[74]]
Wiesinger G, Müller M, Gössinger R, et al. Substituted ferrites studied by nuclear methods [J]. Physica Status Solidi (a), 2002, 189(2): 499-508.
CrossRef Google scholar
[[75]]
Ravinder D, Shalini P, Mahesh P, et al. Thermoelectric power studies of La-Co substituted Sr M-type hexagonal ferrites [J]. Journal of Alloys and Compounds, 2004, 363(1–2): 68-74.
CrossRef Google scholar
[[76]]
Lee J-M, Lee E J, Hwang T Y, et al. Anisotropic characteristics and improved magnetic performance of Ca-La-Co-substituted strontium hexaferrite nanomagnets [J]. Scientific Reports, 2020, 10: 15929.
CrossRef Google scholar
[[77]]
Kim M, Lee K, Bae C, et al. Magnetic and morphological properties of Ca substituted M-type hexaferrite powders synthesized by the molten salt method [J]. AIP Advances, 2021, 11(5): 055310.
CrossRef Google scholar
[[78]]
Huang C C, Lin S H, Mo C C, et al. Development of optimum preparation conditions of Fe-deficient M-type Ca-Sr-La system hexagonal ferrite magnet [J]. IEEE Transactions on Magnetics, 2021, 57(2): 2101307.
CrossRef Google scholar
[[79]]
Huang C C, Mo C C, Hsiao T H, et al. Preparation and magnetic properties of high performance Ca-Sr based M-type hexagonal ferrites [J]. Results in Materials, 2020, 8: 100150.
CrossRef Google scholar
[[80]]
Yang Y J, Liu X S. Substitution effects of calcium to microstructures and magnetic properties of Sr0.70−xCaxLa0.30Fe11.72Cu0.28O19 hexaferrites [J]. Materials Technology, 2014, 29(5): 307-312.
CrossRef Google scholar
[[81]]
Liu X-S, Zhong W, Gu B-X, et al. Influences of rare earth La3+ substitution on structure and Magnetic properties of M-type strontium ferrites [J]. Rare Metal Materials and Engineering, 2002, 31(5): 385-388.
[[82]]
Thakur A, Singh R R, Barman P B. Structural and magnetic properties of La3+ substituted strontium hexaferrite nanoparticles prepared by citrate precursor method [J]. Journal of Magnetism and Magnetic Materials, 2013, 326: 35-40.
CrossRef Google scholar
[[83]]
Rehman K M U, Riaz M, Liu X-S, et al. Magnetic properties of Ce doped M-type strontium hexaferrites synthesized by ceramic route [J]. Journal of Magnetism and Magnetic Materials, 2019, 474: 83-89.
CrossRef Google scholar
[[84]]
Hessien M M, El-Bagoury N, Mahmoud M H H, et al. Implementation of La3+ ion substituted M-type strontium hexaferrite powders for enhancement of magnetic properties [J]. Journal of Magnetism and Magnetic Materials, 2020, 498: 166187.
CrossRef Google scholar
[[85]]
Unal B, Almessiere M, Slimani Y, et al. The conductivity and dielectric properties of neobium substituted Sr-hexaferrites [J]. Nanomaterials, 2019, 9(8): 1168.
CrossRef Google scholar
[[86]]
Ullah Z, Atiq S, Naseem S. Influence of Pb doping on structural, electrical and magnetic properties of Sr-hexaferrites [J]. Journal of Alloys and Compounds, 2013, 555: 263-267.
CrossRef Google scholar
[[87]]
Ounnunkad S. Improving magnetic properties of Barium hexaferrites by La or Pr substitution [J]. Solid State Communications, 2006, 138(9): 472-475.
CrossRef Google scholar
[[88]]
Hessien M M, El-Bagoury N, Mahmoud M H H, et al. Dominating the structural, microstructural, and magnetic features of Li+-substituted strontium hexaferrite (Sr1−xLi2xFe12O19) [J]. Journal of Materials Science: Materials in Electronics, 2021, 32(12): 16565-16576.
[[89]]
Ali I, Islam M U, Awan M S, et al. Effect of Tb3+ substitution on the structural and magnetic properties of M-type hexaferrites synthesized by sol-gel auto-combustion technique [J]. Journal of Alloys and Compounds, 2013, 550: 564-572.
CrossRef Google scholar
[[90]]
Zhang C, Feng S-J, Kan X-C, et al. Structure and magnetic properties of Al3+ substituted M-type SrLaCo hexaferrite [J]. Journal of Solid State Chemistry, 2023, 321: 123927.
CrossRef Google scholar
[[91]]
Hussain S, Anis-Ur-Rehman M, Maqsood A, et al. The effect of SiO2 addition on structural, magnetic and electrical properties of strontium hexa-ferrites [J]. Journal of Crystal Growth, 2006, 297(2): 403-410.
CrossRef Google scholar
[[92]]
Kaneko Y, Anamoto S, Hamamura A. Improvement of magnetic properties of the permanent magnet: Effect of CaO and SiO2 additives on the sintered compact of Sr-ferrite [J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1987, 34(4): 169-174.
CrossRef Google scholar
[[93]]
Kaneko Y, Anamoto S, Hamamura A. Improvement of magnetic properties of the permanent magnet; Effect of Al2O3 and Cr2O3 additives on Sr-ferrite [J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1987, 34(7): 318-324.
CrossRef Google scholar
[[94]]
Bertaut E F, Deschamps A, Pauthenet R, et al. Substitution dans les hexaferrites de l’ion Fe3+ par Al3+, Ga3+, Cr3+ [J]. Journal De Physique et Le Radium, 1959, 20(2–3): 404-408.
CrossRef Google scholar
[[95]]
Vidyawathi S S, Amaresh R, Satapathy L N. Effect of boric acid sintering aid on densification of Barium ferrite [J]. Bulletin of Materials Science, 2002, 25(6): 569-572.
CrossRef Google scholar
[[96]]
Mushtaq M W. Synthesis, structural and biological studies of cobalt ferrite nanoparticles [J]. Environmental Research, 2023, 231:116241
[[97]]
Nazir A, Imran M, Kanwal F, et al. Degradation of cefadroxil drug by newly designed solar light responsive alcoholic template-based lanthanum ferrite nanoparticles [J]. Environmental Research, 2023, 231(Pt3): 116241.
