Fluid-solid interaction analysis of blood flow in the atherosclerotic carotid artery using the Eulerian-Lagrangian approach

Majid Siavashi, Ava Bina, Mojtaba Sayadnejad, Borhan Beigzadeh

Journal of Central South University ›› 2024, Vol. 31 ›› Issue (1) : 151-168. DOI: 10.1007/s11771-023-5395-4

Fluid-solid interaction analysis of blood flow in the atherosclerotic carotid artery using the Eulerian-Lagrangian approach

Author information +
History +

Abstract

This study aims to simulate pulsatile blood flow in the carotid artery with different stenosis severities and pulse rates. The effects of different severities of stenosis, pulse rates, and arterial wall properties on the surrounding fluid are investigated by using fluid-structure interaction (FSI) and arbitrary Lagrangian-Eulerian (ALE) methods. Carreau-Yasuda non-Newtonian and modified Mooney-Rivin hyperelastic models are applied for blood with non-Newtonian behavior and hyperelastic blood vessel’s wall, respectively. Results are presented in terms of wall radial displacement, pressure distribution, the axial velocity profile, and wall shear stress for blood. By increasing the stenosis severities, there would be a change in several parameters. Axial velocity, variation of blood pressure, the maximum wall shear stress, and wall radial displacement experience a growth. Furthermore, when the pulse rate grows in the stenosis severity of 75%, the maximum flow rate moments, maximum values for wall radial displacement, pressure, axial velocity, and wall shear stress increase as well. Using a hyperelastic model for the arterial wall, as opposed to elastic and rigid models, and treating the surrounding fluid as non-Newtonian and unsteady, allows us to achieve a more realistic simulation. In the stenosis having up to 50% of severity, red blood cells are under the enforcement of insignificant damage, while hemolysis is observed in the severe stenosis of 75%. By improving atherosclerosis, which leads to the development of elastic modulus from 500 kPa to 2 MPa, the 65% growth of the maximum value of shear stress at 60 bpm pulse rate and in the stenosis with 75% severity has been noticed. It can be demonstrated that hyperelastic models of the arterial walls lead to lower axial velocity, lower blood pressure, lower shear stress, and higher radial displacement, as opposed to rigid and elastic arterial walls.

Keywords

fluid-structure interaction / stenosis severity / pulse rate variation / hyperelastic artery / atherosclerosis

Cite this article

Download citation ▾
Majid Siavashi, Ava Bina, Mojtaba Sayadnejad, Borhan Beigzadeh. Fluid-solid interaction analysis of blood flow in the atherosclerotic carotid artery using the Eulerian-Lagrangian approach. Journal of Central South University, 2024, 31(1): 151‒168 https://doi.org/10.1007/s11771-023-5395-4

