Low temperature-mediated repression and far-red light-mediated induction determine morning FLOWERING LOCUS T expression levels

  • Hayeon Kim 1 ,
  • Hye Won Kang 1 ,
  • Dae Yeon Hwang 2 ,
  • Nayoung Lee 3 ,
  • Akane Kubota 4 ,
  • Takato Imaizumi 5 ,
  • Young Hun Song , 1,3,6
Expand
  • 1. Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Korea
  • 2. Department of Biology, Ajou University, Suwon, 16499 Korea
  • 3. Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 Korea
  • 4. Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
  • 5. Department of Biology, University of Washington, Seattle, WA, 98195 USA
  • 6. Institute of Agricultural Life Sciences, Seoul National University, Seoul, 08826 Korea
younghsong@snu.ac.kr

Received date: 01 Sep 2023

Accepted date: 12 Dec 2023

Published date: 20 Jan 2024

Copyright

2023 2023 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

Abstract

In order to flower in the appropriate season, plants monitor light and temperature changes and alter downstream pathways that regulate florigen genes such as Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS T (FT). In Arabidopsis, FT messenger RNA levels peak in the morning and evening under natural long-day conditions (LDs). However, the regulatory mechanisms governing morning FT induction remain poorly understood. The morning FT peak is absent in typical laboratory LDs characterized by high red:far-red light (R:FR) ratios and constant temperatures. Here, we demonstrate that ZEITLUPE (ZTL) interacts with the FT repressors TARGET OF EATs (TOEs), thereby repressing morning FT expression in natural environments. Under LDs with simulated sunlight (R:FR = 1.0) and daily temperature cycles, which are natural LD-mimicking environmental conditions, FT transcript levels in the ztl mutant were high specifically in the morning, a pattern that was mirrored in the toe1 toe2 double mutant. Low night-to-morning temperatures increased the inhibitory effect of ZTL on morning FT expression by increasing ZTL protein levels early in the morning. Far-red light counteracted ZTL activity by decreasing its abundance (possibly via phytochrome A (phyA)) while increasing GIGANTEA (GI) levels and negatively affecting the formation of the ZTL-GI complex in the morning. Therefore, the phyA-mediated high-irradiance response and GI play pivotal roles in morning FT induction. Our findings suggest that the delicate balance between low temperature-mediated ZTL activity and the far-red light-mediated functions of phyA and GI offers plants flexibility in fine-tuning their flowering time by controlling FT expression in the morning.

Cite this article

Hayeon Kim , Hye Won Kang , Dae Yeon Hwang , Nayoung Lee , Akane Kubota , Takato Imaizumi , Young Hun Song . Low temperature-mediated repression and far-red light-mediated induction determine morning FLOWERING LOCUS T expression levels[J]. Journal of Integrative Plant Biology, 2024 , 66(1) : 103 -120 . DOI: 10.1111/jipb.13595

1
Andrés, F., and Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13: 627-639.

2
Aukerman, M.J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15: 2730-2741.

3
Baudry, A., Ito, S., Song, Y.H., Strait, A.A., Kiba, T., Lu, S., Henriques, R., Pruneda-Paz, J.L., Chua, N.H., Tobin, E.M., et al. (2010). F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22: 606-622.

4
Blázquez, M.A., Ahn, J.H., and Weigel, D. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet. 33: 168-171.

5
Capovilla, G., Schmid, M., and Posé, D. (2015). Control of flowering by ambient temperature. J. Exp. Bot. 66: 59-69.

6
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., et al. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316: 1030-1033.

7
David, K.M., Armbruster, U., Tama, N., and Putterill, J. (2006). Arabidopsis GIGANTEA protein is post-transcriptionally regulated by light and dark. FEBS Lett. 580: 1193-1197.

8
Du, S.S., Li, L., Li, L., Wei, X., Xu, F., Xu, P., Wang, W., Xu, P., Cao, X., Miao, L., et al. (2020). Photoexcited cryptochrome2 interacts directly with TOE1 and TOE2 in flowering regulation. Plant Physiol. 184: 487-505.