CrossRef Google scholar
[[98]]
Jiang S, Liu X-S, Rehman K M U, et al. Synthesis and characterization of Sr1−xY xFe12O19 hexaferrites prepared by solid-state reaction method [J]. Journal of Materials Science: Materials in Electronics, 2016, 27(12): 12919-12924.
[[99]]
Kaneko Y, Kitajima K, Takusagawa N. Effects of SrO and Cr2O3 additives on magnetic properties of sintered Sr-ferrite [J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1992, 39(11): 948-952.
CrossRef Google scholar
[[100]]
Lysenko E N, Malyshev A V, Vlasov V A, et al. Microstructure and thermal analysis of lithium ferrite pre-milled in a high-energy ball mill [J]. Journal of Thermal Analysis and Calorimetry, 2018, 134(1): 127-133.
CrossRef Google scholar
[[101]]
Zhao X-Z, Shaw L. Modeling and analysis of high-energy ball milling through attritors [J]. Metallurgical and Materials Transactions A, 2017, 48(9): 4324-4333.
CrossRef Google scholar
[[102]]
Geng Z W, Haseeb M, Quan X K, et al. Magnetic performance enhancement in La-Ca-Co doped SrFe12O19 ferrite permanent magnets via cold isostatic pressing [J]. Materials Research Express, 2020, 7(4): 046107.
CrossRef Google scholar
[[103]]
Eikeland A Z, Stingaciu M, Granados-Miralles C, et al. Enhancement of magnetic properties by spark plasma sintering of hydrothermally synthesised SrFe12O19 [J]. CrystEngComm, 2017, 19(10): 1400-1407.
CrossRef Google scholar
[[104]]
Liu C-C, Kan X-C, Liu X-S, et al. Firstorder magnetic transition induced by structural transition in hexagonal structure [J]. Journal of Magnetism and Magnetic Materials, 2020, 494: 165821.
CrossRef Google scholar
[[105]]
Adesina O T, Sadiku E R, Jamiru T, et al. Polylactic acid/graphene nanocomposite consolidated by SPS technique [J]. Journal of Materials Research and Technology, 2020, 9(5): 11801-11812.
CrossRef Google scholar
[[106]]
Perez-Maqueda L A, Gil-Gonzalez E, Perejon A, et al. Flash sintering of highly insulating nanostructured phase-pure BiFeO3 [J]. Journal of the American Ceramic Society, 2017, 100(8): 3365-3369.
CrossRef Google scholar
[[107]]
Frasnelli M, Sglavo V M. Flash sintering of tricalcium phosphate (TCP) bioceramics [J]. Journal of the European Ceramic Society, 2018, 38(1): 279-285.
CrossRef Google scholar
[[108]]
Yu J H, Mcwilliams B A, Parker T C. Densification behavior of flash sintered boron suboxide [J]. Journal of the American Ceramic Society, 2018, 101(11): 4976-4982.
CrossRef Google scholar
[[109]]
Yu M, Saunders T, Grasso S, et al. Magnéli phase titanium suboxides by Flash Spark Plasma Sintering [J]. Scripta Materialia, 2018, 146: 241-245.
CrossRef Google scholar
[[110]]
Castle E, Sheridan R, Grasso S, et al. Rapid sintering of anisotropic, nanograined Nd-Fe-B by flash-spark plasma sintering [J]. Journal of Magnetism and Magnetic Materials, 2016, 417: 279-283.
CrossRef Google scholar
[[111]]
Castle E, Sheridan R, Zhou W, et al. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering [J]. Scientific Reports, 2017, 7: 11134.
CrossRef Google scholar
[[112]]
Downs J A, Sglavo V M. Electric field assisted sintering of cubic zirconia at 390°C [J]. Journal of the American Ceramic Society, 2013, 96(5): 1342-1344.
CrossRef Google scholar
[[113]]
Akbari-Fakhrabadi A, Mangalaraja R V, Sanhueza F A, et al. Nanostructured Gd-CeO2 electrolyte for solid oxide fuel cell by aqueous tape casting [J]. Journal of Power Sources, 2012, 218: 307-312.
CrossRef Google scholar
[[114]]
Biesuz M, Dell’agli G, Spiridigliozzi L, et al. Conventional and field-assisted sintering of nanosized Gd-doped ceria synthesized by co-precipitation [J]. Ceramics International, 2016, 42(10): 11766-11771.
CrossRef Google scholar
[[115]]
Jiang T-Z, Wang Z-H, Zhang J, et al. Understanding the flash sintering of rare-earth-doped ceria for solid OxideFuel cell [J]. Journal of the American Ceramic Society, 2015, 98(6): 1717-1723.
CrossRef Google scholar
[[116]]
Hao X-M, Liu Y-J, Wang Z-H, et al. A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current [J]. Journal of Power Sources, 2012, 210: 86-91.
CrossRef Google scholar
[[117]]
Muccillo E N S, Carvalho S G M, Muccillo R. Electric field-assisted pressureless sintering of zirconia-scandia-ceria solid electrolytes [J]. Journal of Materials Science, 2018, 53(3): 1658-1671.
CrossRef Google scholar
[[118]]
Zhang Y-Y, Luo J. Promoting the flash sintering of ZnO in reduced atmospheres to achieve nearly full densities at furnace temperatures of <120 °C [J]. Scripta Materialia, 2015, 106: 26-29.
CrossRef Google scholar
[[119]]
Gao H-T, Asel T J, Cox J W, et al. Native point defect formation in flash sintered ZnO studied by depth-resolved cathodoluminescence spectroscopy [J]. Journal of Applied Physics, 2016, 120(10): 105302.
CrossRef Google scholar
[[120]]
Jiang T-Z, Liu Y-J, Wang Z-H, et al. An improved direct current sintering technique for proton conductor-BaZr0.1Ce0.7Y0.1Yb0.1O3: The effect of direct current on sintering process [J]. Journal of Power Sources, 2014, 248: 70-76.
CrossRef Google scholar
[[121]]
Muccillo R, Muccillo E N S, Kleitz M. Densification and enhancement of the grain boundary conductivity of gadolinium-doped barium cerate by ultra fast flash grain welding [J]. Journal of the European Ceramic Society, 2012, 32(10): 2311-2316.