References

[1]
Das S, Ranjan O P, Rao V, et al.. Multifunctional liposome-quantum dot hybrid nanocarriers for drug targeting to brain tumors [M]. Nanocarriers for Drug-Targeting Brain Tumors, 2022 Amsterdam Elsevier 649-677,
CrossRef Google scholar
[2]
Xia L-H, Zhang B, Sun Y-Q, et al.. Analysis of Syk/PECAM-1 signaling pathway in low shear stress induced atherosclerosis based on ultrasound imaging [J]. Computer Methods and Programs in Biomedicine, 2021, 201: 105953,
CrossRef Google scholar
[3]
Bhushan R, Ravichandiran V, Kumar N. An overview of the anatomy and physiology of the brain [M]. Nanocarriers for Drug-Targeting Brain Tumors, 2022 Amsterdam Elsevier 3-29,
CrossRef Google scholar
[4]
Yeh H H, Barannyk O, Grecov D, et al.. The influence of hematocrit on the hemodynamics of artificial heart valve using fluid-structure interaction analysis [J]. Computers in Biology and Medicine, 2019, 110: 79-92,
CrossRef Google scholar
[5]
Munir I D, Jaafar N A, Shafie S. Effect of catheter and stenosis on solute diffusion in non-newtonian blood flow through a catheterized stenosed artery [J]. CFD Letters, 2022, 14(12): 11-26,
CrossRef Google scholar
[6]
Tripathi J, Vasu B, Bég O A, et al.. Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects [J]. Microvascular Research, 2022, 142: 104375,
CrossRef Google scholar
[7]
Ul Haq U, Ahmed A, Mustansar Z, et al.. Computational modeling and simulation of stenosis of the cerebral aqueduct due to brain tumor [J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16(1): 1018-1030,
CrossRef Google scholar
[8]
Sefidgar M, Soltani M, Raahemifar K, et al.. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature [J]. Microvascular Research, 2015, 99: 43-56,
CrossRef Google scholar
[9]
Albadawi M, Abuouf Y, Elsagheer S, et al.. Influence of rigid-elastic artery wall of carotid and coronary stenosis on hemodynamics [J]. Bioengineering, 2022, 9(11): 708,
CrossRef Google scholar
[10]
Lone T, Alday A, Zakerzadeh R. Numerical analysis of stenoses severity and aortic wall mechanics in patients with supravalvular aortic stenosis [J]. Computers in Biology and Medicine, 2021, 135: 104573,
CrossRef Google scholar
[11]
Balaji E V, Kumar N, Satarker S, et al.. Zinc as a plausible epigenetic modulator of glioblastoma multiforme [J]. European Journal of Pharmacology, 2020, 887: 173549,
CrossRef Google scholar
[12]
Nejad A A, Talebi Z, Cheraghali D, et al.. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases [J]. Computer Methods and Programs in Biomedicine, 2018, 154: 109-122,
CrossRef Google scholar
[13]
Ahmad Jamali M S, Ismail Z. Generalized power law model of blood flow in a stenosed bifurcated artery [J]. Annals of Mathematical Modeling, 2021, 1(2): 35-46
[14]
Young D F, Tsai F Y. Flow characteristics in models of arterial stenoses—I. Steady flow [J]. Journal of Biomechanics, 1973, 6(4): 395-410,
CrossRef Google scholar
[15]
Lee K W, Xu X Y. Modelling of flow and wall behaviour in a mildly stenosed tube [J]. Medical Engineering & Physics, 2002, 24(9): 575-586,
CrossRef Google scholar
[16]
Gijsen F J H, van de Vosse F N, Janssen J D. The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model [J]. Journal of Biomechanics, 1999, 32(6): 601-608,
CrossRef Google scholar
[17]
Tyfa Z, Obidowski D, Reorowicz P, et al.. Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries [J]. Biocybernetics and Biomedical Engineering, 2018, 38(2): 228-242,
CrossRef Google scholar
[18]
Jamaleddin Mousavi S, Jayendiran R, Farzaneh S, et al.. Coupling hemodynamics with mechanobiology in patient-specific computational models of ascending thoracic aortic aneurysms [J]. Computer Methods and Programs in Biomedicine, 2021, 205: 106107,
CrossRef Google scholar
[19]
Aouinet H, Dhahri M, Safaei M R, et al.. Turbulent boundary layers and hydrodynamic flow analysis of nanofluids over a plate [J]. Journal of Central South University, 2021, 28(11): 3340-3353,
