A signaling cascade mediating fruit trait development via phosphorylation-modulated nuclear accumulation of JAZ repressor

Wei Wang, Jinyao Ouyang, Yating Li, Changsheng Zhai, Bing He, Huahan Si, Kunsong Chen, Jocelyn K.C. Rose, Wensuo Jia

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (6) : 1106-1125. DOI: 10.1111/jipb.13654
Research Article

A signaling cascade mediating fruit trait development via phosphorylation-modulated nuclear accumulation of JAZ repressor

Author information +
History +

Abstract

It is generally accepted that jasmonate-ZIM domain (JAZ) repressors act to mediate jasmonate (JA) signaling via CORONATINE-INSENSITIVE1 (COI1)-mediated degradation. Here, we report a cryptic signaling cascade where a JAZ repressor, FvJAZ12, mediates multiple signaling inputs via phosphorylation-modulated subcellular translocation rather than the COI1-mediated degradation mechanism in strawberry (Fragaria vesca). FvJAZ12 acts to regulate flavor metabolism and defense response, and was found to be the target of FvMPK6, a mitogen-activated protein kinase that is capable of responding to multiple signal stimuli. FvMPK6 phosphorylates FvJAZ12 at the amino acid residues S179 and T183 adjacent to the PY residues, thereby attenuating its nuclear accumulation and relieving its repression for FvMYC2, which acts to control the expression of lipoxygenase 3 (FvLOX3), an important gene involved in JA biosynthesis and a diverse array of cellular metabolisms. Our data reveal a previously unreported mechanism for JA signaling and decipher a signaling cascade that links multiple signaling inputs with fruit trait development.

Keywords

defense response / JAZ repressor / phosphorylation / strawberry / subcellular translocation

Cite this article

Download citation ▾
Wei Wang, Jinyao Ouyang, Yating Li, Changsheng Zhai, Bing He, Huahan Si, Kunsong Chen, Jocelyn K.C. Rose, Wensuo Jia. A signaling cascade mediating fruit trait development via phosphorylation-modulated nuclear accumulation of JAZ repressor. Journal of Integrative Plant Biology, 2024, 66(6): 1106‒1125 https://doi.org/10.1111/jipb.13654

References

[1]
Ai, G., Li, T., Zhu, H., Dong, X., Fu, X., Xia, C., Pan, W., Jing, M., Shen, D., Xia, A., et al. (2023). BPL3 binds the long non-coding RNA nalncFL7 to suppress FORKED-LIKE7 and modulate HAI1-mediated MPK3/6 dephosphorylation in plant immunity. Plant Cell 35: 598–616.
[2]
Beauvoit, B., Belouah, I., Bertin, N., Cakpo, C.B., Colombié, S., Dai, Z., Gautier, H., Génard, M., Moing, A., Roch, L., et al. (2018). Putting primary metabolism into perspective to obtain better fruits. Ann. Bot. 122: 1–21.
[3]
Boter, M., Ruíz-Rivero, O., Abdeen, A., and Prat, S. (2004). Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev. 18: 1577–1591.
[4]
Campos, M.L., Kang, J.H., and Howe, G.A. (2014). Jasmonate-triggered plant immunity. J. Chem. Ecol. 40: 657–675.
[5]
Capocasa, F., Diamanti, J., Tulipani, S., Battino, M., and Mezzetti, B. (2008). Breeding strawberry (Fragaria X ananassa Duch) to increase fruit nutritional quality. BioFactors 34: 67–72.
[6]
Chaves, M.M., Zarrouk, O., Francisco, R., Costa, J.M., Santos, T., Regalado, A.P., Rodrigues, M.L., and Lopes, C.M. (2010). Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 105: 661–676.
[7]
Chen, X., Wang, D.D., Fang, X., Chen, X.Y., and Mao, Y.B. (2019). Plant Specialized metabolism regulated by jasmonate signaling. Plant Cell Physiol. 60: 2638–2647.
