New insight into Ca2+-permeable channel in plant immunity

Wei Wang , Hang-Yuan Cheng , Jian-Min Zhou

Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (3) : 623 -631.

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (3) : 623 -631. DOI: 10.1111/jipb.13613
Mini Review

New insight into Ca2+-permeable channel in plant immunity

Author information +
History +
PDF

Abstract

Calcium ions (Ca2+) are crucial intracellular second messengers in eukaryotic cells. Upon pathogen perception, plants generate a transient and rapid increase in cytoplasmic Ca2+ levels, which is subsequently decoded by Ca2+ sensors and effectors to activate downstream immune responses. The elevation of cytosolic Ca2+ is commonly attributed to Ca2+ influx mediated by plasma membrane-localized Ca2+-permeable channels. However, the contribution of Ca2+ release triggered by intracellular Ca2+-permeable channels in shaping Ca2+ signaling associated with plant immunity remains poorly understood. This review discusses recent advances in understanding the mechanism underlying the shaping of Ca2+ signatures upon the activation of immune receptors, with particular emphasis on the identification of intracellular immune receptors as non-canonical Ca2+-permeable channels. We also discuss the involvement of Ca2+ release from the endoplasmic reticulum in generating Ca2+ signaling during plant immunity.

Keywords

Ca 2+-permeable channels / endoplasmic reticulum / phosphorylation / plant immunity / resistosome

Cite this article

Download citation ▾
Wei Wang, Hang-Yuan Cheng, Jian-Min Zhou. New insight into Ca2+-permeable channel in plant immunity. Journal of Integrative Plant Biology, 2024, 66(3): 623-631 DOI:10.1111/jipb.13613

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adachi,H., Contreras, M., Harant,A., Wu,C., Derevnina, L., Sakai,T., Duggan,C., Moratto, E., Bozkurt,T., Maqbool,A., et al. (2019). An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 8: e49956.

[2]

Ahn,H., Lin,X., Olave-achury,A., Derevnina,L., Contreras, M., Kourelis,J., Wu,C., Kamoun, S., and Jones,J.D.G. (2023). Effector-dependent activation and oligomerization of plant NRC class helper NLRs by sensor NLR immune receptors Rpi-amr3 and Rpi-amr1. EMBO J. 42: e111484.

[3]

Ali,R., Ma,W., Lemtiri-chlieh,F., Tsaltas,D., Leng,Q., Bodman,S., and Berkowitz, G. (2007). Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell 19: 1081-1095.

[4]

Bi,G., Su,M., Li,N., Liang, Y., Dang,S., Xu,J., Hu,M., Wang,J., Zou, M., Deng,Y., et al. (2021). The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184: 3528-3541.

[5]

Bjornson,M., Pimprikar, P., Nürnberger,T., and Zipfel,C. (2021). The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. Nat. Plants 7: 579-586.

[6]

Chai,J., Song,W., and Parker,J. (2023). New biochemical principles for NLR immunity in plants. Mol. Plant Microbe Interact. 36: 468-475.

[7]

Chin,K., Defalco, T., Moeder,W., and Yoshioka,K. (2013). The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Physiol. 163: 611-624.

[8]

Clough,S., Fengler, K., Yu,I., Lippok,B., Smith,R., and Bent,A. (2000). The Arabidopsis dnd1defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. U.S.A. 97: 9323-9328.

[9]

Contreras,M., Pai,H., Tumtas,Y., Duggan, C., Lok,E., Yuen,H., Cruces, A., Kourelis,J., Ahn,H., Lee,K., et al. (2023). Sensor NLR immune proteins activate oligomerization of their NRC helpers in response to plant pathogens. EMBO J. 42: e111519.

[10]

Dodds,P., and Rathjen, J. (2010). Plant immunity: Towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11: 539-548.

[11]

Dongus,J., and Parker, J.E. (2021). EDS1 signalling: At the nexus of intracellular and surface receptor immunity. Curr. Opin. Plant Biol. 62: 102039.

[12]

Duggan,C., Moratto, E., Savage,Z., Hamilton,E., Adachi, H., Wu,C., Leary,A., Tumtas, Y., Rothery,S., Maqbool,A., et al. (2021). Dynamic localization of a helper NLR at the plant-pathogen interface underpins pathogen recognition. Proc.Natl. Acad. Sci. U.S.A. 118: e2104997118.

[13]

Espinoza,C., Liang,Y., and Stacey,G. (2017). Chitin receptor CERK1 links salt stress and chitin-triggered innate immunity in Arabidopsis. Plant J. 89: 984-995.