CrossRef Google scholar
[20]
Leverett L B, Hellums J D, Alfrey C P, et al.. Red blood cell damage by shear stress [J]. Biophysical Journal, 1972, 12(3): 257-273,
CrossRef Google scholar
[21]
Jodko D, Jeckowski M, Tyfa Z. Fluid structure interaction versus rigid-wall approach in the study of the symptomatic stenosed carotid artery: Importance of wall compliance and resilience of loose connective tissue [J]. International Journal for Numerical Methods in Biomedical Engineering, 2022, 38(8): e3630,
CrossRef Google scholar
[22]
Niknejad F, Fatouraee N, Nabaei M. Numerical evaluation of the effect of percentage and location of stenosis on the hemodynamic bifurcation of the left coronary artery [J]. Modares Mechanical Engineering, 2019, 19(3): 743-752
[23]
Ikbal M A. Viscoelastic blood flow through arterial stenosis—Effect of variable viscosity [J]. International Journal of Non-Linear Mechanics, 2012, 47(8): 888-894,
CrossRef Google scholar
[24]
Liu X, Fan Y-B, Deng X-Y, et al.. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta [J]. Journal of Biomechanics, 2011, 44(6): 1123-1131,
CrossRef Google scholar
[25]
Halabian M, Karimi A, Beigzadeh B, et al.. A numerical study on the hemodynamic and shear stress of double aneurysm through s-shaped vessel [J]. Biomedical Engineering: Applications, Basis and Communications, 2015, 27(4): 1550033
[26]
Nematollahi A, Shirani E, Sadeghi M R, et al.. Effects of shear-dependent transport properties on lumen surface concentration of LDL particles in stenosed carotid artery [J]. Meccanica, 2015, 50(7): 1733-1746,
CrossRef Google scholar
[27]
Riahi D N. Modeling unsteady two-phase blood flow in catheterized elastic artery with stenosis [J]. Engineering Science and Technology, an International Journal, 2016, 19(3): 1233-1243,
CrossRef Google scholar
[28]
Ponalagusamy R, Selvi R T. Blood flow in stenosed arteries with radially variable viscosity, peripheral plasma layer thickness and magnetic field [J]. Meccanica, 2013, 48(10): 2427-2438,
CrossRef Google scholar
[29]
Teimouri K, Tavakoli M R, Ghafari A, et al.. Investigation of the plaque morphology effect on changes of pulsatile blood flow in a stenosed curved artery induced by an external magnetic field [J]. Computers in Biology and Medicine, 2021, 135: 104600,
CrossRef Google scholar
[30]
Khan A A, Ilyas S, Abbas T, et al.. Significance of induced magnetic field and variable thermal conductivity on stagnation point flow of second grade fluid [J]. Journal of Central South University, 2021, 28(11): 3381-3390,
CrossRef Google scholar
[31]
Blakely I P, Horton R E. A microfluidic computational fluid dynamics model for cellular interaction studies of sickle cell disease vaso-occlusions [J]. Microvascular Research, 2020, 132: 104052,
CrossRef Google scholar
[32]
Bahrami S, Norouzi M. Hemodynamic impacts of hematocrit level by two-way coupled FSI in the left coronary bifurcation [J]. Clinical Hemorheology and Microcirculation, 2020, 76(1): 9-26,
CrossRef Google scholar
[33]
Carvalho V, Pinho D, Lima R A, et al.. Blood flow modeling in coronary arteries: A review [J]. Fluids, 2021, 6(2): 53,
CrossRef Google scholar
[34]
Bukač M, Čanić S, Tambača J, et al.. Fluid-structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: A four stent computational study [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 679-700,
CrossRef Google scholar
[35]
Shamloo A, Ebrahimi S, Amani A, et al.. Targeted drug delivery of microbubble to arrest abdominal aortic aneurysm development: A simulation study towards optimized microbubble design [J]. Scientific Reports, 2020, 10: 5393,
CrossRef Google scholar
[36]
Younis H F, Kaazempur-Mofrad M R, Chung C, et al.. Computational analysis of the effects of exercise on hemodynamics in the carotid bifurcation [J]. Annals of Biomedical Engineering, 2003, 31(8): 995-1006,