CrossRef Google scholar
[[122]]
Shi P-R, Qu G-X, Cai S-K, et al. An ultrafast synthesis method of LiNi1/3Co1/3Mn1/3O2 cathodes by flash/ field-assisted sintering [J]. Journal of the American Ceramic Society, 2018, 101(9): 4076-4083.
CrossRef Google scholar
[[123]]
Prette A L G, Cologna M, Sglavo V, et al. Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications [J]. Journal of Power Sources, 2011, 196(4): 2061-2065.
CrossRef Google scholar
[[124]]
Gaur A, Sglavo V M. Flash-sintering of MnCo2O4 and its relation to phase stability [J]. Journal of the European Ceramic Society, 2014, 34(10): 2391-2400.
CrossRef Google scholar
[[125]]
Gaur A, Sglavo V M. Tuning the flash sintering characteristics of ceria with MnCo2O4 [J]. Materials Science and Engineering: B, 2018, 228: 160-166.
CrossRef Google scholar
[[126]]
Sortino E, Lebrun J M, Sansone A, et al. Continuous flash sintering [J]. Journal of the American Ceramic Society, 2018, 101(4): 1432-1440.
CrossRef Google scholar
[[127]]
Chen D H, Chen Y Y. Synthesis of strontium ferrite nanoparticles by coprecipitation in the presence of polyacrylic acid [J]. Materials Research Bulletin, 2002, 37(4): 801-810.
CrossRef Google scholar
[[128]]
Iqbal M J, Ashiq M N, Hernandez-Gomez P, et al. Magnetic, physical and electrical properties of Zr-Ni-substituted co-precipitated strontium hexaferrite nanoparticles [J]. Scripta Materialia, 2007, 57(12): 1093-1096.
CrossRef Google scholar
[[129]]
Zi Z F, Sun Y P, Zhu X B, et al. Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method [J]. Journal of Magnetism and Magnetic Materials, 2008, 320(21): 2746-2751.
CrossRef Google scholar
[[130]]
Labarta A, Batlle X, Iglesias Ò. From finite size and surface effects to glassy behaviour in ferrimagnetic nanoparticles [M]. Surface Effects in Magnetic Nanoparticles, 2006 New York Springer-Verlag 105-140.
[[131]]
Hatamie S, Parseh B, Ahadian M M, et al. Heat transfer of PEGylated cobalt ferrite nanofluids for magnetic fluid hyperthermia therapy: in vitro cellular study [J]. Journal of Magnetism and Magnetic Materials, 2018, 462: 185-194.
CrossRef Google scholar
[[132]]
Di Barba P. Multiobjective shape design in electricity and magnetism [M], 2010 Dordrecht Springer.
CrossRef Google scholar
[[133]]
Coey J M D. Hard magnetic materials: A perspective [J]. IEEE Transactions on Magnetics, 2011, 47(12): 4671-4681.
CrossRef Google scholar
[[134]]
Granados-Miralles C, Saura-Múzquiz M, Bøjesen E D, et al. Unraveling structural and magnetic information during growth of nanocrystalline SrFe12O19 [J]. Journal of Materials Chemistry C, 2016, 4(46): 10903-10913.
CrossRef Google scholar
[[135]]
Pullar R C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics [J]. Progress in Materials Science, 2012, 57(7): 1191-1334.
CrossRef Google scholar
[[136]]
Kneller E F, Hawig R. The exchange-spring magnet: A new material principle for permanent magnets [J]. IEEE Transactions on Magnetics, 1991, 27(4): 3560-3588.
CrossRef Google scholar
[[137]]
Hadjipanayis G C. Nanophase hard magnets [J]. Journal of Magnetism and Magnetic Materials, 1999, 200(1–3): 373-391.
CrossRef Google scholar
[[138]]
Skomski R. Nanomagnetics [J]. Journal of Physics: Condensed Matter, 2003, 15(20): R841-R896.
[[139]]
Leslie-Pelecky D L, Rieke R D. Magnetic properties of nanostructured materials [J]. Chemistry of Materials, 1996, 8(8): 1770-1783.
CrossRef Google scholar
[[140]]
Stingaciu M, Topole M, Mcguiness P, et al. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering [J]. Scientific Reports, 2015, 5: 14112.
CrossRef Google scholar
[[141]]
Ketov S V, Yagodkin Y D, Lebed A L, et al. Structure and magnetic properties of nanocrystalline SrFe12O19 alloy produced by high-energy ball milling and annealing [J]. Journal of Magnetism and Magnetic Materials, 2006, 300(1): e479-e481.
CrossRef Google scholar
[[142]]
Wu E, Campbell S J, Kaczmarek W A. A Mössbauer effect study of ball-milled strontium ferrite [J]. Journal of Magnetism and Magnetic Materials, 1998, 177–181: 255-256.
CrossRef Google scholar
[[143]]
Kaczmarek W A, Idzikowski B, Müller K H. XRD and VSM study of ball-milled SrFe12O19 powder [J]. Journal of Magnetism and Magnetic Materials, 1998, 177–181: 921-922.
CrossRef Google scholar
[[144]]
Palomino R L, Bolarín Miró A M, Tenorio F N, et al. Sonochemical assisted synthesis of SrFe12O19 nanoparticles [J]. Ultrasonics Sonochemistry, 2016, 29: 470-475.
CrossRef Google scholar
[[145]]
Bolarín-Miró A M, Sánchez-de Jesús F, Cortes-Escobedo C A, et al. Synthesis of M-type Srfe12O19 by mechanosynthesis assisted by spark plasma sintering[J]. Journal of Alloys and Compounds, 2015, 643: S226.
CrossRef Google scholar
[[146]]
Kostishyn V G, Panina L V, Kozhitov L V, et al. Synthesis and multiferroic properties of M-type SrFe12O19 hexaferrite ceramics [J]. Journal of Alloys and Compounds, 2015, 645: 297-300.
CrossRef Google scholar
[[147]]
Katlakunta S, Meena S S, Srinath S, et al. Improved magnetic properties of Cr3+ doped SrFe12O19 synthesized via microwave hydrothermal route [J]. Materials Research Bulletin, 2015, 63: 58-66.