[8]
Chico, J.M., Chini, A., Fonseca, S., and Solano, R. (2008). JAZ repressors set the rhythm in jasmonate signaling. Curr. Opin. Plant Biol. 11: 486–494.
[9]
Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J.M., Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F.M., Ponce, M.R., et al. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666–671.
[10]
Chow, Y., Liew, T.H., Keh, H.H., Ko, A., Puah, S.M., Nguyen, T.B., Zaman, N.B., Wu, J., Talukder, M.M., and Choi, W.J. (2007). Mung bean lipoxygenase in the production of a C6-aldehyde. Natural green-note flavor generation via biotransformation. Biotechnol. J. 2: 1375–1380.
[11]
Chung, H.S., and Howe, G.A. (2009). A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21: 131–145.
[12]
Chung, H.S., Niu, Y., Browse, J., and Howe, G.A. (2009). Top hits in contemporary JAZ: An update on jasmonate signaling. Phytochemistry 70: 1547–1559.
[13]
Chung, H.S., Cooke, T.F., Depew, C.L., Patel, L.C., Ogawa, N., Kobayashi, Y., and Howe, G.A. (2010). Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling. Plant J. 63: 613–622.
[14]
Colcombet, J., and Hirt, H. (2008). Arabidopsis MAPKs: A complex signalling network involved in multiple biological processes. Biochem. J. 413: 217–226.
[15]
Concha, C.M., Figueroa, N.E., Poblete, L.A., Oñate, F.A., Schwab, W., and Figueroa, C.R. (2013). Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Plant Physiol. Biochem. 70: 433–444.
[16]
Daneshkhah, R., Grundler, F.M.W., and Wieczorek, K. (2018). The role of MPK6 as mediator of ethylene/jasmonic acid signaling in serendipita indica-colonized Arabidopsis roots. Plant Mol. Biol. Rep. 36: 284–294.
[17]
De Geyter, N., Gholami, A., Goormachtig, S., and Goossens, A. (2012). Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci. 17: 349–359.
[18]
Erb, M. (2018). Volatiles as inducers and suppressors of plant defense and immunity-origins, specificity, perception and signaling. Curr. Opin. Plant Biol. 44: 117–121.
[19]
Fernandez, A.I., Vangheluwe, N., Xu, K., Jourquin, J., Claus, L.A.N., Morales-Herrera, S., Parizot, B., De Gernier, H., Yu, Q., Drozdzecki, A., et al. (2020). GOLVEN peptide signalling through RGI receptors and MPK6 restricts asymmetric cell division during lateral root initiation. Nat. Plants 6: 533–543.
[20]
Fonseca, S., Chini, A., Hamberg, M., Adie, B., Porzel, A., Kramell, R., Miersch, O., Wasternack, C., and Solano, R. (2009). (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5: 344–350.
[21]
Fukano, Y., and Tachiki, Y. (2021). Evolutionary ecology of climacteric and non-climacteric fruits. Biol. Lett. 17: 20210352.
[22]
Fukushige, H., and Hildebrand, D.F. (2005). A simple and efficient system for green note compound biogenesis by use of certain lipoxygenase and hydroperoxide lyase sources. J. Agric. Food Chem. 53: 6877–6882.
[23]
Garrido-Bigotes, A., Valenzuela-Riffo, F., and Figueroa, C.R. (2019). Evolutionary analysis of JAZ proteins in plants: An approach in search of the ancestral sequence. Int. J. Mol. Sci. 20: 5060.
[24]
Garrido-Bigotes, A., Figueroa, N.E., Figueroa, P.M., and Figueroa, C.R. (2018). Jasmonate signalling pathway in strawberry: Genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening. PLoS ONE 13: e0197118.
[25]
Garrido-Bigotes, A., Valenzuela-Riffo, F., Torrejón, M., Solano, R., Morales-Quintana, L., and Figueroa, C.R. (2020). A new functional JAZ degron sequence in strawberry JAZ1 revealed by structural and interaction studies on the COI1-JA-Ile/COR-JAZs complexes. Sci. Rep. 10: 11310.
