Potassium transporter OsHAK9 regulates seed germination under salt stress by preventing gibberellin degradation through mediating OsGA2ox7 in rice

Peng Zeng, Ting Xie, Jiaxin Shen, Taokai Liang, Lu Yin, Kexin Liu, Ying He, Mingming Chen, Haijuan Tang, Sunlu Chen, Sergey Shabala, Hongsheng Zhang, Jinping Cheng

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (4) : 731-748. DOI: 10.1111/jipb.13642
Research Article

Potassium transporter OsHAK9 regulates seed germination under salt stress by preventing gibberellin degradation through mediating OsGA2ox7 in rice

Author information +
History +

Abstract

Soil salinity has a major impact on rice seed germination, severely limiting rice production. Herein, a rice germination defective mutant under salt stress (gdss) was identified by using chemical mutagenesis. The GDSS gene was detected via MutMap and shown to encode potassium transporter OsHAK9. Phenotypic analysis of complementation and mutant lines demonstrated that OsHAK9 was an essential regulator responsible for seed germination under salt stress. OsHAK9 is highly expressed in germinating seed embryos. Ion contents and non-invasive micro-test technology results showed that OsHAK9 restricted K+ efflux in salt-exposed germinating seeds for the balance of K+/Na+. Disruption of OsHAK9 significantly reduced gibberellin 4 (GA4) levels, and the germination defective phenotype of oshak9a was partly rescued by exogenous GA3 treatment under salt stress. RNA sequencing (RNA-seq) and real-time quantitative polymerase chain reaction analysis demonstrated that the disruption of OsHAK9 improved the GA-deactivated gene OsGA2ox7 expression in germinating seeds under salt stress, and the expression of OsGA2ox7 was significantly inhibited by salt stress. Null mutants of OsGA2ox7 created using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 approach displayed a dramatically increased seed germination ability under salt stress. Overall, our results highlight that OsHAK9 regulates seed germination performance under salt stress involving preventing GA degradation by mediating OsGA2ox7, which provides a novel clue about the relationship between GA and OsHAKs in rice.

Keywords

GDSS / gibberellins / potassium transporter / rice / salt tolerance / seed germination

Cite this article

Download citation ▾
Peng Zeng, Ting Xie, Jiaxin Shen, Taokai Liang, Lu Yin, Kexin Liu, Ying He, Mingming Chen, Haijuan Tang, Sunlu Chen, Sergey Shabala, Hongsheng Zhang, Jinping Cheng. Potassium transporter OsHAK9 regulates seed germination under salt stress by preventing gibberellin degradation through mediating OsGA2ox7 in rice. Journal of Integrative Plant Biology, 2024, 66(4): 731‒748 https://doi.org/10.1111/jipb.13642

