The RING zinc finger protein LbRZF1 promotes salt gland development and salt tolerance in Limonium bicolor

Zongran Yang, Ziwei Zhang, Ziqi Qiao, Xueying Guo, Yixuan Wen, Yingxue Zhou, Chunliang Yao, Hai Fan, Baoshan Wang, Guoliang Han

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (4) : 787-809. DOI: 10.1111/jipb.13641
Research Article

The RING zinc finger protein LbRZF1 promotes salt gland development and salt tolerance in Limonium bicolor

Author information +
History +

Abstract

The recretohalophyte Limonium bicolor thrives in high-salinity environments because salt glands on the above-ground parts of the plant help to expel excess salt. Here, we characterize a nucleus-localized C3HC4 (RING-HC)-type zinc finger protein of L. bicolor named RING ZINCFINGER PROTEIN 1 (LbRZF1). LbRZF1 was expressed in salt glands and in response to NaCl treatment. LbRZF1 showed no E3 ubiquitin ligase activity. The phenotypes of overexpression and knockout lines for LbRZF1 indicated that LbRZF1 positively regulated salt gland development and salt tolerance in L. bicolor. lbrzf1 mutants had fewer salt glands and secreted less salt than did the wild-type, whereas LbRZF1-overexpressing lines had opposite phenotypes, in keeping with the overall salt tolerance of these plants. A yeast two-hybrid screen revealed that LbRZF1 interacted with LbCATALASE2 (LbCAT2) and the transcription factor LbMYB113, leading to their stabilization. Silencing of LbCAT2 or LbMYB113 decreased salt gland density and salt tolerance. The heterologous expression of LbRZF1 in Arabidopsis thaliana conferred salt tolerance to this non-halophyte. We also identified the transcription factor LbMYB48 as an upstream regulator of LbRZF1 transcription. The study of LbRZF1 in the regulation network of salt gland development also provides a good foundation for transforming crops and improving their salt resistance.

Keywords

LbRZF1 / Limonium bicolor / molecular mechanism / salt gland development / salt tolerance

Cite this article

Download citation ▾
Zongran Yang, Ziwei Zhang, Ziqi Qiao, Xueying Guo, Yixuan Wen, Yingxue Zhou, Chunliang Yao, Hai Fan, Baoshan Wang, Guoliang Han. The RING zinc finger protein LbRZF1 promotes salt gland development and salt tolerance in Limonium bicolor. Journal of Integrative Plant Biology, 2024, 66(4): 787‒809 https://doi.org/10.1111/jipb.13641