[26]
Garza-Alonso, C.A., Olivares-Sáenz, E., González-Morales, S., Cabrera-De la Fuente, M., Juárez-Maldonado, A., González-Fuentes, J.A., Tortella, G., Valdés-Caballero, M.V., and Benavides-Mendoza, A. (2022). Strawberry biostimulation: From mechanisms of action to plant growth and fruit quality. Plants 11: 3463.
[27]
Giovannoni, J., Nguyen, C., Ampofo, B., Zhong, S., and Fei, Z. (2017). The epigenome and transcriptional dynamics of fruit ripening. Annu. Rev. Plant Biol. 68: 61–84.
[28]
Grunewald, W., Vanholme, B., Pauwels, L., Plovie, E., Inzé, D., Gheysen, G., and Goossens, A. (2009). Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin. EMBO Rep. 10: 923–928.
[29]
Hammerbacher, A., Coutinho, T.A., and Gershenzon, J. (2019). Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. Plant Cell Environ. 42: 2827–2843.
[30]
Han, Y., Chen, C., Yan, Z., Li, J., and Wang, Y. (2019). The methyl jasmonate accelerates the strawberry fruits ripening process. Sci. Hortic.-Amsterdam 249: 250–256.
[31]
He, Z., Zhang, H., Gao, S., Lercher, M.J., Chen, W.H., and Hu, S. (2016). Evolview v2: An online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res. 44: W236–W241.
[32]
Ho, T.T., Murthy, H.N., and Park, S.Y. (2020). Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. Int. J. Mol. Sci. 21: 716.
[33]
Holland, P.M., and Cooper, J.A. (1999). Protein modification: Docking sites for kinases. Curr. Biol. 9: R329–R331.
[34]
Hou, X., Zhang, W., Du, T., Kang, S., and Davies, W.J. (2020). Responses of water accumulation and solute metabolism in tomato fruit to water scarcity and implications for main fruit quality variables. J. Exp. Bot. 71: 1249–1264.
[35]
Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biol. Res. 52: 39.
[36]
Jeon, B.W., Kim, J.S., Oh, E., Kang, N.Y., and Kim, J. (2023). ROOT MERISTEM GROWTH FACTOR1 (RGF1)-RGF1 INSENSITIVE 1 peptide-receptor pair inhibits lateral root development via the MPK6-PUCHI module in Arabidopsis. J. Exp. Bot. 74: 1475–1488.
[37]
Jwa, N.S., Agrawal, G.K., Tamogami, S., Yonekura, M., Han, O., Iwahashi, H., and Rakwal, R. (2006). Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiol. Biochem. 44: 261–273.
[38]
Katsir, L., Chung, H.S., Koo, A.J., and Howe, G.A. (2008). Jasmonate signaling: A conserved mechanism of hormone sensing. Curr. Opin. Plant Biol. 11: 428–435.
[39]
Kazan, K., and Manners, J.M. (2012). JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci. 17: 22–31.
[40]
Kazan, K., and Manners, J.M. (2013). MYC2: The master in action. Mol. Plant 6: 686–703.
[41]
Kunkel, B.N., and Brooks, D.M. (2002). Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5: 325–331.
[42]
Lang, J., Genot, B., Bigeard, J., and Colcombet, J. (2022). MPK3 and MPK6 control salicylic acid signaling by up-regulating NLR receptors during pattern- and effector-triggered immunity. J. Exp. Bot. 73: 2190–2205.
[43]
Lee, H., Jun, Y.S., Cha, O.K., and Sheen, J. (2019). Mitogen-activated protein kinases MPK3 and MPK6 are required for stem cell maintenance in the Arabidopsis shoot apical meristem. Plant Cell Rep. 38: 311–319.