[14]

Förderer,A., Li, E., Lawson,A., Deng,Y., Sun,Y., Logemann,E., Zhang, X., Wen,J., Han,Z., Chang,J., et al. (2022). A wheat resistosome defines common principles of immune receptor channels. Nature 610: 532-539.

[15]

Gao,X., Chen,X., Lin,W., Chen, S., Lu,D., Niu,Y., Li,L., Cheng,C., Mccormack, M., Sheen,J., et al. (2013). Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases. PLoS Pathog. 9: e1003127.

[16]

Grant,M., Brown,I., Adams,S., Knight, M., Ainslie,A., and Mans,J. (2000). The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 23: 441-450.

[17]

He,J., Rössner, N., Hoang,M., Alejandro,S., and Peiter, E. (2021). Transport, functions, and interaction of calcium and manganese in plant organellar compartments. Plant Physiol. 187: 1940-1972.

[18]

Hou,C., Tian,W., Kleist,T., He, K., Garcia,V., Bai,F., Hao,Y., Luan,S., and Li, L. (2014). DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res. 24: 632-635.

[19]

Huang,S., Jia,A., Song,W., Hessler, G., Meng,Y., Sun,Y., Xu,L., Laessle,H., Jirschitzka, J., Ma,S., et al. (2022). Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. Science 377: eabq3297.

[20]

Jacob,P., Kim,N., Wu,F., El-Kasmi, F., Chi,Y., Walton,W., Furzer, O., Lietzan,A., Sunil,S., Kempthorn, K., et al. (2021). Plant “helper” immune receptors are Ca2+-permeable nonselective cation channels. Science 373: 420-425.

[21]

Ji,Z., Guo,W., Chen,X., Wang, C., and Zhao,K. (2022). Plant executor genes. Int. J. Mol. Sci. 23: 1524.

[22]

Jia,A., Huang,S., Song,W., Wang, J., Meng,Y., Sun,Y., Xu,L., Laessle,H., Jirschitzka, J., Hou,J., et al. (2022). TIR-catalyzed ADP-ribosylation reactions produce signaling molecules for plant immunity. Science 377: eabq8180.

[23]

Jiang,Y., and Ding, P. (2023). Calcium signaling in plant immunity: A spatiotemporally controlled symphony. Trends Plant Sci. 28: 74-89.

[24]

Jones,J.D.G., and Dangl, J.L. (2006). The plant immune system. Nature 444: 323-329.

[25]

Jojoa-Cruz,S., Saotome, K., Murthy,S., Tsui,C., Sansom, M., Patapoutian,A., and Ward,A. (2018). Cryo-EM structure of the mechanically activated ion channel OSCA1.2. eLife 7: e41845.

[26]

Jubic,L., Saile,S., Furzer,O., Kasmi, F., and Dangl,J.L. (2019). Help wanted: Helper NLRs and plant immune responses. Curr. Opin. Plant Biol. 50: 82-94.

[27]

Jurkowski,G., Smith,R., Yu,I., Ham, J., Sharma,S., Klessig,D., Fengler, K., and Bent,A. (2004). Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Mol. Plant Microbe Interact. 17: 511-520.

[28]

Kim,N., Jacob,P., and Dangl,J. (2022). Con-Ca2+-tenating plant immune responses via calcium-permeable cation channels. New Phytol. 234: 813-818.

[29]

Köster,P., Defalco, T., and Zipfel,C. (2022). Ca2+ signals in plant immunity. EMBO J. 41: e110741.

[30]

Kurusu,T., Yagala, T., Miyao,A., Hirochika,H., and Kuchitsu, K. (2005). Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J. 42: 798-809.

[31]

Li,Y., Xue,J., Wang,F., Huang, X., Gong,B., Tao,Y., Shen,W., Tao,K., Yao, N., Xiao,S., et al. (2022). Plasma membrane-nucleo-cytoplasmic coordination of a receptor-like cytoplasmic kinase promotes EDS1-dependent plant immunity. Nat. Plants 8: 802-816.

[32]

Liu,X., Wang,J., and Sun,L. (2018). Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2. Nat. Commun. 9: 5060.

[33]

Liu,F., Yang,Z., Wang,C., Martin, R., Qiao,W., Carette,J., Luan,S., Nogales,E., and Staskawicz, B. (2023). The activated plant NRC4 immune receptor forms a hexameric resistosome. bioRxiv

[34]

Luan,S., and Wang, C. (2021). Calcium signaling mechanisms across kingdoms. Annu. Rev. Cell Dev. Biol. 37: 311-340.