CrossRef Google scholar
[[148]]
Jenuš P, Topole M, Mcguiness P, et al. Ferrite-based exchange-coupled hard-soft magnets fabricated by spark plasma sintering [J]. Journal of the American Ceramic Society, 2016, 99(6): 1927-1934.
CrossRef Google scholar
[[149]]
Saura-Múzquiz M, Granados-Miralles C, Stingaciu M, et al. Improved performance of SrFe12O19 bulk magnets through bottom-up nanostructuring [J]. Nanoscale, 2016, 8(5): 2857-2866.
CrossRef Google scholar
[[150]]
Grindi B, Beji Z, Viau G, et al. Microwave-assisted synthesis and magnetic properties of M-SrFe12O19 nanoparticles [J]. Journal of Magnetism and Magnetic Materials, 2018, 449: 119-126.
CrossRef Google scholar
[[151]]
Gjørup F H, Saura-Múzquiz M, Ahlburg J V, et al. Coercivity enhancement of strontium hexaferrite nanocrystallites through morphology controlled annealing [J]. Materialia, 2018, 4: 203-210.
CrossRef Google scholar
[[152]]
Lisjak D, Mertelj A. Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications [J]. Progress in Materials Science, 2018, 95: 286-328.
CrossRef Google scholar
[[153]]
Terris B D, Thomson T. Nanofabricated and self-assembled magnetic structures as data storage media [J]. Journal of Physics D: Applied Physics, 2005, 38(12): R199-R222.
CrossRef Google scholar
[[154]]
Matsui I. Preparation of FePt magnetic nanoparticle film by plasma chemical vapor deposition for ultrahigh density data storage media [J]. Japanese Journal of Applied Physics, 2006, 45(10B): 8302.
CrossRef Google scholar
[[155]]
Ethirajan A, Wiedwald U, Boyen H G, et al. A micellar approach to magnetic ultrahigh-density data-storage media: Extending the limits of current colloidal methods [J]. Advanced Materials, 2007, 19(3): 406-410.
CrossRef Google scholar
[[156]]
Wang J-P. FePt magnetic nanoparticles and their assembly for future magnetic media [J]. Proceedings of the IEEE, 2008, 96(11): 1847-1863.
CrossRef Google scholar
[[157]]
Mcmichael R D, Shull R D, Swartzendruber L J, et al. Magnetocaloric effect in superparamagnets [J]. Journal of Magnetism and Magnetic Materials, 1992, 111(1–2): 29-33.
CrossRef Google scholar
[[158]]
Arruebo M, Fernández-Pacheco R, Ibarra M R, et al. Magnetic nanoparticles for drug delivery [J]. Nano Today, 2007, 2(3): 22-32.
CrossRef Google scholar
[[159]]
Jordan A, Scholz R, Wust P, et al. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles [J]. Journal of Magnetism and Magnetic Materials, 1999, 201(1–3): 413-419.
CrossRef Google scholar
[[160]]
Gu F X, Karnik R, Wang A Z, et al. Targeted nanoparticles for cancer therapy [J]. Nano Today, 2007, 2(3): 14-21.
CrossRef Google scholar
[[161]]
Kim D H, Kim K N, Kim K M, et al. Necrosis of carcinoma cells using Co/sub1−x/Ni/sub x/Fe/sub2/O/sub4/and Ba/sub1−x/Sr/sub x/Fe/sub12/O/sub19/ferrites under alternating magnetic field [J]. IEEE Transactions on Magnetics, 2004, 40(4): 2985-2987.
CrossRef Google scholar
[[162]]
Laconte L, Nitin N, Bao G. Magnetic nanoparticle probes [J]. Materials Today, 2005, 8(5): 32-38.
CrossRef Google scholar
[[163]]
Rondinone A J, Samia A C S, Zhang Z J. Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites [J]. The Journal of Physical Chemistry B, 1999, 103(33): 6876-6880.
CrossRef Google scholar
[[164]]
Djuhana D, Oktri D C C, Kim D H. Micromagnetic simulation on ground state domain structures of Barium hexaferrite (BaFe12O19) [J]. Advanced Materials Research, 2014, 896: 414-417.
CrossRef Google scholar
[[165]]
Muxworthy A R, Williams W. Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: Implications for magnetosome crystals [J]. Journal of the Royal Society Interface, 2009, 6(41): 1207-1212.
CrossRef Google scholar
[[166]]
Muxworthy A R, Williams W. Critical single-domain grain sizes in elongated iron particles: Implications for meteoritic and lunar magnetism [J]. Geophysical Journal International, 2015, 202(1): 578-583.
CrossRef Google scholar
[[167]]
De Santiago J, Bernhoff H, Ekergård B, et al. Electrical motor drivelines in commercial all-electric vehicles: A review [J]. IEEE Transactions on Vehicular Technology, 2012, 61(2): 475-484.
CrossRef Google scholar
[[168]]
Burress T, Campbell S, Coomer C, et al. Evaluation of the 2010 Toyota prius hybrid synergy drive system [R], 2011 Oak Ridge, TN (United States) Oak Ridge National Lab. (ORNL).
CrossRef Google scholar
[[169]]
Staunton R H, Burress T A, Marlino L D. Evaluation of 2005 honda accord hybrid electric drive system [R], 2006 Oak Ridge, TN (United States) Oak Ridge National Lab. (ORNL)
[[170]]
SATO Y, ISHIKAWA S, OKUBO T, et al. Development of high response motor and inverter system for the nissan LEAF electric vehicle [R]. SAE Technical Paper, 2011. DOI: https://doi.org/10.4271/2011-01-0350.
[[171]]
Kimiabeigi M, Widmer J D, Long R, et al. Highperformance low-cost electric motor for electric vehicles using ferrite magnets [J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 113-122.
CrossRef Google scholar
[[172]]
ENERGY U S D O. Critical materials strategy [C], 2011.
[[173]]
Dorrell D, Parsa L, Boldea I. Automotive electric motors, generators, and actuator drive systems with reduced or No permanent magnets and innovative design concepts [J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5693-5695.
CrossRef Google scholar
[[174]]
COULTATE J. Wind turbine gearbox durability [J]. Wind Systems Magazine, 2009: 42–45.
[[175]]
DOE U S. Trilateral Eu-Japan-Us conference on critical materials for a clean energy future [C]// Summary Report, US Department of Energy, Washington, https://energy.2011.
