Research progress of permanent ferrite magnet materials
Bin Xu, Yu-feng Chen, Yu-juan Zhou, Bi-yun Luo, Shou-guo Zhong, Xing-ao Liu
Research progress of permanent ferrite magnet materials
Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness. The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials. This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years. The emergence of new raw material, the advancement of perparation methods and manufacturing techniques, and the potential applications of permanent ferrite materials are introduced and discussed. Specifically, nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources, and therefore it could be a promising development trendency.
permanent ferrite / magnetic materials / high-performance / nanosizing
[[1]] |
|
[[2]] |
NEEDHAM J, WANG L, LU G. Science and civilisation in China: Physics and physical Technology. Civil Engineering and Nautics[M]. Cambridge University Press, 1971.
|
[[3]] |
|
[[4]] |
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
|
[[10]] |
LIU Z. Fundamental principles and advanced technologies of permanent magnetic materials [M]. South China University of Technology Press, 2017.
|
[[11]] |
|
[[12]] |
|
[[13]] |
|
[[14]] |
FENG Xin-shuo. Domestic Iron ore market review 2023 and outlook 2024[EB/OL]. Https://Tks.Mysteel.Com/
|
[[15]] |
|
[[16]] |
SURASHE V K, WAGHULE N N, RAUT A V, et al. Ceramic synthesis and X-ray diffraction characterization of copper ferrite [C]// AIP Conference Proceedings: AIP Publishing, 2021.
|
[[17]] |
HENAISH A. Physical and spectral studies of Mg-Zn ferrite prepared by different methods [J]. Arab Journal of Nuclear Sciences and Applications, 2019. DOI: https://doi.org/10.21608/ajnsa.2019.11102.1195.
|
[[18]] |
|
[[19]] |
|
[[20]] |
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
|
[[31]] |
|
[[32]] |
KOOLS F, MOREL A, TENAUD P, et al. La-Co substituted Sr and Ba M-type ferrites magnet properties versus intrinsic and microstructural factors [C]// Proc. 8th Int. Conf. Ferrites (ICF-8), 2000: 437–439.
|
[[33]] |
|
[[34]] |
MOREL A, KOOLS F, TENAUD P, et al. Modeling of La-Co Substituted M-Type Ferrite Coercivity of Sr1−xLaxFe12−xCo xO19 [J]. Icf-8: Kyoto, Japan, 2000: 434–436.
|
[[35]] |
|
[[36]] |
|
[[37]] |
|
[[38]] |
|
[[39]] |
|
[[40]] |
|
[[41]] |
|
[[42]] |
|
[[43]] |
|
[[44]] |
|
[[45]] |
|
[[46]] |
|
[[47]] |
|
[[48]] |
|
[[49]] |
|
[[50]] |
|
[[51]] |
|
[[52]] |
|
[[53]] |
|
[[54]] |
|
[[55]] |
|
[[56]] |
|
[[57]] |
|
[[58]] |
|
[[59]] |
|
[[60]] |
|
[[61]] |
|
[[62]] |
|
[[63]] |
|
[[64]] |
|
[[65]] |
|
[[66]] |
|
[[67]] |
|
[[68]] |
|
[[69]] |
|
[[70]] |
|
[[71]] |
|
[[72]] |
|
[[73]] |
|
[[74]] |
|
[[75]] |
|
[[76]] |
|
[[77]] |
|
[[78]] |
|
[[79]] |
|
[[80]] |
|
[[81]] |
|
[[82]] |
|
[[83]] |
|
[[84]] |
|
[[85]] |
|
[[86]] |
|
[[87]] |
|
[[88]] |
|
[[89]] |
|
[[90]] |
|
[[91]] |
|
[[92]] |
|
[[93]] |
|
[[94]] |
|
[[95]] |
|
[[96]] |
|
[[97]] |
|
[[98]] |
|
[[99]] |
|
[[100]] |
|
[[101]] |
|
[[102]] |
|
[[103]] |
|
[[104]] |
|
[[105]] |
|
[[106]] |
|
[[107]] |
|
[[108]] |
|
[[109]] |
|
[[110]] |
|
[[111]] |
|
[[112]] |
|
[[113]] |
|
[[114]] |
|
[[115]] |
|
[[116]] |
|
[[117]] |
|
[[118]] |
|
[[119]] |
|
[[120]] |
|
[[121]] |
|
[[122]] |
|
[[123]] |
|
[[124]] |
|
[[125]] |
|
[[126]] |
|
[[127]] |
|
[[128]] |
|
[[129]] |
|
[[130]] |
|
[[131]] |
|
[[132]] |
|
[[133]] |
|
[[134]] |
|
[[135]] |
|
[[136]] |
|
[[137]] |
|
[[138]] |
|
[[139]] |
|
[[140]] |
|
[[141]] |
|
[[142]] |
|
[[143]] |
|
[[144]] |
|
[[145]] |
|
[[146]] |
|
[[147]] |
|
[[148]] |
|
[[149]] |
|
[[150]] |
|
[[151]] |
|
[[152]] |
|
[[153]] |
|
[[154]] |
|
[[155]] |
|
[[156]] |
|
[[157]] |
|
[[158]] |
|
[[159]] |
|
[[160]] |
|
[[161]] |
|
[[162]] |
|
[[163]] |
|
[[164]] |
|
[[165]] |
|
[[166]] |
|
[[167]] |
|
[[168]] |
|
[[169]] |
|
[[170]] |
SATO Y, ISHIKAWA S, OKUBO T, et al. Development of high response motor and inverter system for the nissan LEAF electric vehicle [R]. SAE Technical Paper, 2011. DOI: https://doi.org/10.4271/2011-01-0350.