9
Endo, M., Nakamura, S., Araki, T., Mochizuki, N., and Nagatani, A. (2005). Phytochrome B in the mesophyll delays flowering by suppressing FLOWERING LOCUS T expression in Arabidopsis vascular bundles. Plant Cell 17: 1941-1952.

10
Fornara, F., Panigrahi, K.C.S., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J.A., and Coupland, G. (2009). Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev. Cell 17: 75-86.

11
Gil, K.E., Kim, W.Y., Lee, H.J., Faisal, M., Saquib, Q., Alatar, A.A., and Park, C.M. (2017). ZEITLUPE contributes to a thermoresponsive protein quality control system in Arabidopsis. Plant Cell 29: 2882-2894.

12
Hajdu, A., Ádám, É., Sheerin, D.J., Dobos, O., Bernula, P., Hiltbrunner, A., Kozma-Bognár, L., and Nagy, F. (2015). High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis. Plant J. 83: 794-805.

13
Halliday, K.J., and Davis, S.J. (2016). Light-sensing phytochromes feel the heat. Science 354: 832-833.

14
Hayama, R., Sarid-Krebs, L., Richter, R., Fernández, V., Jang, S., and Coupland, G. (2017). PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length. EMBO J. 36: 904-918.

15
Heschel, M.S., Selby, J., Butler, C., Whitelam, G.C., Sharrock, R.A., and Donohue, K. (2007). A new role for phytochromes in temperature-dependent germination. New Phytol. 174: 735-741.

16
Hwang, D.Y., Park, S., Lee, S., Lee, S.S., Imaizumi, T., and Song, Y.H. (2019). GIGANTEA regulates the timing stabilization of CONSTANS by altering the interaction between FKF1 and ZEITLUPE. Mol. Cells 42: 693-701.

17
Imaizumi, T., Tran, H.G., Swartz, T.E., Briggs, W.R., and Kay, S.A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426: 302-306.

18
Ito, S., Song, Y.H., and Imaizumi, T. (2012). LOV domain-containing F-box proteins: Light-dependent protein degradation modules in Arabidopsis. Mol. Plant 5: 573-582.

19
Jaeger, K.E., and Wigge, P.A. (2007). FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17: 1050-1054.

20
Jin, S., Kim, S.Y., Susila, H., Nasim, Z., Youn, G., and Ahn, J.H. (2022). FLOWERING LOCUS M isoforms differentially affect the subcellular localization and stability of SHORT VEGETATIVE PHASE to regulate temperature-responsive flowering in Arabidopsis. Mol. Plant 15: 1696-1709.

21
Jung, J.H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., Khattak, A.K., Box, M.S., Charoensawan, V., Cortijo, S., et al. (2016). Phytochromes function as thermosensors in Arabidopsis. Science 354: 886-889.

22
Jung, J.H., Seo, Y.H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.H., and Park, C.M. (2007). The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19: 2736-2748.

23
Kim, S.Y., Yu, X., and Michaels, S.D. (2008). Regulation of CONSTANS and FLOWERING LOCUS T expression in response to changing light quality. Plant Physiol. 148: 269-279.

24
Kim, T.S., Kim, W.Y., Fujiwara, S., Kim, J., Cha, J.Y., Park, J.H., Lee, S.Y., and Somers, D.E. (2011). HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE. Proc. Natl. Acad. Sci. U.S.A. 108: 16843-16848.

25
Kim, W.Y., Fujiwara, S., Suh, S.S., Kim, J., Kim, Y., Han, L., David, K., Putterill, J., Nam, H.G., and Somers, D.E. (2007). ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449: 356-360.

26
Kim, W.Y., Hicks, K.A., and Somers, D.E. (2005). Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiol. 139: 1557-1569.