[44]
Leng, N., Dawson, J.A., Thomson, J.A., Ruotti, V., Rissman, A.I., Smits, B.M., Haag, J.D., Gould, M.N., Stewart, R.M., and Kendziorski, C. (2013). EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29: 1035–1043.
[45]
Li, H., Ding, Y., Shi, Y., Zhang, X., Zhang, S., Gong, Z., and Yang, S. (2017). MPK3- and MPK6-Mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Dev. Cell 43: 630-642.e634.
[46]
Li, R., Yang, Y., Lou, H., Wang, W., Yan, J., Shan, X., and Xie, D. (2023). The warfare beneath jasmonate signaling between the pathogenic intruder and host plant: Who wins? J. Exp. Bot. 74: 1244–1257.
[47]
Li, Y., Wei, W., Feng, J., Luo, H., Pi, M., Liu, Z., and Kang, C. (2018). Genome re-annotation of the wild strawberry Fragaria vesca using extensive Illumina- and SMRT-based RNA-seq datasets. DNA Res. 25: 61–70.
[48]
Li, Y., Liu, K., Tong, G., Xi, C., Liu, J., Zhao, H., Wang, Y., Ren, D., and Han, S. (2022). MPK3/MPK6-mediated phosphorylation of ERF72 positively regulates resistance to Botrytis cinerea through directly and indirectly activating the transcription of camalexin biosynthesis enzymes. J. Exp. Bot. 73: 413–428.
[49]
Liu, Y., Leary, E., Saffaf, O., Frank Baker, R., and Zhang, S. (2022). Overlapping functions of YDA and MAPKKK3/MAPKKK5 upstream of MPK3/MPK6 in plant immunity and growth/development. J. Integr. Plant Biol. 64: 1531–1542.
[50]
Lorenzo, O., Chico, J.M., Sánchez-Serrano, J.J., and Solano, R. (2004). JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16: 1938–1950.
[51]
Meng, X., and Zhang, S. (2013). MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51: 245–266.
[52]
Monte, I., Caballero, J., Zamarreño, A.M., Fernández-Barbero, G., García-Mina, J.M., and Solano, R. (2022). JAZ is essential for ligand specificity of the COI1/JAZ co-receptor. Proc. Natl. Acad. Sci. U.S.A. 119, e2212155119.
[53]
Nagels Durand, A., Pauwels, L., and Goossens, A. (2016). The ubiquitin system and jasmonate signaling. Plants 5: 6.
[54]
Nguyen, T.H., Goossens, A., and Lacchini, E. (2022). Jasmonate: A hormone of primary importance for plant metabolism. Curr. Opin. Plant Biol. 67: 102197.
[55]
Oña Chuquimarca, S., Ayala-Ruano, S., Goossens, J., Pauwels, L., Goossens, A., Leon-Reyes, A., and Ángel Méndez, M. (2020). The molecular basis of JAZ-MYC coupling, a protein-protein interface essential for plant response to stressors. Front. Plant Sci. 11: 1139.
[56]
Oosumi, T., Gruszewski, H.A., Blischak, L.A., Baxter, A.J., Wadl, P.A., Shuman, J.L., Veilleux, R.E., and Shulaev, V. (2006). High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223: 1219–1230.
[57]
Pauwels, L., and Goossens, A. (2011). The JAZ proteins: A crucial interface in the jasmonate signaling cascade. Plant Cell 23: 3089–3100.
[58]
Pauwels, L., Barbero, G.F., Geerinck, J., Tilleman, S., Grunewald, W., Pérez, A.C., Chico, J.M., Bossche, R.V., Sewell, J., and Gil, E. (2010). NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464: 788–791.
[59]
Pérez-Llorca, M., Pollmann, S., and Müller, M. (2023). Ethylene and jasmonates signaling network mediating secondary metabolites under abiotic stress. Int. J. Mol. Sci. 24: 5990.
[60]
Pérez, A.G., Sanz, C., Olías, R., and Olías, J.M. (1997). Effect of methyl jasmonate on in vitro strawberry ripening. J. Agric. Food Chem. 45: 3733–3737.