[[176]]
Jensen B B, Mijatovic N, Abrahamsen A B. Development of superconducting wind turbine generators [J]. Journal of Renewable and Sustainable Energy, 2013, 5(2): 23137.
CrossRef Google scholar
[[177]]
Fastenau R H J, Van Loenen E J. Applications of rare earth permanent magnets [J]. Journal of Magnetism and Magnetic Materials, 1996, 157–158:0304885395012796
[[178]]
TANIUCHI Y, SHIBATANI K. Highly efficient industrial 11 kW permanent magnet synchronous motor without rare-earth metals [C]// Proc. 8th Int. Conf. Energy Efficiency Motor DFriven Syst., 2013: 117–128.
[[179]]
Romeral L, Urresty J C, Riba Ruiz J R, et al. Modeling of surface-mounted permanent magnet synchronous motors with stator winding interturn faults [J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1576-1585.
CrossRef Google scholar
[[180]]
Saavedra H, Urresty J C, Riba J R, et al. Detection of interturn faults in PMSMs with different winding configurations [J]. Energy Conversion and Management, 2014, 79: 534-542.
CrossRef Google scholar
[[181]]
Urresty J C, Riba J R, Romeral L. A back-emf based method to detect magnet failures in PMSMs [J]. IEEE Transactions on Magnetics, 2013, 49(1): 591-598.
CrossRef Google scholar
[[182]]
Lacal-Arántegui R. Materials use in electricity generators in wind turbines-state-of-the-art and future specifications [J]. Journal of Cleaner Production, 2015, 87: 275-283.
CrossRef Google scholar
[[183]]
NORMILE D. High technology. Haunted by ‘specter of unavailability, ‘experts huddle over critical materials [C]// American Association for the Advancement of Science, 2010.
[[184]]
ORLIK T, YAP C W. China’s rare earth recoil[J]. Wall Street Journal, 2012, 14. DOI
[[185]]
Moss R L, Tzimas E, Kara H, et al. Critical metals in strategic energy technologies [J], 2011 Luxembourg Publications Office of the European Union
[[186]]
FROMER N A, EGGERT R G, LIFTON J. Critical materials for sustainable energy applications [J]. 2011.
[[187]]
Kramer M J, Mccallum R W, Anderson I A, et al. Prospects for non-rare earth permanent magnets for traction motors and generators [J]. JOM, 2012, 64(7): 752-763.
CrossRef Google scholar
[[188]]
Dong S-Z, Li W, Chen H-S, et al. The status of Chinese permanent magnet industry and R&D activities [J]. AIP Advances, 2017, 7(5): 56237.
CrossRef Google scholar
[[189]]
WALMER M H, LIU J F, DENT P C. Current status of permanent magnet industry in the united states [C]// Proceedings of 20th International Workshop on “Rare earth Permanent Magnets and their Applications,” Sept, 2008: 8–10.
[[190]]
Golev A, Scott M, Erskine P D, et al. Rare earths supply chains: Current status, constraints and opportunities [J]. Resources Policy, 2014, 41: 52-59.
CrossRef Google scholar
[[191]]
Hoenderdaal S, Tercero Espinoza L, Marscheider-Weidemann F, et al. Can a dysprosium shortage threaten green energy technologies? [J]. Energy, 2013, 49: 344-355.
CrossRef Google scholar
[[192]]
Elshkaki A, Graedel T E. Dysprosium, the balance problem, and wind power technology [J]. Applied Energy, 2014, 136: 548-559.
CrossRef Google scholar
[[193]]
Smith Stegen K. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis [J]. Energy Policy, 2015, 79: 1-8.
CrossRef Google scholar
[[194]]
Dent P. High performance magnet materials: Risky supply chain [J]. Advanced Materials & Processes, 2009, 167:27-30.
[[195]]
Binnemans K, Jones P T, Blanpain B, et al. Recycling of rare earths: A critical review [J]. Journal of Cleaner Production, 2013, 51: 1-22.
CrossRef Google scholar
[[196]]
Machacek E, Fold N. Alternative value chains for rare earths: The Anglo-deposit developers [J]. Resources Policy, 2014, 42: 53-64.
CrossRef Google scholar
[[197]]
Ly V, Wu X, Smillie L, et al. Low-temperature phase MnBi compound: A potential candidate for rare-earth free permanent magnets [J]. Journal of Alloys and Compounds, 2014, 615: S285-S290.
CrossRef Google scholar
[[198]]
CHU S. Critical materials strategy [M]. DIANE publishing, 2011.
[[199]]
Massari S, Ruberti M. Rare earth elements as critical raw materials: Focus on international markets and future strategies [J]. Resources Policy, 2013, 38(1): 36-43.
CrossRef Google scholar
[[200]]
Goto R, Matsuura M, Sugimoto S, et al. Microstructure evaluation for Dy-free Nd-Fe-B sintered magnets with high coercivity [J]. Journal of Applied Physics, 2012, 111(7): 7A-739A.
CrossRef Google scholar
[[201]]
Morimoto S, Ooi S, Inoue Y, et al. Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications [J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5749-5756.
CrossRef Google scholar
[[202]]
Pellegrino G, Vagati A, Guglielmi P, et al. Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application [J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 803-811.
CrossRef Google scholar
[[203]]
Laskaris K I, Kladas A G. Internal permanent magnet motor design for electric vehicle drive [J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 138-145.
CrossRef Google scholar
[[204]]
Jahns T M. Flux-weakening regime operation of an interior permanent magnet synchronous motor drive [C], 1986 Denver, CO, USA IEEE 814-823.
[[205]]
Weeber K R, Shah M R, Sivasubramaniam K, et al. Advanced permanent magnet machines for a wide range of industrial applications [C], 2010 Minneapolis, MN, USA IEEE 1-6.
[[206]]
Katter M, Zapf L, Blank R, et al. Corrosion mechanism of RE-Fe-Co-Cu-Ga-Al-B magnets [J]. IEEE Transactions on Magnetics, 2001, 37(4): 2474-2476.
CrossRef Google scholar
[[207]]
Bala H, Trepak N M, Szymura S, et al. Corrosion protection of Nd-Fe-B type permanent magnets by zinc phosphate surface conversion coatings [J]. Intermetallics, 2001, 9(6): 515-519.