27
Klose, C., Nagy, F., and Schäfer, E. (2020). Thermal reversion of plant phytochromes. Mol. Plant 13: 386-397.

28
Lazaro, A., Mouriz, A., Piñeiro, M., and Jarillo, J.A. (2015). Red light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis. Plant Cell 27: 2437-2454.

29
Lazaro, A., Valverde, F., Piñeiro, M., and Jarillo, J.A. (2012). The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell 24: 982-999.

30
Lee, B.D., Kim, M.R., Kang, M.Y., Cha, J.Y., Han, S.H., Nawkar, G.M., Sakuraba, Y., Lee, S.Y., Imaizumi, T., McClung, C.R., et al. (2017). The F-box protein FKF1 inhibits dimerization of COP1 in the control of photoperiodic flowering. Nat. Commun. 8: 2259.

31
Lee, H., Yoo, S.J., Lee, J.H., Kim, W., Yoo, S.K., Fitzgerald, H., Carrington, J.C., and Ahn, J.H. (2010). Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res. 38: 3081-3093.

32
Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., and Ahn, J.H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 21: 397-402.

33
Lee, N., Ozaki, Y., Hempton, A.K., Takagi, H., Purusuwashi, S., Song, Y.H., Endo, M., Kubota, A., and Imaizumi, T. (2023). The FLOWERING LOCUS T gene expression is controlled by high-irradiance response and external coincidence mechanism in long days in Arabidopsis. New Phytol. 239: 208-221.

34
Legris, M., Ince, Y.Ç., and Fankhauser, C. (2019). Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat. Commun. 10: 5219.

35
Legris, M., Klose, C., Burgie, E.S., Rojas, C.C.R., Neme, M., Hiltbrunner, A., Wigge, P.A., Schäfer, E., Vierstra, R.D., and Casal, J.J. (2016). Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354: 897-900.

36
Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D., and Lin, C. (2008). Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322: 1535-1539.

37
Liu, Y., Li, X., Ma, D., Chen, Z., Wang, J.W., and Liu, H. (2018). CIB 1 and CO interact to mediate CRY 2-dependent regulation of flowering. EMBO Rep. 19: e45762.

38
Liu, Y., Ma, M., Li, G., Yuan, L., Xie, Y., Wei, H., Ma, X., Li, Q., Devlin, P.F., Xu, X., et al. (2020). Transcription factors FHY3 and FAR1 regulate light-induced CIRCADIAN CLOCK ASSOCIATED1 gene expression in Arabidopsis. Plant Cell 32: 1464-1478.

39
Lu, L., Zhang, Y., and Yu, H. (2020). Florigen trafficking integrates photoperiod and temperature signals in Arabidopsis. J. Integr. Plant Biol. 62: 1385-1389.

40
Marín-González, E., Matías-Hernández, L., Aguilar-Jaramillo, A.E., Lee, J.H., Ahn, J.H., Suárez-López, P., and Pelaz, S. (2015). SHORT VEGETATIVE PHASE up-regulates TEMPRANILLO2 floral repressor at low ambient temperatures. Plant Physiol. 169: 1214-1224.

41
Mathieu, J., Warthmann, N., Küttner, F., and Schmid, M. (2007). Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr. Biol. 17: 1055-1060.

42
Mathieu, J., Yant, L.J., Mürdter, F., Küttner, F., and Schmid, M. (2009). Repression of flowering by the miR172 target SMZ. PLoS Biol. 7: e1000148.

43
Michael, T.P., Salome, P.A., Yu, H.J., Spencer, T.R., Sharp, E.L., McPeek, M.A., Alonso, J.M., Ecker, J.R., and McClung, C.R. (2003). Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302: 1049-1053.

44
Nakagawa, T., Nakamura, S., Tanaka, K., Kawamukai, M., Suzuki, T., Nakamura, K., Kimura, T., and Ishiguro, S. (2008). Development of R4 gateway binary vectors (R4pGWB) enabling high-throughput promoter swapping for plant research. Biosci. Biotechnol. Biochem. 72: 624-629.