[35]

Ma,Y., Walker, R., Zhao,Y., and Berkowitz,G. (2012). Linking ligand perception by PEPR pattern recognition receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants. Proc. Natl. Acad. Sci. U.S.A. 109: 19852-19857.

[36]

Ma,S., Lapin,D., Liu,L., Sun, Y., Song,W., Zhang,X., Logemann, E., Yu,D., Wang,J., Jirschitzka, J., et al. (2020). Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 370: eabe3069.

[37]

Maity,K., Heumann, J., McGrath,A., Kopcho,N., Hsu,P., Lee,C., Mapes, J., Garza,D., Krishnan,S., Morgan, G., et al. (2019). Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proc. Natl. Acad. Sci. U.S.A. 116: 14309-14318.

[38]

Martin,R., Qi,T., Zhang,H., Liu, F., King,M., Toth,C., Nogales, E., and Staskawicz,B. (2020). Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370: eabd9993.

[39]

Matulef,K., and Zagotta, W. (2003). Cyclic nucleotide-gated channels. Annu. Rev. Cell Dev. Biol. 19: 23-44.

[40]

Meena,M., Prajapati, R., Krishna,D., Divakaran,K., Pandey, Y., Reichelt,M., Mathew,M., Boland, W., Mithöfer,A., and Vadassery,J. (2019). The Ca2+ channel CNGC19 regulates Arabidopsis defense against Spodoptera herbivory. Plant Cell 31: 1539-1562.

[41]

Murthy,S., Dubin,A., Whitwam,T., Jojoa-Cruz, S., Cahalan,S., Mousavi,S., Ward,A., and Patapoutian,A. (2018). OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. eLife 7: e41844.

[42]

Navazio,L., Bewell, M., Siddiqua,A., Dickinson,G., Galione, A., and Sanders,D. (2000). Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate. Proc. Natl. Acad. Sci. U.S.A. 97: 8693-8698.

[43]

Navazio,L., Mariani, P., and Sanders,D. (2001). Mobilization of Ca2+ by cyclic ADP-ribose from the endoplasmic reticulum of cauliflower florets. Plant Physiol. 125: 2129-2138.

[44]

Ngou,B., Ahn,H., Ding,P., and Jones, J.D.G. (2021). Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592: 110-115.

[45]

Nguyen,C., Kurenda, A., Stolz,S., Chételat,A., and Farmer, E. (2018). Identification of cell populations necessary for leaf-to- leaf electrical signaling in a wounded plant. Proc. Natl. Acad. Sci. U.S.A. 115: 10178-10183.

[46]

Ochoa,J., Mukhopadhyay, S., Bieluszewski,T., Jędryczka,M., Malinowski, R., and Truman,W. (2023). Natural variation in Arabidopsis responses to Plasmodiophora brassicae reveals an essential role for Resistance to Plasmodiophora brasssicae (RPB1). Plant J. 116: 1421-1440.

[47]

Peiter,E., Maathuis, F., Mills,L., Knight,H., Pelloux, J., Hetherington,A., and Sanders,D. (2005). The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434: 404-408.

[48]

Pruitt,R., Locci,F., Wanke,F., Zhang, L., Saile,S., Joe,A., Karelina, D., Hua,C., Fröhlich,K., Wan, W., et al. (2021). The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598: 495-499.

[49]

Rao,S., Zhou,Z., Miao,P., Bi, G., Hu,M., Wu,Y., Feng,F., Zhang,X., and Zhou, J.-M. (2018). Roles of receptor-like cytoplasmic kinaseVII members in pattern-triggered immune signaling. Plant Physiol. 177: 1679-1690.

[50]

Salcedo,A., Rutter, W., Wang,S., Akhunova,A., Bolus,S., Chao,S., Anderson, N., De Soto,M., Rouse,M., Szabo,L., et al. (2017). Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science 358: 1604-1606.

[51]

Stefan,C. (2020). Endoplasmic reticulum-plasma membrane contacts: Principals of phosphoinositide and calcium signaling. Curr. Opin. Cell Biol. 63: 125-134.

[52]

Tang,D., Wang,G., and Zhou,J. (2017). Receptor kinases in plant-pathogen interactions: More than pattern recognition. Plant Cell 29: 618-637.

[53]

Thor,K., Jiang,S., Michard,E., George, J., Scherzer,S., Huang,S., Dindas, J., Derbyshire,P., Leitão,N., DeFalco, T., et al. (2020). The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 585: 569-573.

[54]

Tian,D., Wang,J., Zeng,X., Gu, K., Qiu,C., Yang,X., Zhou,Z., Goh,M., Luo, Y., Murata-Hori,M., et al. (2014). The Rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell 26: 497-515.

