Knockout of miR396 genes increases seed size and yield in soybean
Hongtao Xie, Fei Su, Qingfeng Niu, Leping Geng, Xuesong Cao, Minglei Song, Jinsong Dong, Zai Zheng, Rui Guo, Yang Zhang, Yuanwei Deng, Zhanbo Ji, Kang Pang, Jian-Kang Zhu, Jianhua Zhu
Knockout of miR396 genes increases seed size and yield in soybean
Yield improvement has long been an important task for soybean breeding in the world in order to meet the increasing demand for food and animal feed. miR396 genes have been shown to negatively regulate grain size in rice, but whether miR396 family members may function in a similar manner in soybean is unknown. Here, we generated eight soybean mutants harboring different combinations of homozygous mutations in the six soybean miR396 genes through genome editing with clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas)12SF01 in the elite soybean cultivar Zhonghuang 302 (ZH302). Four triple mutants (mir396aci, mir396acd, mir396adf, and mir396cdf), two quadruple mutants (mir396abcd and mir396acfi), and two quintuple mutants (mir396abcdf and mir396bcdfi) were characterized. We found that plants of all the mir396 mutants produced larger seeds compared to ZH302 plants. Field tests showed that mir396adf and mir396cdf plants have significantly increased yield in growth zones with relatively high latitude which are suited for ZH302 and moderately increased yield in lower latitude. In contrast, mir396abcdf and mir396bcdfi plants have increased plant height and decreased yield in growth zones with relatively high latitude due to lodging issues, but they are suited for low latitude growth zones with increased yield without lodging problems. Taken together, our study demonstrated that loss-of-function of miR396 genes leads to significantly enlarged seed size and increased yield in soybean, providing valuable germplasms for breeding high-yield soybean.
Cas12SF01 / CRISPR/Cas / miR396 / seed size / soybean / yield
[1] |
Bodirsky, B.L., Rolinski, S., Biewald, A., Weindl, I., Popp, A., and Lotze-Campen, H. (2015). Global food demand scenarios for the 21st century. PLoS ONE 10: e0139201.
|
[2] |
Cai, Z., Xian, P., Cheng, Y., Zhong, Y., Yang, Y., Zhou, Q., Lian, T., Ma, Q., Nian, H., and Ge, L. (2023). MOTHER-OF-FT-AND-TFL1 regulates the seed oil and protein content in soybean. New Phytol. 239: 905–919.
|
[3] |
Che, R., Tong, H., Shi, B., Liu, Y., Fang, S., Liu, D., Xiao, Y., Hu, B., Liu, L., Wang, H., et al. (2015). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 2: 15195.
|
[4] |
Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., and Xia, R. (2020). TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13: 1194–1202.
|
[5] |
Duan, P., Ni, S., Wang, J., Zhang, B., Xu, R., Wang, Y., Chen, H., Zhu, X., and Li, Y. (2015). Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat. Plants 2: 15203.
|
[6] |
Duan, Z., Liang, Y., Sun, J., Zheng, H., Lin, T., Luo, P., Wang, M., Liu, R., Chen, Y., Guo, S., et al. (2024). An engineered Cas12i nuclease that is an efficient genome editing tool in animals and plants. The Innovation 5: 100564.
|
[7] |
Gao, F., Wang, K., Liu, Y., Chen, Y., Chen, P., Shi, Z., Luo, J., Jiang, D., Fan, F., Zhu, Y., et al. (2016). Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat. Plants 2: 15196.
|
[8] |
He, L., and Hannon, G.J. (2004). MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5: 522–531.
|
[9] |
Hu, J., Wang, Y., Fang, Y., Zeng, L., Xu, J., Yu, H., Shi, Z., Pan, J., Zhang, D., Kang, S., et al. (2015). A rare allele of GS2 enhances grain size and grain yield in rice. Mol. Plant 8: 1455–1465.