References

[1]
Abe, A., Kosugi, S., Yoshida, K., Natsume, S., Takagi, H., Kanzaki, H., Matsumura, H., Yoshida, K., Mitsuoka, C., Tamiru, M., et al. (2012). Genome sequencing reveals agronomically important loci in rice using MutMap. Nat. Biotechnol. 30: 174-178.
[2]
Achard, P. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science 311: 91-94.
[3]
Anderson, J.A., Huprikar, S.S., Kochian, L.V., Lucas, W.J., and Gaber, R.F. (1992). Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 89: 3736-3740.
[4]
Atia, A., Debez, A., Barhoumi, Z., Smaoui, A., and Abdelly, C. (2009). ABA, GA3, and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions. Crit. Rev. Biol. 332: 704-710.
[5]
Bañuelos, M.A., Garciadeblas, B., Cubero, B., and Rodríguez-Navarro, A. (2002). Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol. 130: 784-795.
[6]
Cao, Y., Zhang, M., Liang, X., Li, F., Shi, Y., Yang, X., and Jiang, C. (2020). Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nat. Commun. 11: 186.
[7]
Cao, Z., Lin, X., Yang, Y., Guan, M., Xu, P., and Chen, M. (2019a). Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq. BMC Plant Biol. 19: 250.
[8]
Cao, W., Yu, Y., Li, M., Luo, J., Wang, R., Tang, H., Huang, J., Wang, J., Zhang, H., and Bao, Y. (2019b). OsSYP121 accumulates at fungal penetration sites and mediates host resistance to rice blast. Plant Physiol. 179: 1330-1342.
[9]
Chen, G., Hu, Q., Luo, L., Yang, T., Zhang, S., Hu, Y., Yu, L., and Xu, G. (2015). Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ. 38: 2747-2765.
[10]
Chen, T., Shabala, S., Niu, Y., Chen, Z.-H., Shabala, L., Meinke, H., Venkataraman, G., Pareek, A., Xu, J., and Zhou, M. (2021). Molecular mechanisms of salinity tolerance in rice. Crop J. 9: 506-520.
[11]
Cheng, J., He, Y., Yang, B., Lai, Y., Wang, Z., and Zhang, H. (2015). Association mapping of seed germination and seedling growth at three conditions in indica rice (Oryza sativa L.). Euphytica 206: 103-115.
[12]
Elumalai, R.P., Nagpal, P., and Reed, J.W. (2002). A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell 14: 119-131.
[13]
Feng, H., Tang, Q., Cai, J., Xu, B., Xu, G., and Yu, L. (2019). Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance. Planta 250: 549-561.
[14]
Gupta, M., Qiu, X., Wang, L., Xie, W., Zhang, C., Xiong, L., Lian, X., and Zhang, Q. (2008). KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol. Genet. Genomics 280: 437-452.
[15]
He, Y., Yang, B., He, Y., Zhan, C., Cheng, Y., Zhang, J., Zhang, H., Cheng, J., and Wang, Z. (2019a). A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice. Plant J. 97: 1089-1104.
[16]
He, Y., Cheng, J., He, Y., Yang, B., Cheng, Y., Yang, C., Zhang, H., and Wang, Z. (2019b). Influence of isopropylmalate synthase OsIPMS1 on seed vigour associated with amino acid and energy metabolism in rice. Plant Biotechnol. J. 17: 322-337.
[17]
Higuchi, R., Krummel, B., and Saiki, R. (1988). A general method of in vitro preparation and specific mutagenesis of DNA fragments: Study of protein and DNA interactions. Nucleic Acids Res. 16: 7351-7367.
[18]
Hirsch, R.E. (1998). A role for the AKT1 potassium channel in plant nutrition. Science 280: 918-921.
[19]
Holdsworth, M.J., Bentsink, L., and Soppe, W.J.J. (2008). Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 179: 33-54.
[20]
Hossain, M.S. (2019). Present scenario of global salt affected soils, its management and importance of salinity research. Int. Res. J. Biol. Sci. 1: 1-3.
[21]
Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., et al. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42: 961-967.
[22]
Jabnoune, M., Espeout, S., Mieulet, D., Fizames, C., Verdeil, J.L., Conéjéro, G., Rodríguez-Navarro, A., Sentenac, H., Guiderdoni, E., Abdelly, C., et al. (2009). Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol. 150: 1955-1971.
[23]
Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901-3907.
[24]
Jiang, L., Ma, X., Zhao, S., Tang, Y., Liu, F., Gu, P., Fu, Y., Zhu, Z., Cai, H., Sun, C., et al. (2019). The APETALA2-Like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. Plant Cell 31: 17-36.
[25]
Kim, S.-G., and Park, C.-M. (2008). Gibberellic acid-mediated salt signaling in seed germination. Plant Signal. Behav. 3: 877-879.
[26]
Li, J., Long, Y., Qi, G.-N., Li, J., Xu, Z.-J., Wu, W.-H., and Wang, Y. (2014). The OsAKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell 26: 3387-3402.
[27]