[55]

Tian,W., Hou,C., Ren,Z., Wang, C., Zhao,F., Dahlbeck,D., Hu,S., Zhang,L., Niu, Q., Li,L., et al. (2019). A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572: 131-135.

[56]

Tian,H., Wu,Z., Chen,S., Ao, K., Huang,W., Yaghmaiean,H., Sun,T., Xu,F., Zhang, Y., Wang,S., et al. (2021). Activation of TIR signalling boosts pattern-triggered immunity. Nature 598: 500-503.

[57]

Toyota,M., Spencer, D., Sawai-toyota,S., Jiaqi,W., Zhang,T., Koo,A., Howe, G., and Gilroy,S. (2018). Glutamate triggers long-distance, calcium-based plant defense signaling. Science 6: 1112-1115.

[58]

Wang,F., and Li, J. (2023a). WeiTsing: A new face of Ca2+‑permeable channels in plant immunity. Stress Biol. 3: 25.

[59]

Wan,L., Essuman, K., Anderson,R., Sasaki,Y., Monteiro, F., Chung,E., Osborne Nishimura,E., Diantonio, A., Milbrandt,J., Dangl,J.L., et al. (2019). TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365: 799-803.

[60]

Wang,J., Liu,X., Zhang,A., Ren, Y., Wu,F., Wang,G., Xu,Y., Lei,C., Zhu, S., Pan,T., et al. (2019a). A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res. 29: 820-831.

[61]

Wang,J., Hu,M., Wang,J., Qi, J., Han,Z., Wang,G., Qi,Y., Wang,H., Zhou, J.-M., and Chai,J. (2019b). Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364: eaav5870.

[62]

Wang,Y., Pruitt, R., Nürnberger,T., and Wang,Y. (2022). Evasion of plant immunity by microbial pathogens. Nat. Rev. Microbiol. 20: 449-464.

[63]

Wang,W., Qin,L., Zhang,W., Tang, L., Zhang,C., Dong,X., Miao,P., Shen,M., Du, H., Cheng,H., et al. (2023b). WeiTsing, a pericycle-expressed ion channel, safeguards the stele to confer clubroot resistance. Cell 186: 2656-2671.e18.

[64]

Wu,C., Abd-El-Haliem, A., Bozkurt,T., Belhaj,K., Terauchi, R., Vossen,J., and Kamous,S. (2017). NLR network mediates immunity to diverse plant pathogens. Proc. Natl. Acad. Sci. U.S.A. 114: 8113-8118.

[65]

Xu,G., Moeder, W., Yoshioka,K., and Shan,L. (2022). A tale of many families: Calcium channels in plant immunity. Plant Cell 34: 1551-1567.

[66]

Yu,X., Xu,G., Li,B., de Souza Vespoli,L., Liu,H., Moeder,W., Chen, S., de Oliveira,M., Ariádina de Souza,S., Shao,W., et al. (2019). The receptor kinases BAK1/SERK4 regulate Ca2+ channel-mediated cellular homeostasis for cell death containment. Curr. Biol. 29: 3778-3790.

[67]

Yu,X., Xie,Y., Luo,D., Liu, H., de Oliveira,M., Qi,P., Kim,S., Ortiz-Morea,F., Liu,J., Chen,Y., et al. (2023). A phospho-switch constrains BTL2-mediated phytocytokine signaling in plant immunity. Cell 186: 2329-2344.

[68]

Yuan,M., Jiang,Z., Bi,G., Nomura, K., Liu,M., Wang,Y., Cai,B., Zhou,J.-M., He, S.Y., and Xin,X. (2021). Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592: 105-109.

[69]

Yuan,F., Yang,H., Xue,Y., Kong, D., Ye,R., Li,C., Zhang,J., Theprungsirikul,L., Shrift,T., Krichilsky, B., et al. (2014). OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514: 367-371.

[70]

Zhang,M., Wang,D., Kang,Y., Wu, J., Yao,F., Pan,C., Yan,Z., Song,C., and Chen, L. (2018). Structure of the mechanosensitive OSCA channels. Nat. Struct. Mol. Biol. 25: 850-858.

[71]

Zheng,S., Wang,X., Zhao,D., Liu, H., and Hu,Y. (2023). Calcium homeostasis and cancer: Insights from endoplasmic reticulum-centered organelle communications. Trends Cell Biol. 33: 312-323.

[72]

Zhou,J.-M., and Zhang, Y. (2020). Plant immunity: Danger perception and signaling. Cell 181: 978-989.

RIGHTS & PERMISSIONS

2024 Institute of Botany, Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

365

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/