|
[10] |
Hu, Y., Liu, Y., Lu, L., Tao, J.-J., Cheng, T., Jin, M., Wang, Z.-Y., Wei, J.-J., Jiang, Z.-H., Sun, W.-C., et al. (2023a). Global analysis of seed transcriptomes reveals a novel PLATZ regulator for seed size and weight control in soybean. New Phytol. 240: 2436–2454.
|
[11] |
Hu, Y., Liu, Y., Tao, J.-J., Lu, L., Jiang, Z.-H., Wei, J.-J., Wu, C.-M., Yin, C.-C., Li, W., Bi, Y.-D., et al. (2023b). GmJAZ3 interacts with GmRR18a and GmMYC2a to regulate seed traits in soybean. J. Integr. Plant Biol. 65: 1983–2000.
|
[12] |
Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B. (2006). MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol. 57: 19–53.
|
[13] |
Li, S., Gao, F., Xie, K., Zeng, X., Cao, Y., Zeng, J., He, Z., Ren, Y., Li, W., Deng, Q., et al. (2016). The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol. J. 14: 2134–2146.
|
[14] |
Liu, J.-Y., Zhang, Y.-W., Han, X., Zuo, J.-F., Zhang, Z., Shang, H., Song, Q., and Zhang, Y.-M. (2020). An evolutionary population structure model reveals pleiotropic effects of GmPDAT for traits related to seed size and oil content in soybean. J. Exp. Bot. 71: 6988–7002.
|
[15] |
Lv, P., Su, F., Chen, F., Yan, C., Xia, D., Sun, H., Li, S., Duan, Z., Ma, C., Zhang, H., et al. (2024). Genome editing in rice using CRISPR/Cas12i3. Plant Biotechnol. J. 22: 379–385.
|
[16] |
Mavrodiev, E.V., Dervinis, C., Whitten, W.M., Gitzendanner, M.A., Kirst, M., Kim, S., Kinser, T.J., Soltis, P.S., and Soltis, D.E. (2021). A new, simple, highly scalable, and efficient protocol for genomic DNA extraction from diverse plant taxa. Appl. Plant Sci. 9: e11413.
|
[17] |
Miao, C., Wang, D., He, R., Liu, S., and Zhu, J.-K. (2020). Mutations in MIR396e and MIR396f increase grain size and modulate shoot architecture in rice. Plant Biotechnol. J. 18: 491–501.
|
[18] |
Noon, J.B., Hewezi, T., Baum, T.J. (2019). Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections. J. Exp. Bot. 70: 1653–1668.
|
[19] |
Paz, M.M., Martinez, J.C., Kalvig, A.B., Fonger, T.M., and Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 25: 206–213.
|
[20] |
Tang, X., Su, T., Han, M., Wei, L., Wang, W., Yu, Z., Xue, Y., Wei, H., Du, Y., Greiner, S., et al. (2017). Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max). J. Exp. Bot. 68: 469–482.
|
[21] |
Van Daele, I., Gonzalez, N., Vercauteren, I., de Smet, L., Inzé, D., Roldán-Ruiz, I., and Vuylsteke, M. (2012). A comparative study of seed yield parameters in Arabidopsis thaliana mutants and transgenics. Plant Biotechnol. J. 10: 488–500.
|
[22] |
Wang, S., Liu, S., Wang, J., Yokosho, K., Zhou, B., Yu, Y.-C., Liu, Z., Frommer, W.B., Ma, J.-F., Chen, L.-Q., et al. (2020). Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl. Sci. Rev. 7: 1776–1786.
|
[23] |
Xie, X., Ma, X., Zhu, Q., Zeng, D., Li, G., and Liu, Y.-G. (2017). CRISPR-GE: A convenient software toolkit for crispr-based genome editing. Mol. Plant 10: 1246–1249.
|
[24] |
Xing, Y., and Zhang, Q. (2010). Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61: 421–442.
|
[25] |
Zhang, J., Zhou, Z., Bai, J., Tao, X., Wang, L., Zhang, H., and Zhu, J.-K. (2020). Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions. Natl. Sci. Rev. 7: 102–112.
|
/
〈 | 〉 |