The miR3367–lncRNA67–GhCYP724B module regulates male sterility by modulating brassinosteroid biosynthesis and interacting with Aorf27 in Gossypium hirsutum

Anhui Guo , Hushuai Nie , Huijing Li , Bin Li , Cheng Cheng , Kaiyun Jiang , Shengwei Zhu , Nan Zhao , Jinping Hua

Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (1) : 169 -190.

PDF
Journal of Integrative Plant Biology ›› 2025, Vol. 67 ›› Issue (1) : 169 -190. DOI: 10.1002/jipb.13802
Research Article

The miR3367–lncRNA67–GhCYP724B module regulates male sterility by modulating brassinosteroid biosynthesis and interacting with Aorf27 in Gossypium hirsutum

Author information +
History +
PDF

Abstract

Cytoplasmic male sterile (CMS) lines play a crucial role in utilization of heterosis in crop plants. However, the mechanism underlying the manipulation of male sterility in cotton by long non-coding RNA (lncRNA) and brassinosteroids (BRs) remains elusive. Here, using an integrative approach combining lncRNA transcriptomic profiles with virus-induced gene silencing experiments, we identify a flower bud-specific lncRNA in the maintainer line 2074B, lncRNA67, negatively modulating with male sterility in upland cotton (Gossypium hirsutum). lncRNA67 positively regulates cytochrome P274B (GhCYP724B), which acted as an eTM (endogenous target mimic) for miR3367. The suppression of GhCYP724B induced symptoms of BR deficiency and male semi-sterility in upland cotton as well as in tobacco, which resulted from a reduction in the endogenous BR contents. GhCYP724B regulates BRs synthesis by interacting with GhDIM and GhCYP90B, two BRs biosynthesis proteins. Additionally, GhCYP724B suppressed a unique chimeric open reading frame (Aorf27) in 2074A mitochondrial genome. Ectopic expression of Aorf27 in yeast inhibited cellular growth, and over expression of Aorf27 in tobacco showed male sterility. Overall, the results proved that the miR3367–lncRNA67–GhCYP724B module positively regulates male sterility by modulating BRs biosynthesis. The findings uncovered the function of lncRNA67–GhCYP724B in male sterility, providing a new mechanism for understanding male sterility in upland cotton.

Keywords

brassinosteroids / GhCYP724B / lncRNA67 / male sterility / mitochondrial Aorf27 / upland cotton ( G. hirsutum)

Cite this article

Download citation ▾
Anhui Guo, Hushuai Nie, Huijing Li, Bin Li, Cheng Cheng, Kaiyun Jiang, Shengwei Zhu, Nan Zhao, Jinping Hua. The miR3367–lncRNA67–GhCYP724B module regulates male sterility by modulating brassinosteroid biosynthesis and interacting with Aorf27 in Gossypium hirsutum. Journal of Integrative Plant Biology, 2025, 67(1): 169-190 DOI:10.1002/jipb.13802

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Azpiroz, R.,Wu, Y.W.,LoCascio, J.C., and Feldmann, K.A. (1998). An Arabidopsis brassinosteroid dependent mutant is blocked in cell elongation. Plant Cell 10:219–230.

[2]

Budak, H.,Kaya, S.B., and Cagirici, H.B. (2020). Long non-coding RNA in plants in the era of reference sequences. Front. Plant Sci. 11:276–286.

[3]

Cagirici, H.B.,Galvez, S.,Sen, T.Z., and Budak, H. (2021). LncMachine: A machine learning algorithm for long noncoding RNA annotation in plants. Funct. Integr. Genomics. 21:195–204.

[4]

Cakmak, I., and Horst, W.J. (1991). Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83:463–468.

[5]

Cao, J.F.,Zhao, B.,Huang, C.C.,Chen, Z.W.,Zhao, T.,Liu, H.R.,Hu, G.J.,Shangguan, X.X.,Shan, C.M.,Wang, L.J., et al. (2020). The miR319-targeted GhTCP4 promotes the transition from cell elongation to wall thickening in cotton fiber. Mol. Plant 13:1063–1077.