CrossRef Google scholar
[[208]]
Mccallum R W, Lewis L, Skomski R, et al. Practical aspects of modern and future permanent magnets [J]. Annual Review of Materials Research, 2014, 44: 451-477.
CrossRef Google scholar
[[209]]
Shlimas D I, Kozlovskiy A L, Zdorovets M V. Study of the formation effect of the cubic phase of LiTiO2 on the structural, optical, and mechanical properties of Li2± xTi1±xO3 ceramics with different contents of the X component [J]. Journal of Materials Science: Materials in Electronics, 2021, 32(6): 7410-7422.
[[210]]
Trukhanov S V. Investigation of stability of ordered manganites [J]. Journal of Experimental and Theoretical Physics, 2005, 101(3): 513-520.
CrossRef Google scholar
[[211]]
Coey J M D. Permanent magnets: Plugging the gap [J]. Scripta Materialia, 2012, 67(6): 524-529.
CrossRef Google scholar
[[212]]
Lewis L H, Jiménez-Villacorta F. Perspectives on permanent magnetic materials for energy conversion and power generation [J]. Metallurgical and Materials Transactions A, 2013, 44(1): 2-20.
CrossRef Google scholar
[[213]]
Riba J R, López-Torres C, Romeral L, et al. Rare-earth-free propulsion motors for electric vehicles: A technology review [J]. Renewable and Sustainable Energy Reviews, 2016, 57: 367-379.
CrossRef Google scholar
[[214]]
Manchanda P, Kumar P, Kashyap A, et al. Intrinsic properties of Fe-substituted $L10 $ magnets [J]. IEEE Transactions on Magnetics, 2013, 49(10): 5194-5198.
CrossRef Google scholar
[[215]]
Zhao X, Nguyen M C, Zhang W Y, et al. Exploring the structural complexity of intermetallic compounds by an adaptive genetic algorithm [J]. Physical Review Letters, 2014, 112(4): 045502.
CrossRef Google scholar
[[216]]
CUONG NGUYEN M, ZHAO Xin, JI Min, et al. Atomic structure and magnetic properties of Fe1–i>xCox alloys [J]. Journal of Applied Physics, 2012, 111(IS-J 7698). DOI: https://doi.org/10.1063/1.3677929.
[[217]]
Hafner J, Wolverton C, Ceder G. Toward computational materials design: The impact of density functional theory on materials research [J]. MRS Bulletin, 2006, 31(9): 659-668.
CrossRef Google scholar
[[218]]
Skomski R, Kashyap A, Enders A. Is the magnetic anisotropy proportional to the orbital moment? [J]. Journal of Applied Physics, 2011, 109(7): 07E143.
CrossRef Google scholar
[[219]]
Belashchenko K D, Antropov V P, Zein N E. Self-consistent local GW method: Application to 3d and 4d metals [J]. Physical Review B, 2006, 73(7): 073105.
CrossRef Google scholar
[[220]]
Antropov V P, Van Schilfgaarde M, Brink S, et al. On the calculation of exchange interactions in metals [J]. Journal of Applied Physics, 2006, 99(8): 7A-739A.
CrossRef Google scholar
[[221]]
Wdowiak A, Mazurek P A, Wdowiak A, et al. Effect of electromagnetic waves on human reproduction [J]. Annals of Agricultural and Environmental Medicine: AAEM, 2017, 24(1): 13-18.
CrossRef Google scholar
[[222]]
Betzalel N, Ben Ishai P, Feldman Y. The human skin as a sub-THz receiver-Does 5G pose a danger to it or not? [J]. Environmental Research, 2018, 163: 208-216.
CrossRef Google scholar
[[223]]
Betzalel N, Feldman Y, Ben Ishai P. Response to the Comment of FosterEt Al. Titled “Comments On BetzalelEt Al. “the Human Skin as a Sub-Thz Receiver-Does 5G Pose a Danger to It Or Not?”. Environmental Research, 2020, 182: 109016. Environ. Res. 163 (2018): 208–216]” [J]
CrossRef Google scholar
[[224]]
Fu M, Jiao Q-Z, Zhao Y. In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites [J]. Materials Characterization, 2013, 86: 303-315.
CrossRef Google scholar
[[225]]
Chen W, Liu Q-Y, Zhu X-X, et al. One-step in situ growth of magnesium ferrite nanorods on graphene and their microwave-absorbing properties [J]. Applied Organometallic Chemistry, 2018, 32(2): e4017.
CrossRef Google scholar
[[226]]
Singh J, Singh C, Kaur D, et al. Optimization of performance parameters of doped ferrite-based microwave absorbers: Their structural, tunable reflection loss, bandwidth, and input impedance characteristics [J]. IEEE Transactions on Magnetics, 2021, 57(7): 2800619.
CrossRef Google scholar
[[227]]
Qing Y-C, Nan H-Y, Luo F, et al. Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers [J]. RSC Advances, 2017, 7(44): 27755-27761.
CrossRef Google scholar
[[228]]
Dong C-S, Wang X, Zhou P-H, et al. Microwave magnetic and absorption properties of M-type ferrite BaCoxTixFe12–2xO19 in the Ka band [J]. Journal of Magnetism and Magnetic Materials, 2014, 354: 340-344.
CrossRef Google scholar
[[229]]
Liu Y, Wang T J, Liu Y, et al. Mechanism for synthesizing Barium hexagonal ferrite by sol-gel method [J]. Advanced Materials Research, 2012, 549: 105-108.
CrossRef Google scholar
[[230]]
Aydogan E, Kaya S, Dericioglu A F. Morphology and magnetic properties of Barium hexaferrite ceramics synthesized in xwt% NaCl-(100 −x) wt% KCL molten salts [J]. Ceramics International, 2014, 40(1): 2331-2336.
CrossRef Google scholar
[[231]]
Almessiere M A, Slimani Y, Guner S, et al. Ultrasonic synthesis, magnetic and optical characterization of Tm3+ and Tb3+ ions Co-doped Barium nanohexaferrites [J]. Journal of Solid State Chemistry, 2020, 286: 121310.
CrossRef Google scholar
[[232]]
Narang S B, Pubby K, Singh C. Thickness and composition tailoring of K- and ka-band microwave absorption of BaCoxTixFe(12−2x)O19 ferrites [J]. Journal of Electronic Materials, 2017, 46(2): 718-728.