[61]
Pott, D.M., Osorio, S., and Vallarino, J.G. (2019). From central to specialized metabolism: An overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Front. Plant Sci. 10: 835.
[62]
Reddy, K.K., Vidya Rajan, V.K., Gupta, A., Aparoy, P., and Reddanna, P. (2015). Exploration of binding site pattern in arachidonic acid metabolizing enzymes, cyclooxygenases and lipoxygenases. BMC Res. Notes 8: 152.
[63]
Reyes-Díaz, M., Lobos, T., Cardemil, L., Nunes-Nesi, A., Retamales, J., Jaakola, L., Alberdi, M., and Ribera-Fonseca, A. (2016). Methyl jasmonate: An alternative for improving the quality and health properties of fresh fruits. Molecules 21: 567.
[64]
Rodríguez, A., Alquézar, B., and Peña, L. (2013). Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol. 197: 36–48.
[65]
Rogiers, S.Y., Greer, D.H., Liu, Y., Baby, T., and Xiao, Z. (2022). Impact of climate change on grape berry ripening: An assessment of adaptation strategies for the Australian vineyard. Front. Plant Sci. 13: 1094633.
[66]
Schindelin, J., Rueden, C.T., Hiner, M.C., and Eliceiri, K.W. (2015). The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 82: 518–529.
[67]
Schütze, K., Harter, K., and Chaban, C. (2009). Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Methods Mol. Biol. 479: 189–202.
[68]
Serag, A., Salem, M.A., Gong, S., Wu, J.L., and Farag, M.A. (2023). Decoding metabolic reprogramming in plants under pathogen attacks, a comprehensive review of emerging metabolomics technologies to maximize their applications. Metabolites 13: 424.
[69]
Seymour, G.B., Østergaard, L., Chapman, N.H., Knapp, S., and Martin, C. (2013). Fruit development and ripening. Annu. Rev. Plant Biol. 64: 219–241.
[70]
Shah, J. (2005). Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Annu. Rev. Phytopathol. 43: 229–260.
[71]
Sharrocks, A.D., Yang, S.H., and Galanis, A. (2000). Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem. Sci. 25: 448–453.
[72]
Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., Kobayashi, Y., Hsu, F.-F., Sharon, M., and Browse, J. (2010). Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 468: 400–405.
[73]
Sherif, S., El-Sharkawy, I., Mathur, J., Ravindran, P., Kumar, P., Paliyath, G., and Jayasankar, S. (2015). A stable JAZ protein from peach mediates the transition from outcrossing to self-pollination. BMC Biol. 13: 11.
[74]
Shyu, C., Figueroa, P., Depew, C.L., Cooke, T.F., Sheard, L.B., Moreno, J.E., Katsir, L., Zheng, N., Browse, J., and Howe, G.A. (2012). JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. Plant Cell 24: 536–550.
[75]
Sohn, S.I., Pandian, S., Rakkammal, K., Largia, M.J.V., Thamilarasan, S.K., Balaji, S., Zoclanclounon, Y.A.B., Shilpha, J., and Ramesh, M. (2022). Jasmonates in plant growth and development and elicitation of secondary metabolites: An updated overview. Front. Plant Sci. 13: 942789.
[76]
Song, S., Qi, T., Wasternack, C., and Xie, D. (2014). Jasmonate signaling and crosstalk with gibberellin and ethylene. Curr. Opin. Plant Biol. 21: 112–119.
[77]
Sun, T., and Zhang, Y. (2022). MAP kinase cascades in plant development and immune signaling. EMBO Rep. 23: e53817.
[78]
Suzuki, Y., Ise, K., Li, C., Honda, I., Iwai, Y., and Matsukura, U. (1999). Volatile components in stored rice [Oryza sativa (L.)] of varieties with and without lipoxygenase-3 in seeds. J. Agric. Food Chem. 47: 1119–1124.