[6]

Carelli, M.,Confalonieri, M.,Tava, A.,Biazzi, E., and Scotti, C. (2019). Saponin synthesis in Medicago truncatula plants: CYP450-mediated formation of sapogenins in the different plant organs. In The Model Legume Medicago Truncatula,de Bruijn, F. ed.,2 (Bridgewater, NJ: John Wiley & Sons), pp. 225–236.

[7]

Chang, X.,He X.,Li, J.,Liu, Z.,Pi, R.,Luo, X.,Wang, R.,Hu, X.,Lu, S.,Zhang, X.,Wang, M. (2024). High-quality Gossypium hirsutum and Gossypium barbadense genome assemblies reveal the landscape and evolution of centromeres. Plant Commun. 5:100722.

[8]

Chen, L.T., and Liu, Y.G. (2014). Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 65:579–606.

[9]

Chen, W.,Lv, M.,Wang, Y.,Wang, P.,Cui, Y.,Li, M.,Wang, R.,Gou, X., and Li, J. (2019). BES1 is activated by EMS1-TPD1-SERK1/2-mediated signaling to control tapetum development in Arabidopsis thaliana. Nat. Commun. 10:1–12.

[10]

Chen, Z.,Zhao, N.,Li, S.,Grover, C.E.,Nie, H.,Wendel, J.F., and Hua, J. (2017). Plant mitochondrial genome evolution and cytoplasmic male sterility. Crit. Rev. Plant Sci. 36:54–69.

[11]

Cheng, C.,Nie, H.,Li, H.,Adjibolosoo, D.,Li, B.,Jiang, K.,Cui, Y.,Zhu, M.,Zhou, B.,Guo, A., et al. (2023). Identification of fertility restoration candidate genes from a restorer line R186 for Gossypium harknessii cytoplasmic male sterile cotton. BMC Plant Biol. 23:175.

[12]

Corral-Martínez, P.,Driouich, A., and Seguí-Simarro, J.M. (2019). Dynamic changes in arabinogalactan-protein, pectin, xyloglucan and xylan composition of the cell wall during microspore embryogenesis in Brassica napus. Front. Plant Sci. 10:332–348.

[13]

Ding, J.,Lu, Q.,Ouyang, Y.,Mao, H.,Zhang, P.,Yao, J.,Xu, C.,Li, X.,Xiao, J., and Zhang, Q. (2012). A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl. Acad. Sci. U.S.A. 109:2654–2659.

[14]

Fan, Y.,Yang, J.,Mathioni, S.M.,Yu, J.,Shen, J.,Yang, X.,Wang, L.,Zhang, Q.,Cai, Z.,Xu, C., et al. (2016). PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc. Natl. Acad. Sci. U.S.A. 113:15144–15149.

[15]

Fang, L.,Wang, Q.,Hu, Y.,Jia, Y.,Chen, J.,Liu, B.,Zhang, Z.,Guan, X.,Chen, S.,Zhou, B., et al. (2017). Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat. Genet. 49:1089–1098.

[16]

Fatica, A., and Bozzoni, I. (2013). Long non-coding RNAs: New players in cell differentiation and development. Nat. Rev. Genet. 15:7–21.

[17]

Fujioka, S., and Sakurai, A. (2003). Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 54:137–164.

[18]

Gautam, R.,Shukla, P., and Kirti, P.B. (2023). Male sterility in plants: An overview of advancements from natural CMS to genetically manipulated systems for hybrid seed production. Theor. Appl. Genet. 136:195.

[19]

Ghosh, S. (2017). Triterpene structural diversification by plant cytochrome P450 enzymes. Front. Plant Sci. 8:1886.

[20]

Grove, M.D.,Spencer, G.F.,Rohwedder, W.K.,Mandava, N.,Worley, J.F.,Warthen, J.D.,Steffens, G.L.,Flippen-Anderson, J.L., and Carter Cook, J. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217.

[21]

Gu, Z.,Huang, C.,Li, F., and Zhou, X. (2014). A versatile system for functional analysis of genes and microRNAs in cotton. Plant Biotechnol. J. 12:638–649.

[22]

Hamid, R.,Jacob, F.,Marashi, H.,Rathod, V., and Tomar, R.S. (2020). Uncloaking lncRNA-meditated gene expression as a potential regulator of CMS in cotton (Gossypium hirsutum L.). Genomics 112:3354–3364.

