Unearthing old rice germplasm, illuminating a new way to improvement

Xiaoming Zheng, Ramaiah Venuprasad, Ajay Kohli

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (6) : 1041-1043. DOI: 10.1111/jipb.13661
Commentary

Unearthing old rice germplasm, illuminating a new way to improvement

Author information +
History +

Cite this article

Download citation ▾
Xiaoming Zheng, Ramaiah Venuprasad, Ajay Kohli. Unearthing old rice germplasm, illuminating a new way to improvement. Journal of Integrative Plant Biology, 2024, 66(6): 1041‒1043 https://doi.org/10.1111/jipb.13661

References

[1]
Chen, H., Liu, G., Zhu, X., and Min, S. (2002). Observation and genetically analysis on character of clustered spikelets in rice. J. Nanjing Agric. Univ. 25: 116–118.
[2]
Hong, Z., Ueguchi-Tanaka, M., Umemura, K., Uozu, S., Fujioka, S., Takatsuto, S., Yoshida, S., Ashikari, M., Kitano, H., and Matsuoka, M. (2003). A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15: 2900–2910.
[3]
Jodon, N.E. (1940). Inheritance and linkage relationships of a chlorophyll mutation in rice. J. Amer. Soc. Agron. 32: 342–346.
[4]
Jodon, N.E. (1957). Inheritance of some of the more striking characters in rice. J. Hered. 48: 181–192.
[5]
Nagao, S., and Takahashi, M.E. (1963). Genetical studies on rice plant, XXVII. Trial construction of twelve linkage groups in Japanese rice. J. Fac. Agr. Hokkaido Univ. 53: 72–130.
[6]
Ramiah, K., Jobitharaj, S., and Mudaliar, S.D. (1931). Inheritance of characters in rice, Part IV. Mem. Dept. Agr. India Bot. Ser. 18: 229–259.
[7]
Sasaki, T., and Burr, B. (2000). International Rice Genome Sequencing Project: The effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 3: 138–141.
[8]
Song, X., Meng, X., Guo, H., Cheng, Q., Jing, Y., Chen, M., Liu, G., Wang, B., Wang, Y., Li, J., et al. (2022). Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol. 40: 1403–1411.
[9]
Tanabe, S., Ashikari, M., Fujioka, S., Takatsuto, S., Yoshida, S., Yano, M., Yoshimura, A., Kitano, H., Matsuoka, M., Fujisawa, Y., et al. (2005). A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17: 776–790.
[10]
Tian, C., Zhang, T., Jiang, K., Yang, L., Yang, Q., Wan, X., and Zheng, J. (2010). Genetic analysis and preliminary gene mapping of rice clustered spikelet mutant. Mol. Plant Breed. 8: 29–34.
[11]
Tong, H., and Chu, C. (2018). Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci. 23: 1016–1028.
[12]
Yang, Y., Chu, C., Qian, Q., and Tong, H. (2024). Leveraging brassinosteroids towards the next Green Revolution. Trends Plant Sci. 29: 86–98.
[13]
Zhang, X., Meng, W., Liu, D., Pan, D., Yang, Y., Chen, Z., Ma, X., Yin, W., Niu, M., Dong, N., et al. (2024). Enhancing rice panicle branching and grain yield through tissue-specific brassinsoteroid inhibition. Science 383: eadk8838.
[14]
Zhang, Y., Li, Y., Xie, R., Yang, Z., Zhong, B., Shen, F., Tan, Z., and He, G. (2006). Development of NILs with Cl-gene of rice restorer and evaluation on the near-isogenic level. Acta Agron. Sin. 32: 397–401.
[15]
Zheng, L.Y., Zhu, X.D., Qian, Q., Zhao, Z., Zhang, J.J., Hu, X.H., Lin, H.X., and Luo, D. (2003). Morphology and mapping analysis of rice (Oryza sativa L.) clustered spikelets (Cl) mutant. Chinese Sci. Bull. 48: 559–562.
[16]
Zheng, Y., Su, D., Jiang, J., Zhu, Y., Wei, Y., Chen, L., Lian, L., Wang, Y., Cai, Q., Xie, H., et al. (2018). Fine mapping and candidate gene analysis of clustered spikelet gene OsCl-6 in rice (Oryza sativa). J. Agric. Biotechnol. 26: 1116–1123.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/