[79]
Suzuki, Y., Miura, K., Shigemune, A., Sasahara, H., Ohta, H., Uehara, Y., Ishikawa, T., Hamada, S., and Shirasawa, K. (2015). Marker-assisted breeding of a LOX-3-null rice line with improved storability and resistance to preharvest sprouting. Theor. Appl. Genet. 128: 1421–1430.
[80]
Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448: 661–665.
[81]
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882.
[82]
Tian, F., Yang, D.C., Meng, Y.Q., Jin, J., and Gao, G. (2020). PlantRegMap: Charting functional regulatory maps in plants. Nucleic Acids Res. 48: D1104–d1113.
[83]
Valenzuela-Riffo, F., Garrido-Bigotes, A., Figueroa, P.M., Morales-Quintana, L., and Figueroa, C.R. (2018). Structural analysis of the woodland strawberry COI1-JAZ1 co-receptor for the plant hormone jasmonoyl-isoleucine. J. Mol. Graph. Model. 85: 250–261.
[84]
Villette, J., Cuéllar, T., Verdeil, J.L., Delrot, S., and Gaillard, I. (2020). Grapevine potassium nutrition and fruit quality in the context of climate change. Front. Plant Sci. 11: 123.
[85]
Wang, D., Wei, L., Liu, T., Ma, J., Huang, K., Guo, H., Huang, Y., Zhang, L., Zhao, J., Tsuda, K., et al. (2023a). Suppression of ETI by PTI priming to balance plant growth and defense through an MPK3/MPK6-WRKYs-PP2Cs module. Mol. Plant 16: 903–918.
[86]
Wang, P., Qi, S., Wang, X., Dou, L., Jia, M.A., Mao, T., Guo, Y., and Wang, X. (2023b). The OPEN STOMATA1-SPIRAL1 module regulates microtubule stability during abscisic acid-induced stomatal closure in Arabidopsis. Plant Cell 35: 260–278.
[87]
Wang, W., Dai, Z., Li, J., Ouyang, J., Li, T., Zeng, B., Kang, L., Jia, K., Xi, Z., and Jia, W. (2021). A method for assaying of protein kinase activity in vivo and its use in studies of signal transduction in strawberry fruit ripening. Int. J. Mol. Sci. 22: 10495.
[88]
Wasternack, C., and Strnad, M. (2016). Jasmonate signaling in plant stress responses and development - active and inactive compounds. N. Biotechnol. 33: 604–613.
[89]
Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., and Barton, G.J. (2009). Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189–1191.
[90]
Wei, J., Wen, X., and Tang, L. (2017). Effect of methyl jasmonic acid on peach fruit ripening progress. Sci. Hortic.-Amsterdam 220: 206–213.
[91]
Wei, L., Mao, W., Jia, M., Xing, S., Ali, U., Zhao, Y., Chen, Y., Cao, M., Dai, Z., Zhang, K., et al. (2018). FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. J. Exp. Bot. 69: 4805–4820.
[92]
Withers, J., Yao, J., Mecey, C., Howe, G.A., Melotto, M., and He, S.Y. (2012). Transcription factor-dependent nuclear localization of a transcriptional repressor in jasmonate hormone signaling. Proc. Natl. Acad. Sci. U.S.A. 109: 20148–20153.
[93]
Wu, C.J., Shan, W., Liu, X.C., Zhu, L.S., Wei, W., Yang, Y.Y., Guo, Y.F., Bouzayen, M., Chen, J.Y., Lu, W.J., et al. (2022). Phosphorylation of transcription factor bZIP21 by MAP kinase MPK6-3 enhances banana fruit ripening. Plant Physiol. 188: 1665–1685.
[94]
Xia, J., and Wishart, D.S. (2010). MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 38: W71–W77.
[95]
Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M., and Turner, J.G. (1998). COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280: 1091–1094.
[96]
Xing, Y., Sun, W., Sun, Y., Li, J., Zhang, J., Wu, T., Song, T., Yao, Y., and Tian, J. (2023). MPK6-mediated HY5 phosphorylation regulates light-induced anthocyanin accumulation in apple fruit. Plant Biotechnol. J. 21: 283–301.