[23]

Hansch, F.,Jaspar, H.,Sivers, L.,Bitterlich, M.,Franken, P., and Kühn, C. (2020). Brassinosteroids and sucrose transport in mycorrhizal tomato plants. Plant Signal. Behav. 15:1714292.

[24]

Hao, Z.,Fan, C.,Cheng, T.,Su, Y.,Wei, Q., and Li, G. (2015). Genome-wide identification, characterization and evolutionary analysis of long intergenic noncoding RNAs in cucumber. PLoS ONE 10: e121800.

[25]

He, Z.,Lan, Y.,Zhou, X.,Yu, B.,Zhu, T.,Yang, F.,Fu, L.,Chao, H.,Wang, J.,Fen, R., et al. (2024). Single-cell transcriptome analysis dissects lncRNA-associated gene networks in Arabidopsis. Plant Commun. 5:100717.

[26]

Hu, J.,Chen, X.,Zhang, H., and Ding, Y. (2015). Genome-wide analysis of DNA methylation in photoperiod-and thermo-sensitive male sterile rice Peiai 64S. BMC Genomics 16:102–115.

[27]

Hu, Y.,Chen, J.,Fang, L.,Zhang, Z.,Ma, W.,Niu, Y.,Ju, L.,Deng, J.,Zhao, T.,Lian, J., et al. (2019). Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 51:739–748.

[28]

Huang, J.Z.,E, Z.G.,Zhang, H.L., and Shu, Q.Y. (2014). Workable male sterility systems for hybrid rice: Genetics, biochemistry, molecular biology, and utilization. Rice 7:13–26.

[29]

Jiao, Z.,Xu, W.,Zeng, X.,Xu, X.,Zhang, M., and Xia, K. (2020). Obtusifoliol 14a-demethylase OsCYP51G1 is involved in phytosterol synthesis and affects pollen and seed development. Biochem. Biophys. Res. Commun. 529:91–96.

[30]

Jin, S.,Liang, S.,Zhang, X.,Nie, Y., and Guo, X. (2006a). An efficient grafting system for transgenic plant recovery in cotton (Gossypium hirsutum L.). Plant Cell Tissue Organ Cult. 85:181–185.

[31]

Jin, S.,Zhang, X.,Nie, Y.,Guo, X.,Liang, S., and Zhu, H. (2006b). Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol. Plant. 50:519–524.

[32]

Ke, L.,Zhou, Z.,Xu, X.,Wang, X.,Liu, Y.,Xu, Y.,Huang, Y.,Wang, S.,Deng, X.,Chen, L., et al. (2019). Evolutionary dynamics of lincRNA transcription in nine citrus species. Plant J. 98:912–927.

[33]

Kennell, J.C., and Pring, D.R. (1989). Initiation and processing of atp6,T-urf13 and ORF221 transcripts from mitochondria of T cytoplasm maize. Mol. Gen. Genet. 216:16–24.

[34]

Kelley, D., and Rinn, J. (2012). Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 13:107–120.

[35]

Khan, A.H.,Ma, Y.,Wu, Y.,Akbar, A.,Shaban, M.,Ullah, A.,Deng, J.,Khan, A.S.,Chi, H.,Zhu, L., et al. (2023). High-temperature stress suppresses allene oxide cyclase 2 and causes male sterility in cotton by disrupting jasmonic acid signaling. Crop J. 11:33–45.

[36]

Kong, L.,Zhang, Y.,Ye, Z.,Liu, X.,Zhao, S.,Wei, L., and Gao, G. (2007). CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 35:345–349.

[37]

Lalitha, S. (2004). Primer Premier 5. Biotech software & internet report. Comput. Softw. J. Scient. 1:270–272.

[38]

Li, F.,Fan, G.,Lu, C.,Xiao, G.,Zou, C.,Kohel, R.,Ma, Z.,Shang, H.,Ma, X.,Wu, J., et al. (2015). Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat. Biotechnol. 33:524–530.

[39]

Li, J.,Ma, W.,Zeng, P.,Wang, J.,Geng, B.,Yang, J., and Cui, Q. (2014a). LncTar: A tool for predicting the RNA targets of long noncoding RNAs. Brief. Bioinform. 16:806–812.