CrossRef Google scholar
[[233]]
Xia A-L, Zuo C-H, Chen L, et al. Hexagonal SrFe12O19 ferrites: Hydrothermal synthesis and their sintering properties [J]. Journal of Magnetism and Magnetic Materials, 2013, 332: 186-191.
CrossRef Google scholar
[[234]]
Turchenko V A, Trukhanov S V, Kostishin V G, et al. Impact of In3+ cations on structure and electromagnetic state of M-type hexaferrites [J]. Journal of Energy Chemistry, 2022, 31(6): 667-676.
CrossRef Google scholar
[[235]]
Zhivulin V E, Trofimov E A, Zaitseva O V, et al. Preparation, phase stability, and magnetization behavior of high entropy hexaferrites [J]. iScience, 2023, 26(7): 107077.
CrossRef Google scholar
[[236]]
Liu Q-Y, Yang Y-T, Li H, et al. NiO nanoparticles modified with 5, 10, 15, 20-tetrakis(4-carboxyl pheyl) -porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection [J]. Biosensors and Bioelectronics, 2015, 64: 147-153.
CrossRef Google scholar
[[237]]
Zhang L-Y, Chen M-X, Jiang Y-L, et al. A facile preparation of montmorillonite-supported copper sulfide nanocomposites and their application in the detection of H2O2 [J]. Sensors and Actuators B: Chemical, 2017, 239: 28-35.
CrossRef Google scholar
[[238]]
Chen W, Zhu X-X, Liu Q-Y, et al. Preparation of urchin-like strontium ferrites as microwave absorbing materials [J]. Materials Letters, 2017, 209: 425-428.
CrossRef Google scholar
[[239]]
Kumar S, Verma V, Walia R. Magnetization and thickness dependent microwave attenuation behaviour of Ferrite-PANI composites and embedded composite-fabrics prepared by in situ polymerization [J]. AIP Advances, 2021, 11(1): 15106.
CrossRef Google scholar
[[240]]
Fu M, Jiao Q-Z, Zhao Y, et al. Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials [J]. Journal of Materials Chemistry A, 2014, 2(3): 735-744.
CrossRef Google scholar
[[241]]
Fu M, Jiao Q-Z, Zhao Y. Preparation of NiFe2O4nanorod-graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties [J]. Journal of Materials Chemistry A, 2013, 1(18): 5577-5586.
CrossRef Google scholar
[[242]]
Liu Y, Liu X, Wang X. Synthesis and microwave absorption properties of Ni-Zn-Mn spinel ferrites [J]. Advances in Applied Ceramics, 2015, 114(2): 82-86.
CrossRef Google scholar
[[243]]
ARI ADI W, YUNASFI Y, MASHADI M, et al. Metamaterial: smart magnetic material for microwave absorbing material [M]// Electromagnetic Fields and Waves. 2019: 1–18: DOI: https://doi.org/10.5772/intechopen.84471.
[[244]]
Liu P-J, Yao Z-J, Ng V M H, et al. Enhanced microwave absorption properties of double-layer absorbers based on spherical NiO and Co0.2Ni0.4Zn0.4Fe2O4 ferrite composites [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 171-179.
CrossRef Google scholar
[[245]]
Indrusiak T, Pereira I M, Heitmann A P, et al. Epoxy/ferrite nanocomposites as microwave absorber materials: Effect of multilayered structure [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(16): 13118-13130.
[[246]]
Jang W, Mallesh S, Lee S B, et al. Microwave absorption properties of core-shell structured FeCoNi@PMMA filled in composites [J]. Current Applied Physics, 2020, 20(4): 525-530.
CrossRef Google scholar
[[247]]
Drmota A, Drofenik M, Žnidaršič A. Synthesis and characterization of nano-crystalline strontium hexaferrite using the co-precipitation and microemulsion methods with nitrate precursors [J]. Ceramics International, 2012, 38(2): 973-979.
CrossRef Google scholar
[[248]]
Srivastava M, Ojha A K, Chaubey S, et al. Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol–gel method [J]. Materials Science and Engineering: B, 2010, 175(1): 14-21.
CrossRef Google scholar
[[249]]
Huang X-G, Zha N J, Wang W, et al. Effect of pH value on electromagnetic loss properties of Co-Zn ferrite prepared via coprecipitation method [J]. Journal of Magnetism and Magnetic Materials, 2016, 405: 36-41.
CrossRef Google scholar
[[250]]
Tyagi S, Baskey H B, Agarwala R C, et al. Development of hard/soft ferrite nanocomposite for enhanced microwave absorption [J]. Ceramics International, 2011, 37(7): 2631-2641.
CrossRef Google scholar
[[251]]
Hessien M M, Rashad M M, El-Barawy K. Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method [J]. Journal of Magnetism and Magnetic Materials, 2008, 320(3–4): 336-343.
CrossRef Google scholar
[[252]]
Mozaffari M, Eghbali Arani M, Amighian J. The effect of cation distribution on magnetization of ZnFe2O4 nanoparticles [J]. Journal of Magnetism and Magnetic Materials, 2010, 322(21): 3240-3244.
CrossRef Google scholar
[[253]]
Vickers N J. Animal communication: When I’m calling you, will you answer too? [J]. Current Biology: CB, 2017, 27(14): R713-R715.
CrossRef Google scholar
[[254]]
Pal A, He Y-L, Jekel M, et al. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle [J]. Environment International, 2014, 71: 46-62.
CrossRef Google scholar
[[255]]
Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades [J]. Nature, 2008, 452: 301-310.
CrossRef Google scholar
[[256]]
Uribe I O, Mosquera-Corral A, Rodicio J L, et al. Advanced technologies for water treatment and reuse [J]. AIChE Journal, 2015, 61(10): 3146-3158.
CrossRef Google scholar
[[257]]
Kozlovskiy A, Egizbek K, Zdorovets M V, et al. Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5 [J]. Sensors, 2020, 20(17): 4851.
CrossRef Google scholar
[[258]]
Trukhanov S V. Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3−y (0≤γ≤0.25) [J]. Journal of Experimental and Theoretical Physics, 2005, 100(1): 95-105.