Liu, M., Pan, T., Allakhverdiev, S.I., Yu, M., and Shabala, S. (2020). Crop Halophytism: An environmentally sustainable solution for global food security. Trends Plant Sci. 25: 630-634.
[28]
Liu, H., Hussain, S., Zheng, M., Peng, S., Huang, J., Cui, K., and Nie, L. (2015). Dry direct-seeded rice as an alternative to transplanted-flooded rice in central China. Agron. Sustain. Dev. 35: 285-294.
[29]
Maathuis, F.J.M., and Amtmann, A. (1999). K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann. Bot. 84: 123-133.
[30]
Magome, H., Yamaguchi, S., Hanada, A., Kamiya, Y., and Oda, K. (2008). The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J. 56: 613-626.
[31]
Martínez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.K., Pardo, J.M., and Quintero, F.J. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 143: 1001-1012.
[32]
Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628.
[33]
Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681.
[34]
Myles, S., Peiffer, J., Brown, P.J., Ersoz, E.S., Zhang, Z., Costich, D.E., and Buckler, E.S. (2009). Association mapping: Critical considerations shift from genotyping to experimental design. Plant Cell 21: 2194-2202.
[35]
Nakaune, M., Hanada, A., Yin, Y.G., Matsukura, C., Yamaguchi, S., and Ezura, H. (2012). Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato. Plant Physiol. Biochem. 52: 28-37.
[36]
Nieves-Cordones, M., Alemán, F., Martínez, V., and Rubio, F. (2010). The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Mol. Plant 3: 326-333.
[37]
Nieves-Cordones, M., Ródenas, R., Chavanieu, A., Rivero, R.M., Martinez, V., Gaillard, I., and Rubio, F. (2016). Uneven HAK/KUP/KT protein diversity among angiosperms: Species distribution and perspectives. Front. Plant Sci. 7: 127.
[38]
Nishimura, A., Aichi, I., and Matsuoka, M. (2006). A protocol for Agrobacterium-mediated transformation in rice. Nat. Protoc. 1: 2796-2802.
[39]
Oliferuk, S., Ródenas, R., Pérez, A., Martinez, V., Rubio, F., and Santa María, G.E. (2017). How DELLAs contribute to control potassium uptake under conditions of potassium scarcity? Hypotheses and uncertainties. Plant Signal. Behav. 12: e1366396.
[40]
Osakabe, Y., Arinaga, N., Umezawa, T., Katsura, S., Nagamachi, K., Tanaka, H., Ohiraki, H., Yamada, K., Seo, S.U., Abo, M., et al. (2013). Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25: 609-624.
[41]
Pan, T., Liu, M., Kreslavski, V.D., Zharmukhamedov, S.K., Nie, C., Yu, M., Kuznetsov, V.V., Allakhverdiev, S.I., and Shabala, S. (2021). Non-stomatal limitation of photosynthesis by soil salinity. Crit. Rev. Environ. Sci. Technol. 51: 791-825.
[42]
Peng, L., Xiao, H., Li, R., Zeng, Y., Gu, M., Moran, N., Yu, L., and Xu, G. (2023). Potassium transporter OsHAK18 mediates potassium and sodium circulation and sugar translocation in rice. Plant Physiol. 193: 2003-2020.
[43]
Piskurewicz, U., Jikumaru, Y., Kinoshita, N., Nambara, E., Kamiya, Y., and Lopez-Molina, L. (2008). The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20: 2729-2745.
[44]
Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., and Job, D. (2012). Seed germination and vigor. Annu. Rev. Plant Biol. 63: 507-533.
[45]
Ren, Z.W., Kopittke, P.M., Zhao, F.J., and Wang, P. (2023). Nutrient accumulation and transcriptome patterns during grain development in rice. J. Exp. Bot. 74: 909-930.
[46]
Rodríguez-Navarro, A., and Ramos, J. (1984). Dual system for potassium transport in Saccharomyces cerevisiae. J. Bacteriol. 159: 940-945.
[47]
Santa-María, G.E., Oliferuk, S., and Moriconi, J.I. (2018). KT-HAK-KUP transporters in major terrestrial photosynthetic organisms: A twenty years tale. J. Plant Physiol. 226: 77-90.
[48]
Shabala, S., and Cuin, T.A. (2008). Potassium transport and plant salt tolerance. Physiol. Plant. 133: 651-669.
[49]
Shabala, S., and Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiol. Plant. 151: 257-279.
[50]
Shen, L., Fan, W., Li, N., Wu, Q., Chen, D., Luan, J., Zhang, G., Tian, Q., Jing, W., Zhang, Q., et al. (2023). Rice potassium transporter OsHAK18 mediates phloem K+ loading and redistribution. Plant J. 116: 201-216.
[51]
Shen, Y., Shen, L., Shen, Z., Jing, W., Ge, H., Zhao, J., and Zhang, W. (2015). The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ. 38: 2766-2779.
[52]
Shu, K., Liu, X., Xie, Q., and He, Z. (2016). Two faces of one seed: Hormonal regulation of dormancy and germination. Mol. Plant 9: 34-45.
[53]