[40]

Li, L.,Eichten, S.R.,Shimizu, R.,Petsch, K.,Yeh, C.T.,Wu, W.,Chettoor, A.M.,Givan, S.A.,Cole, R.A.,Fowler, J.E., et al. (2014b). Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol. 15:40–54.

[41]

Li, P.,Zhang, D.,Su, T.,Wang, W.,Yu, Y.,Zhao, X.,Li, Z.,Yu, S., and Zhang, F. (2020). Genome-wide analysis of mRNA and lncRNA expression and mitochondrial genome sequencing provide insights into the mechanisms underlying a novel cytoplasmic male sterility system, BVRC-CMS96, in Brassica rapa. Theor. Appl. Genet. 133:2157–2170.

[42]

Li, Q.F.,Lu, J.,Yu, J.W.,Zhang, C.Q.,He, J.X., and Liu, Q.Q. (2018b). The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Biochim Biophys Acta Gene Regul. Mech. 1861:561–571.

[43]

Li, S.,Chen, Z.,Zhao, N.,Wang, Y.,Nie, H., and Hua, J. (2018a). The comparison of four mitochondrial genomes reveals cytoplasmic male sterility candidate genes in cotton. BMC Genomics 19:775–789.

[44]

Li, S.,Liu, G.,Chen, Z.,Wang, Y.,Li, P., and Hua, J. (2013). Construction and initial analysis of five Fosmid libraries of mitochondrial genomes of cotton (Gossypium). Chinese Sci. Bull. 36:4608–4615.

[45]

Li, Y.,Nie, T.,Zhang, M.,Zhang, X.,Shahzad, K.,Guo, L.,Qi, T.,Tang, H.,Wang, H.,Qiao, X., et al. (2022). Integrated analysis of small RNA, transcriptome and degradome sequencing reveals that micro-RNAs regulate anther development in CMS cotton. Ind. Crop. Prod. 176:114422.

[46]

Li, Y.,Qin, T.,Dong, N.,Wei, C.,Zhang, Y.,Sun, R.,Dong, T.,Chen, Q.,Zhou, R., and Wang, Q. (2019). Integrative analysis of the lncRNA and mRNA transcriptome revealed genes and pathways potentially involved in the anther abortion of cotton (Gossypium hirsutum L.). Genes 10:947.

[47]

Li, Z., and He, Y. (2020). Roles of brassinosteroids in plant reproduction. Int. J. Mol. Sci. 21:872–888.

[48]

Liu, B.,Su, S.,Wu, Y.,Li, Y.,Shan, X.,Li, S.,Liu, H.,Dong, H.,Ding, M.,Han, J., et al. (2015). Histological and transcript analyses of intact somatic embryos in an elite maize (Zea mays L.) inbred line Y423. Plant. Physiol. Biochem. 92:81–91.

[49]

Liu, H.,Cui, P.,Zhan, K.,Lin, Q.,Zhuo, G.,Guo, X.,Ding, F.,Yang, W.,Liu, D., and Hu, S. (2011). Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line. BMC Genomics 12:163–176.

[50]

Liu, J.,Wang, Z.,Zhao, J.,Zhao, L.,Wang, L.,Su, Z., and Wei, J. (2020). HrCYP90B1 modulating brassinosteroid biosynthesis in sea buckthorn (Hippophae rhamnoides L.) against fruit fly (Rhagoletis batava obseuriosa Kol.) infection. Tree. Physiol. 41:444–459.

[51]

Luo, D.,Xu, H.,Liu, Z.,Guo, J.,Li, H.,Chen, L.,Fang, C.,Zhang, Q.,Bai, M.,Yao, N., et al. (2013). A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat. Genet. 45:573–577.

[52]

Lv, J.,Cui, W.,Liu, H.,He, H.,Xiu, Y.,Guo, J.,Liu, H.,Liu, Q.,Zeng, T.,Chen, Y., et al. (2013). Identification and characterization of long non-coding RNAs related to mouse embryonic brain development from available transcriptomic data. PLoS ONE 8: e71152.

[53]

Lv, J.,Liu, Z.,Yang, B.,Deng, M., and Zou, X. (2020). Systematic identification and characterization of long non-coding RNAs involved in cytoplasmic male sterility in pepper (Capsicum annuum L.). Plant Growth Regul. 91:277–288.