45
Paik, I., and Huq, E. (2019). Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Semin. Cell Dev. Biol. 92: 114-121.

46
Preston, J.C., and Fjellheim, S. (2022). Flowering time runs hot and cold. Plant Physiol. 190: 5-18.

47
Reed, J.W., Nagatani, A., Elich, T.D., Fagan, M., and Chory, J. (1994). Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol. 104: 1139-1149.

48
Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., and Coupland, G. (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613-1616.

49
Sawa, M., and Kay, S.A. (2011). GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 108: 11698-11703.

50
Sawa, M., Nusinow, D.A., Kay, S.A., and Imaizumi, T. (2007). FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318: 261-265.

51
Shinomura, T., Nagatani, A., Hanzawa, H., Kubota, M., Watanabe, M., and Furuya, M. (1996). Action spectra for phytochrome A-and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 93: 8129-8133.

52
Somers, D.E., Kim, W.Y., and Geng, R. (2004). The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16: 769-782.

53
Song, Y.H., Estrada, D.A., Johnson, R.S., Kim, S.K., Lee, S.Y., MacCoss, M.J., and Imaizumi, T. (2014). Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering. Proc. Natl. Acad. Sci. U.S.A. 111: 17672-17677.

54
Song, Y.H., Ito, S., and Imaizumi, T. (2013). Flowering time regulation: Photoperiod-and temperature-sensing in leaves. Trends Plant Sci. 18: 575-583.

55
Song, Y.H., Kubota, A., Kwon, M.S., Covington, M.F., Lee, N., Taagen, E.R., Laboy Cintrón, D., Hwang, D.Y., Akiyama, R., Hodge, S.K., et al. (2018). Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nat. Plants 4: 824-835.

56
Song, Y.H., Shim, J.S., Kinmonth-Schultz, H.A., and Imaizumi, T. (2015). Photoperiodic flowering: Time measurement mechanisms in leaves. Annu. Rev. Plant Biol. 66: 441-464.

57
Song, Y.H., Smith, R.W., To, B.J., Millar, A.J., and Imaizumi, T. (2012). FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336: 1045-1049.

58
Susila, H., Jurić, S., Liu, L., Gawarecka, K., Chung, K.S., Jin, S., Kim, S.J., Nasim, Z., Youn, G., Suh, M.C., et al. (2021). Florigen sequestration in cellular membranes modulates temperature-responsive flowering. Science 373: 1137-1142.

59
Susila, H., Nasim, Z., and Ahn, J.H. (2018). Ambient temperature-responsive mechanisms coordinate regulation of flowering time. Int. J. Mol. Sci. 19: 3196.

60
Takase, T., Nishiyama, Y., Tanihigashi, H., Ogura, Y., Miyazaki, Y., Yamada, Y., and Kiyosue, T. (2011). LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX 1. Plant J. 67: 608-621.

61
Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., and Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303: 1003-1006.

62
Whittaker, C., and Dean, C. (2017). The FLC locus: A platform for discoveries in epigenetics and adaptation. Annu. Rev. Cell Dev. Biol. 33: 555-575.

63
Wollenberg, A.C., Strasser, B., Cerdán, P.D., and Amasino, R.M. (2008). Acceleration of flowering during shade avoidance in Arabidopsis alters the balance between FLOWERING LOCUS C-mediated repression and photoperiodic induction of flowering. Plant Physiol. 148: 1681-1694.

64
Zeng, X., Lv, X., Liu, R., He, H., Liang, S., Chen, L., Zhang, F., Chen, L., He, Y., and Du, J. (2022). Molecular basis of CONSTANS oligomerization in FLOWERING LOCUS T activation. J. Integr. Plant Biol. 64: 731-740.

65
Zhang, B., Wang, L., Zeng, L., Zhang, C., and Ma, H. (2015). Arabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time. Genes Dev. 29: 975-987.

66
Zuo, Z., Liu, H., Liu, B., Liu, X., and Lin, C. (2011). Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr. Biol. 21: 841-847.

Options
Outlines

/