Sun, S.-K., Xu, X., Tang, Z., Tang, Z., Huang, X.Y., Wirtz, M., Hell, R., and Zhao, F.J. (2021). A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nat. Commun. 12: 1392.
[54]
Takagi, H., Uemura, A., Yaegashi, H., Tamiru, M., Abe, A., Mitsuoka, C., Utsushi, H., Natsume, S., Kanzaki, H., Matsumura, H., et al. (2013a). MutMap-Gap: Whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol. 200: 276-283.
[55]
Takagi, H., Abe, A., Yoshida, K., Kosugi, S., Natsume, S., Mitsuoka, C., Uemura, A., Utsushi, H., Tamiru, M., et al. (2013b). QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 74: 174-183.
[56]
Takagi, H., Tamiru, M., Abe, A., Yoshida, K., Uemura, A., Yaegashi, H., Obara, T., Oikawa, K., Utsushi, H., Kanzaki, E., et al. (2015). MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat. Biotechnol. 33: 445-449.
[57]
Uozumi, N., Kim, E.J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., Bakker, E.P., Nakamura, T., and Schroeder, J.I. (2000). The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol. 122: 1249-1260.
[58]
Véry, A.A., and Sentenac, H. (2003). Molecular mechanisms and regulation of K+ transport in higher plants. Annu. Rev. Plant Biol. 54: 575-603.
[59]
Wang, H., Zhang, Y., Sun, L., Xu, P., Tu, R., Meng, S., Wu, W., Anis, G.B., Hussain, K., Riaz, A., et al. (2018). WB1, a regulator of endosperm development in rice, is identified by a modified MutMap method. Int. J. Mol. Sci. 19: 2159.
[60]
Wang, J., Qin, H., Zhou, S., Wei, P., Zhang, H., Zhou, Y., Miao, Y., and Huang, R. (2020a). The ubiquitin-binding protein OsDSK2a mediates seedling growth and salt responses by regulating gibberellin metabolism in rice. Plant Cell 32: 414-428.
[61]
Wang, Z., Hong, Y., Zhu, G., Li, Y., Niu, Q., Yao, J., Hua, K., Bai, J., Zhu, Y., Shi, H., et al. (2020b). Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter. EMBO J. 39: e103256.
[62]
Wang, Z., Wang, J., Bao, Y., Wu, Y., and Zhang, H. (2011). Quantitative trait loci controlling rice seed germination under salt stress. Euphytica 178: 297-307.
[63]
Wu, H., Xie, D., Tang, Z., Shi, D., and Yang, W. (2020). PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice. Plant Biotechnol. J. 18: 1778-1795.
[64]
Wu, H., Shabala, L., Azzarello, E., Huang, Y., Pandolfi, C., Su, N., Wu, Q., Cai, S., Bazihizina, N., Wang, L., et al. (2018). Na+ extrusion from the cytosol and tissue-specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat. J. Exp. Bot. 69: 3987-4001.
[65]
Xing, H.L., Dong, L., Wang, Z.P., Zhang, H.Y., Han, C.Y., Liu, B., Wang, X.C., and Chen, Q.J. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 14: 327.
[66]
Yoshida, S., Forno, D.A., Cock, J.H., and Gomez, K.A. (1976). Laboratory manual for physiological studies of rice, Ed. 3. The International Rice Research Institute Philippines, Manila, Philippines.
[67]
Yang, T., Zhang, S., Hu, Y., Wu, F., Hu, Q., Chen, G., Cai, J., Wu, T., Moran, N., Yu, L., et al. (2014). The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol. 166: 945-959.
[68]
Zeng, P., Zhu, P., Qian, L., Qian, X., Mi, Y., Lin, Z., Dong, S., Aronsson, H., Zhang, H., and Cheng, J. (2021). Identification and fine mapping of qGR6.2, a novel locus controlling rice seed germination under salt stress. BMC Plant Biol. 21: 36.
[69]
Zhang, L., Sun, X., Li, Y., Luo, X., Song, S., Chen, Y., Wang, X., Mao, D., Chen, L., and Luan, S. (2021). Rice Na+-permeable transporter OsHAK12 mediates shoots Na+ exclusion in response to salt stress. Front. Plant Sci. 12: 1-11.
[70]
Zhang, M., Liang, X., Wang, L., Cao, Y., Song, W., Shi, J., Lai, J., and Jiang, C. (2019). A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat. Plants 5: 1297-1308.
[71]
Zhao, C., Zhang, H., Song, C., Zhu, J.-K., and Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. Innovation 1: 100017.
[72]
Zhao, K., Tung, C.W., Eizenga, G.C., Wright, M.H., Ali, M.L., Price, A.H., Norton, G.J., Islam, M.R., Reynolds, A., Mezey, J., et al. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2: 467.
[73]
Zhou, J., Jiao, F., Wu, Z., Li, Y., Wang, X., He, X., Zhong, W., and Wu, P. (2008). OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol. 146: 1673-1686.
[74]
Zhu, J.K. (2003). Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6: 441-445.
[75]
Zörb, C., Senbayram, M., and Peiter, E. (2014). Potassium in agriculture-Status and perspectives. J. Plant Physiol. 171: 656-669.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/