[54]

Ma, Z.,Zhang, Y.,Wu, L.,Zhang, G.,Sun, Z.,Li, Z.,Jiang, Y.,Ke, H.,Chen, B.,Liu, Z., et al. (2021). High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nat. Genet. 53:1385–1391.

[55]

Nie, H.,Cheng, C., and Hua, J. (2020). Mitochondrial proteomic analysis reveals that proteins relate to oxidoreductase activity play a central role in pollen fertility in cotton. J. Proteomics 225:103861.

[56]

Nie, H.,Nan, Z.,Li, B.,Jiang, K.,Li, H.,Zhang, J.,Guo, A., and Hua, J. (2024). Evolutionary comparison of lncRNAs in four cotton species and functional identification of LncR4682-PAS2-KCS19 module in fiber elongation. Plant J. 120:1421–1437.

[57]

Nie, H.,Wang, Y.,Su, Y., and Hua, J. (2018). Exploration of miRNAs and target genes of cytoplasmic male sterility line in cotton during flower bud development. Funct. Integr. Genomics 18:457–476.

[58]

Nie, H.,Wang, Y.,Wei, C.,Grover, C.E.,Su, Y.,Wendel, J.F., and Hua, J. (2021). Embryogenic calli induction and salt stress response revealed by RNA-seq in diploid wild species Gossypium sturtianum and Gossypium raimondii. Front. Plant Sci. 12:715041.

[59]

Niu, F.,Bu, Y.,Yang, X.,Wu, Y.,He, M.,Zhang, L., and Song, X. (2023). Rfd1, a restorer to the Aegilops juvenalis cytoplasm, functions in fertility restoration of wheat cytoplasmic male sterility. J. Exp. Bot. 74:1432–1447.

[60]

Nolan, T.M.,Vukašinović N.,Liu, D.,Russinova, E., and Yin, Y. (2020). Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32:295–318.

[61]

Ohnishi, T. (2018). Recent advances in brassinosteroid biosynthetic pathway: Insight into novel brassinosteroid shortcut pathway. J. Pestic. Sci. 43:159–167.

[62]

Palos, K.,Yu, L.,Railey, C.E.,Dittrich, A.C.N., and Nelson, A.D.L. (2023). Linking discoveries, mechanisms, and technologies to develop a clearer perspective on plant long noncoding RNAs. Plant Cell 35:1762–1786.

[63]

Pauli, A.,Valen, E.,Lin, M.F.,Garber, M.,Vastenhouw, N.L.,Levin, J.Z.,Fan, L.,Sandelin, A.,Rinn, J.L.,Regev, A., et al. (2012). Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 22:577–591.

[64]

Peng, X.,Li, F.,Li, S., and Zhu, Y. (2009). Expression of a mitochondrial gene orfH79 from the CMS-HongLian rice inhibits Saccharomyces cerevisiae growth and causes excessive ROS accumulation and decrease in ATP. Biotechnol. Lett. 31:409–414.

[65]

Sang, S.,Cheng, H.,Hao, M.,Ding, B., and Hu, Q. (2021). Mitochondrial localization of ORF346 causes pollen abortion in alloplasmic male sterility. Crop J. 9:1320–1329.

[66]

She, J.,Han, Z.,Kim, T.W.,Wang, J.,Cheng, W.,Chang, J.,Shi, S.,Wang, J.,Yang, M.,Wang, Z., et al. (2011). Structural insight into brassinosteroid perception by BRI1. Nature 474:472–476.

[67]

Song, J.,Cao, J.,Wang, C.G. (2013). BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility. Plant Cell Rep. 32:21–30.

[68]

Song, G.,Chen, Q., and Tang, C. (2014). The effects of high-temperature stress on the germination of pollen grains of upland cotton during square development. Euphytica 200:175–186.

[69]

Sun, L.,Luo, H.,Bu, D.,Zhao, G.,Yu, K.,Zhang, C.,Liu, Y.,Chen, R., and Zhao, Y. (2013). Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 41:166–173.