CrossRef Google scholar
[[259]]
Trukhanov S V, Troyanchuk I O, Pushkarev N V, et al. Magnetic properties of anion-deficient La1−xBa xMnO3−x/2 (0≤x≤0.30) manganites [J]. Journal of Experimental and Theoretical Physics, 2003, 96(1): 110-117.
CrossRef Google scholar
[[260]]
Trukhanov S V, Bushinsky M V, Troyanchuk I O, et al. Magnetic ordering in La1−x Sr xMnO3−x/2 anion-deficient manganites [J]. Journal of Experimental and Theoretical Physics, 2004, 99(4): 756-765.
CrossRef Google scholar
[[261]]
Saiz J, Bringas E, Ortiz I. New functionalized magnetic materials for As5+ removal: Adsorbent regeneration and reuse [J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 18928-18934.
CrossRef Google scholar
[[262]]
Saiz J, Bringas E, Ortiz I. Functionalized magnetic nanoparticles as new adsorption materials for arsenic removal from polluted waters [J]. Journal of Chemical Technology & Biotechnology, 2014, 89(6): 909-918.
CrossRef Google scholar
[[263]]
San Román M F, Bringas E, Ibañez R, et al. Liquid membrane technology: Fundamentals and review of its applications [J]. Journal of Chemical Technology & Biotechnology, 2010, 85(1): 2-10.
CrossRef Google scholar
[[264]]
Jadhav S V, Bringas E, Yadav G D, et al. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal [J]. Journal of Environmental Management, 2015, 162: 306-325.
CrossRef Google scholar
[[265]]
Dominguez S, Ribao P, Rivero M J, et al. Influence of radiation and TiO2 concentration on the hydroxyl radicals generation in a photocatalytic LED reactor. Application to dodecylbenzenesulfonate degradation [J]. Applied Catalysis B: Environmental, 2015, 178: 165-169.
CrossRef Google scholar
[[266]]
Lee S Y, Park S J. TiO2 photocatalyst for water treatment applications [J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1761-1769.
CrossRef Google scholar
[[267]]
Xu P, Zeng G M, Huang D L, et al. Use of iron oxide nanomaterials in wastewater treatment: A review [J]. Science of the Total Environment, 2012, 424: 1-10.
CrossRef Google scholar
[[268]]
Zhou Q-X, Fang Z, Li J, et al. Applications of TiO2 nanotube arrays in environmental and energy fields: A review [J]. Microporous and Mesoporous Materials, 2015, 202: 22-35.
CrossRef Google scholar
[[269]]
Buzea C, Pacheco I I, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity [J]. Biointerphases, 2007, 2(4): MR17-MR71.
CrossRef Google scholar
[[270]]
Udom I, Ram M K, Stefanakos E K, et al. One dimensional-ZnO nanostructures: Synthesis, properties and environmental applications [J]. Materials Science in Semiconductor Processing, 2013, 16(6): 2070-2083.
CrossRef Google scholar
[[271]]
Linley S, Leshuk T, Gu F X. Magnetically separable water treatment technologies and their role in future advanced water treatment: A patent review [J]. CLEAN-Soil, Air, Water, 2013, 41(12): 1152-1156.
CrossRef Google scholar
[[272]]
Wang R, Li J-Y, Zhou H-G, et al. Research advancement on magnetic nanomaterial demulsifier for oil-water separation [J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110245.
CrossRef Google scholar
[[273]]
Lin D-H, Tian X-L, Wu F-C, et al. Fate and transport of engineered nanomaterials in the environment [J]. Journal of Environmental Quality, 2010, 39(6): 1896-1908.
CrossRef Google scholar
[[274]]
Horie M, Kato H, Iwahashi H. Cellular effects of manufactured nanoparticles: Effect of adsorption ability of nanoparticles [J]. Archives of Toxicology, 2013, 87(5): 771-781.
CrossRef Google scholar
[[275]]
Chen C-Y, Li Y-F, Qu Y, et al. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology [J]. Chemical Society Reviews, 2013, 42(21): 8266-8303.
CrossRef Google scholar
[[276]]
Gnach A, Lipinski T, Bednarkiewicz A, et al. Upconverting nanoparticles: Assessing the toxicity [J]. Chemical Society Reviews, 2015, 44(6): 1561-1584.
CrossRef Google scholar
[[277]]
Reddy L H, Arias J L, Nicolas J, et al. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications [J]. Chemical Reviews, 2012, 112(11): 5818-5878.
CrossRef Google scholar
[[278]]
Krug H F. Nanosafety research: Are we on the right track? [J]. Angewandte Chemie (International Ed in English), 2014, 53(46): 12304-12319.
CrossRef Google scholar
[[279]]
Warheit D B, Donner E M. How meaningful are risk determinations in the absence of a complete dataset? Making the case for publishing standardized test guideline and ‘no effect’ studies for evaluating the safety of nanoparticulates versus spurious ‘high effect’ results from single investigative studies [J]. Science and Technology of Advanced Materials, 2015, 16(3): 034603.
CrossRef Google scholar
[[280]]
Fadeel B, Fornara A, Toprak M S, et al. Keeping it real: The importance of material characterization in nanotoxicology [J]. Biochemical and Biophysical Research Communications, 2015, 468(3): 498-503.
CrossRef Google scholar
[[281]]
Li Y-F, Gao Y-X, Chai Z-F, et al. Nanometallomics: An emerging field studying the biological effects of metal-related nanomaterials [J]. Metallomics, 2014, 6(2): 220-232.
CrossRef Google scholar
[[282]]
Benetti F, Bregoli L, Olivato I, et al. Effects of metal(loid) -based nanomaterials on essential element homeostasis: The central role of nanometallomics for nanotoxicology [J]. Metallomics, 2014, 6(4): 729-747.
CrossRef Google scholar
[[283]]
Biesuz M, Sglavo V M. Flash sintering of ceramics [J]. Journal of the European Ceramic Society, 2019, 39(2–3): 115-143.
CrossRef Google scholar
[[284]]
Houbi A, Aldashevich Z A, Atassi Y, et al. Microwave absorbing properties of ferrites and their composites: A review [J]. Journal of Magnetism and Magnetic Materials, 2021, 529: 167839.
CrossRef Google scholar
[[285]]
Gómez-Pastora J, Dominguez S, Bringas E, et al. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment [J]. Chemical Engineering Journal, 2017, 310: 407-427.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/