|
[[171]] |
|
[[172]] |
ENERGY U S D O. Critical materials strategy [C], 2011.
|
[[173]] |
|
[[174]] |
COULTATE J. Wind turbine gearbox durability [J]. Wind Systems Magazine, 2009: 42–45.
|
[[175]] |
DOE U S. Trilateral Eu-Japan-Us conference on critical materials for a clean energy future [C]// Summary Report, US Department of Energy, Washington, https://energy.2011.
|
[[176]] |
|
[[177]] |
|
[[178]] |
TANIUCHI Y, SHIBATANI K. Highly efficient industrial 11 kW permanent magnet synchronous motor without rare-earth metals [C]// Proc. 8th Int. Conf. Energy Efficiency Motor DFriven Syst., 2013: 117–128.
|
[[179]] |
|
[[180]] |
|
[[181]] |
|
[[182]] |
|
[[183]] |
NORMILE D. High technology. Haunted by ‘specter of unavailability, ‘experts huddle over critical materials [C]// American Association for the Advancement of Science, 2010.
|
[[184]] |
ORLIK T, YAP C W. China’s rare earth recoil[J]. Wall Street Journal, 2012, 14. DOI
|
[[185]] |
|
[[186]] |
FROMER N A, EGGERT R G, LIFTON J. Critical materials for sustainable energy applications [J]. 2011.
|
[[187]] |
|
[[188]] |
|
[[189]] |
WALMER M H, LIU J F, DENT P C. Current status of permanent magnet industry in the united states [C]// Proceedings of 20th International Workshop on “Rare earth Permanent Magnets and their Applications,” Sept, 2008: 8–10.
|
[[190]] |
|
[[191]] |
|
[[192]] |
|
[[193]] |
|
[[194]] |
|
[[195]] |
|
[[196]] |
|
[[197]] |
|
[[198]] |
CHU S. Critical materials strategy [M]. DIANE publishing, 2011.
|
[[199]] |
|
[[200]] |
|
[[201]] |
|
[[202]] |
|
[[203]] |
|
[[204]] |
|
[[205]] |
|
[[206]] |
|
[[207]] |
|
[[208]] |
|
[[209]] |
|
[[210]] |
|
[[211]] |
|
[[212]] |
|
[[213]] |
|
[[214]] |
|
[[215]] |
|
[[216]] |
CUONG NGUYEN M, ZHAO Xin, JI Min, et al. Atomic structure and magnetic properties of Fe1–i>xCox alloys [J]. Journal of Applied Physics, 2012, 111(IS-J 7698). DOI: https://doi.org/10.1063/1.3677929.
|
[[217]] |
|
[[218]] |
|
[[219]] |
|
[[220]] |
|
[[221]] |
|
[[222]] |
|
[[223]] |
|
[[224]] |
|
[[225]] |
|
[[226]] |
|
[[227]] |
|
[[228]] |
|
[[229]] |
|
[[230]] |
|
[[231]] |
|
[[232]] |
|
[[233]] |
|
[[234]] |
|
[[235]] |
|
[[236]] |
|
[[237]] |
|
[[238]] |
|
[[239]] |
|
[[240]] |
|
[[241]] |
|
[[242]] |
|
[[243]] |
ARI ADI W, YUNASFI Y, MASHADI M, et al. Metamaterial: smart magnetic material for microwave absorbing material [M]// Electromagnetic Fields and Waves. 2019: 1–18: DOI: https://doi.org/10.5772/intechopen.84471.
|
[[244]] |
|
[[245]] |
|
[[246]] |
|
[[247]] |
|
[[248]] |
|
[[249]] |
|
[[250]] |
|
[[251]] |
|
[[252]] |
|
[[253]] |
|
[[254]] |
|
[[255]] |
|
[[256]] |
|
[[257]] |
|
[[258]] |
|
[[259]] |
|
[[260]] |
|
[[261]] |
|
[[262]] |
|
[[263]] |
|
[[264]] |
|
[[265]] |
|
[[266]] |
|
[[267]] |
|
[[268]] |
|
[[269]] |
|
[[270]] |
|
[[271]] |
|
[[272]] |
|
[[273]] |
|
[[274]] |
|
[[275]] |
|
[[276]] |
|
[[277]] |
|
[[278]] |
|
[[279]] |
|
[[280]] |
|
[[281]] |
|
[[282]] |
|
[[283]] |
|
[[284]] |
|
[[285]] |
|
/
〈 | 〉 |