[70]

Tanaka, K.,Asami, T.,Yoshida, S.,Nakamura, Y.,Matsuo, T.,Okamoto, S. (2005). Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol. 138:1117–1125.

[71]

Tian, G.,Cheng, L.,Qi, X.,Ge, Z.,Niu, C.,Zhang, X., and Jin, S. (2015). Transgenic cotton plants expressing double-stranded RNAs target HMG-CoA Reductase (HMGR) gene inhibits the growth, development and survival of cotton bollworms. Int. J. Biol. Sci. 11:1296–1305.

[72]

Tong, X.,Wang, Y.,Sun, A.,Bello, B.K.,Ni, S., and Zhang, J. (2018). Notched belly grain 4, a novel allele of dwarf 11, regulates grain shape and seed germination in rice (Oryza sativa L.). Int. J. Mol. Sci. 19:4069–4078.

[73]

Trapnell, C.,Roberts, A.,Goff, L.,Pertea, G.,Kim, D., and Kelley, D.R. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7:562–578.

[74]

Wang, C.Y.,Liu, S.R.,Zhang, X.Y.,Ma, Y.J.,Hu, C.G., and Zhang, J.Z. (2017a). Genome-wide screening and characterization of long non-coding RNAs involved in flowering development of trifoliate orange (Poncirus trifoliata L.). Sci. Rep. 7:43226–43240.

[75]

Wang, J.,Yu, W.,Yang, Y.,Li, X.,Chen, T.,Liu, T.,Ma, N.,Yang, X.,Liu, R., and Zhang, B. (2015). Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci. Rep. 5:16946–16961.

[76]

Wang, L.,Park, H.J.,Dasari, S.,Wang, S.,Kocher, J., and Li, W. (2013). CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 41:74–81.

[77]

Wang, M.,Tian, Y.,Xu, L.,Zhang, F.,Lu, H.,Li, M., and Li, B. (2022b). High osmotic stress increases OmpK36 expression through the regulation of KbvR to decrease the antimicrobial resistance of Klebsiella pneumoniae. Microbiol. Spectr,10:1128.

[78]

Wang, M.,Tu, L.,Lin, M.,Lin, Z.,Wang, P.,Yang, Q.,Ye, Z.,Shen, C.,Zhou, X.,Zhang, L., et al. (2017b). Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat. Genet. 49:579–587.

[79]

Wang, P.,Zhang, J.,Sun, L.,Ma, Y.,Xu, J.,Liang, S.,Deng, J.,Tan, J.,Zhang, Q.,Tu, L., et al. (2017c). High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol. J. 16:137–150.

[80]

Wang, S.N.,Xu, H.,Sun, H.Y.,Zhao, H.S., and Gao, Z.M. (2018). Isolation and expression analysis of pedwf1 in phyllostachys edulis. Russ. J. Plant Physiol. 65:762–769.

[81]

Wang, Y.,Ma, S.,Wang, M.,Zheng, X.Q.,Gu, M., and Hu, S. (2002). Sequence analysis of the gene correlated with cytoplasmic male sterility (CMS) in rape-seed (Brassica napus) Polima and Shaan 2A. Chinese Sci. Bull. 47:122–126.

[82]

Wang, Y.Q.,Deng, X.W., and Zhu, D.M. (2022a). From molecular basics to agronomic benefits: Insights into noncoding RNA-mediated gene regulation in plants. J. Integr. Plant Biol. 64:2290–2308.

[83]

Wu, H.J.,Wang, Z.M.,Wang, M., and Wang, X.J. (2013). Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol. 161:1875–1884.

[84]

Xiao, S.,Zang, J.,Pei, Y.,Liu, J.,Liu, J.,Song, W.,Shi, Z.,Su, A.,Zhao, J., and Chen, H. (2020). Activation of mitochondrial orf355 gene expression by a nuclear-encoded DREB transcription factor causes cytoplasmic male sterility in maize. Mol. Plant 13:1270–1283.

[85]

Xu, Y.,Zou, J.,Zheng, H.,Xu, M.,Zong, X., and Wang, L. (2019). RNA-Seq transcriptome analysis of rice primary roots reveals the role of flavonoids in regulating the rice primary root growth. Genes 10:213–228.