[97]
Yan, Y., Stolz, S., Chételat, A., Reymond, P., Pagni, M., Dubugnon, L., and Farmer, E.E. (2007). A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19: 2470–2483.
[98]
Yan, Z., Wang, J., Wang, F., Xie, C., Lv, B., Yu, Z., Dai, S., Liu, X., Xia, G., Tian, H., et al. (2021). MPK3/6-induced degradation of ARR1/10/12 promotes salt tolerance in Arabidopsis. EMBO Rep. 22: e52457.
[99]
Yeshi, K., Crayn, D., Ritmejerytė, E., and Wangchuk, P. (2022). Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 27: 313.
[100]
Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nat. Protoc. 2: 1565–1572.
[101]
Yu, M.M., Wang, R., Xia, J.Q., Li, C., Xu, Q.H., Cang, J., Wang, Y.Y., and Zhang, D. (2023). JA-induced TaMPK6 enhanced the freeze tolerance of Arabidopsis thaliana through regulation of ICE-CBF-COR module and antioxidant enzyme system. Plant Sci. 329: 111621.
[102]
Yue, P., Jiang, Z., Sun, Q., Wei, R., Yin, Y., Xie, Z., Larkin, R.M., Ye, J., Chai, L., and Deng, X. (2023). Jasmonate activates a CsMPK6-CsMYC2 module that regulates the expression of β-citraurin biosynthetic genes and fruit coloration in orange (Citrus sinensis). Plant Cell 35: 1167–1185.
[103]
Zander, M. (2021). Many ways to repress! JAZ's agony of choices. Mol. Plant 14: 714–716.
[104]
Zeng, D., Ma, X., Xie, X., Zhu, Q., and Liu, Y. (2018). A protocol for CRISPR/Cas9-based multi-gene editing and sequence decoding of mutant sites in plants. Scientia Sinica Vitae 48: 783–794.
[105]
Zhai, Q., and Li, C. (2019). The plant mediator complex and its role in jasmonate signaling. J. Exp. Bot. 70: 3415–3424.
[106]
Zhang, F., Yao, J., Ke, J., Zhang, L., Lam, V.Q., Xin, X.-F., Zhou, X.E., Chen, J., Brunzelle, J., and Griffin, P.R. (2015). Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525: 269–273.
[107]
Zhang, L., Zhang, F., Melotto, M., Yao, J., and He, S.Y. (2017). Jasmonate signaling and manipulation by pathogens and insects. J. Exp. Bot. 68: 1371–1385.
[108]
Zhang, Q., Folta, K.M., and Davis, T.M. (2014). Somatic embryogenesis, tetraploidy, and variant leaf morphology in transgenic diploid strawberry (Fragaria vesca subspecies vesca ‘Hawaii 4’). BMC Plant Biol. 14: 23.
[109]
Zhao, J., Davis, L.C., and Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 23: 283–333.
[110]
Zhao, Y., Mao, W., Chen, Y., Wang, W., Dai, Z., Dou, Z., Zhang, K., Wei, L., Li, T., Zeng, B., et al. (2019). Optimization and standardization of transient expression assays for gene functional analyses in strawberry fruits. Hortic. Res. 6: 53.
[111]
Zhou, Y., Zhou, D.M., Yu, W.W., Shi, L.L., Zhang, Y., Lai, Y.X., Huang, L.P., Qi, H., Chen, Q.F., Yao, N., et al. (2022). Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling in Arabidopsis. Plant Cell 34: 889–909.
[112]
Zou, M., Guo, M., Zhou, Z., Wang, B., Pan, Q., Li, J., Zhou, J.M., and Li, J. (2021). MPK3- and MPK6-mediated VLN3 phosphorylation regulates actin dynamics during stomatal immunity in Arabidopsis. Nat. Commun. 12: 6474.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/