CrossRef Google scholar
[37]
Tang B T, Fonte T A, Chan F P, et al.. Three-dimensional hemodynamics in the human pulmonary arteries under resting and exercise conditions [J]. Annals of Biomedical Engineering, 2011, 39(1): 347-358,
CrossRef Google scholar
[38]
Taylor C A, Hughes T J R, Zarins C K. Effect of exercise on hemodynamic conditions in the abdominal aorta [J]. Journal of Vascular Surgery, 1999, 29(6): 1077-1089,
CrossRef Google scholar
[39]
Giannoglou G D, Chatzizisis Y S, Zamboulis C, et al.. Elevated heart rate and atherosclerosis: An overview of the pathogenetic mechanisms [J]. International Journal of Cardiology, 2008, 126(3): 302-312,
CrossRef Google scholar
[40]
Scarsoglio S, Gallo C, Saglietto A, et al.. Impaired coronary blood flow at higher heart rates during atrial fibrillation: Investigation via multiscale modelling [J]. Computer Methods and Programs in Biomedicine, 2019, 175: 95-102,
CrossRef Google scholar
[41]
Xu F, Kenjereš S. Numerical simulations of flow patterns in the human left ventricle model with a novel dynamic mesh morphing approach based on radial basis function [J]. Computers in Biology and Medicine, 2021, 130: 104184,
CrossRef Google scholar
[42]
Sood T, Roy S, Pathak M. Effect of pulse rate variation on blood flow through axisymmetric and asymmetric stenotic artery models [J]. Mathematical Biosciences, 2018, 298: 1-18,
CrossRef Google scholar
[43]
Shankar R, Nayak S, Singh S, et al.. Simultaneous sustained drug delivery, tracking, and on-demand photoactivation of DNA-hydrogel formulated from a biomass-derived DNA nanoparticle [J]. ACS Applied Bio Materials, 2023, 6(4): 1556-1565,
CrossRef Google scholar
[44]
Aryan H, Beigzadeh B, Siavashi M. Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation [J]. Computer Methods and Programs in Biomedicine, 2022, 219: 106778,
CrossRef Google scholar
[45]
Majee S, Shit G C. Modeling and simulation of blood flow with magnetic nanoparticles as carrier for targeted drug delivery in the stenosed artery [J]. European Journal of Mechanics - B/Fluids, 2020, 83: 42-57,
CrossRef Google scholar
[46]
Wajihah S A, Sankar D S. Effects of porosity in four-layered non-linear blood rheology in constricted narrow arteries with clinical applications [J]. Computer Methods and Programs in Biomedicine, 2021, 199: 105907,
CrossRef Google scholar
[47]
Teng Z-Z, Yuan J-M, Feng J-X, et al.. The influence of constitutive law choice used to characterise atherosclerotic tissue material properties on computing stress values in human carotid plaques [J]. Journal of Biomechanics, 2015, 48(14): 3912-3921,
CrossRef Google scholar
[48]
Selimefendigil F, ÖZtop H F. Fluid-solid interaction of elastic-step type corrugation effects on the mixed convection of nanofluid in a vented cavity with magnetic field [J]. International Journal of Mechanical Sciences, 2019, 152: 185-197,
CrossRef Google scholar
[49]
Moradicheghamahi J, Jahangiri M, Mousaviraad M, et al.. Computational studies of comparative and cumulative effects of turbulence, fluid-structure interactions, and uniform magnetic fields on pulsatile non-Newtonian flow in a patient-specific carotid artery [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(10): 1-22,
CrossRef Google scholar
[50]
Ames J, Puleri D F, Balogh P, et al.. Multi-GPU immersed boundary method hemodynamics simulations [J]. Journal of Computational Science, 2020, 44: 101153,
CrossRef Google scholar
[51]
Janela J, Moura A, Sequeira A. A 3D non-Newtonian fluid-structure interaction model for blood flow in arteries [J]. Journal of Computational and Applied Mathematics, 2010, 234(9): 2783-2791,
CrossRef Google scholar
[52]
Khamdaeng T, Luo J, Vappou J, et al.. Arterial stiffness identification of the human carotid artery using the stress-strain relationship in vivo [J]. Ultrasonics, 2012, 52(3): 402-411,