[86]

Yan, M.,Xie, D.,Cao, J.,Xia, X.,Shi, K.,Zhou, Y.,Zhou, J.,Foyer, C., and Yu, J. (2020). Brassinosteroid-mediated reactive oxygen species are essential for tapetum degradation and pollen fertility in tomato. Plant J. 102:931–947.

[87]

Yan, P.,Luo, S.,Lu, J., and Shen, X. (2017). Cis-and trans-acting lncRNAs in pluripotency and reprogramming. Curr. Opin. Genet. Dev. 46:170–178.

[88]

Ye, Q.,Zhu, W.,Li, L.,Zhang, S.,Yin, Y.,Ma, H., and Wang, X. (2010). Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc. Natl. Acad. Sci. U.S.A. 107:6100–6105.

[89]

Ye, Z.,Qiao, L.,Luo, X.,Chen, X.,Zhang, X., and Tu, L. (2021). Genome-wide identification of cotton GRAM family proteins reveals that GRAM31 regulates fiber length. J. Exp. Bot. 72:2477–2490.

[90]

Yin, Y.H.,Vafeados, D.,Tao, Y.,Yoshida, S.G.,Asami, T., and Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259.

[91]

Yu, L.,Ye, T.T.,Bai, Y.L.,Cai, W.J.,Ding, J.,Yuan, B.F., and Feng, Y.Q. (2018). Profiling of potential brassinosteroids in different tissues of rape flower by stable isotope labeling-liquid chromatography/mass spectrometry analysis. Anal. Chim. Acta 1037:55–62.

[92]

Yu, Y.,Zhou, Y.F.,Feng, Y.Z.,He, H.,Lian, J.P.,Yang, Y.W.,Lei, M.Q.,Zhang, Y., and Chen, Y.Q. (2019). Transcriptional landscape of pathogen-responsive lncRNAs in rice unveils the role of ALEX1 in jasmonate pathway and disease resistance. Plant Biotechnol. J. 18:13234–13253.

[93]

Zhang, B.,Zhang, X.,Zhang, M.,Guo, L.,Qi, T.,Wang, H.,Tang, H.,Qiao, X.,Shahzad, K.,Xing, C., et al. (2019). Transcriptome analysis implicates involvement of long noncoding RNAs in cytoplasmic male sterility and fertility restoration in cotton. Int. J. Mol. Sci. 20:5530–5548.

[94]

Zhang, S.,Wu, S.,Niu, C.,Liu, D.,Yan, T.,Tian, Y.,Liu, S.,Xie, K.,Li, Z.,Wang, Y., et al. (2021). ZmMs25 encoding a plastid-localized fatty acyl reductase is critical for anther and pollen development in maize. J. Exp. Bot. 72:4298–4318.

[95]

Zhang, R.,Xia, X.,Lindsey, K.,Rocha, P. (2012). Functional complementation of dwf4 mutants of Arabidopsis by overexpression of CYP724A1. J. Plant Physiol. 169:421–428.

[96]

Zhang, T.,Hu, Y.,Jiang, W.,Fang, L.,Guan, X.,Chen, J.,Zhang, J.,Saski, C.A.,Scheffler, B.E.,Stelly, D.M., et al. (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat. Biotechnol. 33:531–537.

[97]

Zhang, X.,Guo, L.,Qi, T.,Li, Y.,Feng, J.,Wang, H.,Tang, H.,Qiao, X.,Chen, L.,Song, X., et al. (2022). The cotton mitochondrial chimeric gene orf610a causes male sterility by disturbing the dynamic balance of ATP synthesis and ROS burst. Crop J. 6:1683–1694.

[98]

Zhang, X.,Zhen, J.,Li, Z.,Kang, D.,Yang, Y.,Kong, J., and Hua, J.P. (2011). Expression profile of early responsive genes under salt stress in upland cotton (Gossypium hirsutum L.). Plant Mol. Biol. Rep. 29:626–637.

[99]

Zhang, Y.C.,Liao, J.Y.,Li, Z.Y.,Yu, Y.,Zhang, J.P.,Li, Q.F.,Qu, L.H.,Shu, W.S., and Chen, Y.Q. (2014). Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol. 15:512–527.

RIGHTS & PERMISSIONS

2024 The Author(s). Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

187

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/