CrossRef Google scholar
[53]
Sommer G, Holzapfel G A. 3D constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 5(1): 116-128,
CrossRef Google scholar
[54]
Misiulis E, Džiugys A, Navakas R, et al.. A fluid-structure interaction model of the internal carotid and ophthalmic arteries for the noninvasive intracranial pressure measurement method [J]. Computers in Biology and Medicine, 2017, 84: 79-88,
CrossRef Google scholar
[55]
Selimefendigil F, Oztop H F, Chamkha A J. MHD mixed convection in a nanofluid filled vertical lid-driven cavity having a flexible fin attached to its upper wall [J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(1): 325-340,
CrossRef Google scholar
[56]
Li H, Ku X-K, Lin J-Z. Eulerian-Lagrangian simulation of inertial migration of particles in circular Couette flow [J]. Physics of Fluids, 2020, 32(7): 073308,
CrossRef Google scholar
[57]
Selimefendigil F, Çoğan M, ÖZtop H F. Combined effects of local curvature and elasticity of an isothermal wall for jet impingement cooling under magnetic field effects [J]. Journal of Central South University, 2021, 28(11): 3534-3544,
CrossRef Google scholar
[58]
Kaoui B. Algorithm to implement unsteady jump boundary conditions within the lattice Boltzmann method [J]. The European Physical Journal E, 2020, 43(4): 23,
CrossRef Google scholar
[59]
Lopes D, Puga H, Teixeira J C, et al.. Influence of arterial mechanical properties on carotid blood flow: Comparison of CFD and FSI studies [J]. International Journal of Mechanical Sciences, 2019, 160: 209-218,
CrossRef Google scholar
[60]
Sutradhar A. Effects of buoyant and Saffman lift force on magnetic drug targeting in microvessel in the presence of inertia [J]. Microvascular Research, 2021, 133: 104099,
CrossRef Google scholar
[61]
Shankar Narayan S, Saha S, Bhattacharjee A. A 2D FSI mathematical model of blood flow to analyze the hyper-viscous effects in atherosclerotic COVID patients [J]. Results in Engineering, 2021, 12: 100275,
CrossRef Google scholar
[62]
Selimefendigil F, Öztop H F, Chamkha A J. Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder [J]. International Communications in Heat and Mass Transfer, 2017, 87: 40-51,
CrossRef Google scholar
[63]
Nuntadilok B, Poulter J, Boonkrong P. Numerical study of pulsatile blood flow in the coronary system with the RCA bypass graft [J]. Journal of Pure and Applied Mathematics: Advances and Applications, 2013, 9: 93-113
[64]
Manisha, Nasha V, Kumar S. Non-Newtonian blood flow model with the effect of different geometry of stenosis [J]. Journal of Mathematical and Computational Science, 2022, 12: 86
[65]
B V, Dubey A, Bég O A. Finite element analysis of non-Newtonian magnetohemodynamic flow conveying nanoparticles through a stenosed coronary artery [J]. Heat Transfer—Asian Research, 2020, 49(1): 33-66,
CrossRef Google scholar
[66]
Sun Y, Liu M-L, Xiao Y, et al.. A novel molecular communication inspired detection method for the evolution of atherosclerosis [J]. Computer Methods and Programs in Biomedicine, 2022, 219: 106756,
CrossRef Google scholar
[67]
Shatnawi H. Computational fluid flow model for the development of an arterial bypass graft [J]. CFD Letters, 2022, 14(10): 99-111,
CrossRef Google scholar
[68]
Zovatto L, Pedrizzetti G. Fluid flow in a helical vessel in presence of a stenosis [J]. Meccanica, 2017, 52(3): 545-553,
CrossRef Google scholar
[69]
Chuchalerm N, Sawangtong W, Wiwatanapataphee B, et al.. Study of Non-newtonian blood flow-heat transfer characteristics in the human coronary system with an external magnetic field [J]. Mathematical Biosciences and Engineering, 2022, 19(9): 9550-9570,
CrossRef Google scholar
[70]
Tang E, Wei Z A, Fogel M A, et al.. Fluid-structure interaction simulation of an intra-atrial fontan connection [J]. Biology, 2020, 9(12): 412,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/