References

[1]
Abràmoff, M.D., Magalhães, P.J., and Ram, S.J. (2004). Image processing with ImageJ. Biophoton. Int. 11: 36-42.
[2]
Alvarez, M.E., Savouré, A., and Szabados, L. (2022). Proline metabolism as regulatory hub. Trends Plant Sci. 27: 39-55.
[3]
An, J.P., Li, R., Qu, F.J., You, C.X., Wang, X.F., and Hao, Y.J. (2018). R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. Plant J. 96: 562-577.
[4]
Balasubramaniam, T., Shen, G., Esmaeili, N., and Zhang, H. (2023). Plants’ Response mechanisms to salinity stress. Plants 12: 2253.
[5]
Brückner, A., Polge, C., Lentze, N., Auerbach, D., and Schlattner, U. (2009). Yeast two-hybrid, a powerful tool for systems biology. Int. J. Mol. Sci. 10: 2763-2788.
[6]
Cesca, K., and Oliveira, E.M. (2022). Confocal laser microscopy for VM analysis with DAPI and phalloidin staining. Methods Mol. Biol. 2514: 153-161.
[7]
Chaudhury, A., Dalal, A.D., and Sheoran, N.T. (2019). Isolation, cloning and expression of CCA1 gene in transgenic progeny plants of Japonica rice exhibiting altered morphological traits. PLoS ONE 14: e0220140.
[8]
Chyzhykova, O.A., and Palladina, T.O. (2006). The role of amino acids and sugars in supporting of osmotic homeostasis in maize seedlings under salinization conditions and treatment with synthetic growth regulators. Ukr Biokhim Zh (1999) 78: 124-129.
[9]
Deng, Y., Feng, Z., Yuan, F., Guo, J., Suo, S., and Wang, B. (2015). Identification and functional analysis of the autofluorescent substance in Limonium bicolor salt glands. Plant Physiol. Biochem. 97: 20-27.
[10]
Du, B., Liu, H., Dong, K., Wang, Y., and Zhang, Y. (2022). Over-expression of an R2R3 MYB gene, MdMYB108L, enhances tolerance to salt stress in transgenic plants. Int. J. Mol. Sci. 23: 9428.
[11]
Du, C., Zhao, P., Zhang, H., Li, N., Zheng, L., and Wang, Y. (2017). The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis. J. Plant Physiol. 215: 48-58.
[12]
Feng, L., Gao, Z., Xiao, G., Huang, R., and Zhang, H. (2014). Leucine-rich repeat receptor-like kinase FON1 regulates drought stress and seed germination by activating the expression of ABA-responsive genes in rice. Plant Mol. Biol. Rep. 32: 1158-1168.
[13]
Flowers, T.J., and Colmer, T.D. (2008). Salinity tolerance in halophytes. New Phytol. 179: 945-963.
[14]
Gao, J., Zhao, Y., Zhao, Z., Liu, W., Jiang, C., Li, J., Zhang, Z., Zhang, H., Zhang, Y., Wang, X., et al. (2023). RRS1 shapes robust root system to enhance drought resistance in rice. New Phytol. 238: 1146-1162.
[15]
Gnanasekaran, P., and Pappu, H.R. (2023). Detection of protein-protein interactions using glutathione-S-transferase (GST) pull-down assay technique. Methods Mol. Biol. 2690: 111-115.
[16]
Guo, Y., Zhao, G., Gao, X., Zhang, L., Zhang, Y., Cai, X., Yuan, X., and Guo, X. (2023). CRISPR/Cas9 gene editing technology: A precise and efficient tool for crop quality improvement. Planta 258: 36.
[17]
Han, G., Qiao, Z., Li, Y., Yang, Z., Wang, C., Zhang, Y., Liu, L., and Wang, B. (2022a). RING zinc finger proteins in plant abiotic stress tolerance. Front. Plant Sci. 13: 877011.
[18]
Han, G., Qiao, Z., Li, Y., Yang, Z., Zhang, Z., Zhang, Y., Guo, J., Liu, L., Wang, C., and Wang, B. (2022b). LbMYB48 positively regulates salt gland development of Limonium bicolor and salt tolerance of plants. Front. Plant Sci. 13: 1039984.
[19]
Han, G., Wang, M., Yuan, F., Sui, N., Song, J., and Wang, B. (2014). The CCCH zinc finger protein gene AtZFP1 improves salt resistance in Arabidopsis thaliana. Plant Mol. Biol. 86: 237-253.
[20]
Han, G., Wei, X., Dong, X., Wang, C., Sui, N., Guo, J., Yuan, F., Gong, Z., Li, X., Zhang, Y., et al. (2020). Arabidopsis ZINC FINGER PROTEIN1 acts downstream of GL2 to repress root hair initiation and elongation by directly suppressing bHLH genes. Plant Cell 32: 206-225.
[21]
Hao, D., Jin, L., Wen, X., Yu, F., Xie, Q., and Guo, H. (2021). The RING E3 ligase SDIR1 destabilizes EBF1/EBF2 and modulates the ethylene response to ambient temperature fluctuations in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 118: e2024592118.
[22]
Hao, Y.J., Wei, W., Song, Q.X., Chen, H.W., Zhang, Y.Q., Wang, F., Zou, H.F., Lei, G., Tian, A.G., Zhang, W.K., et al. (2011). Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J. 68: 302-313.
[23]
Hassani, A., Azapagic, A., and Shokri, N. (2021). Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 12: 6663.
[24]
Hoermiller, I., Funck, D., Schönewolf, L., May, H., and Heyer, A.G. (2022). Cytosolic proline is required for basal freezing tolerance in Arabidopsis. Plant Cell Environ. 45: 147-155.
[25]
Jensen, E. (2014). Technical review: In situ hybridization. Anat. Rec. 297: 1349-1353.
[26]
Jiang, H., Zhou, L.J., Gao, H.N., Wang, X.F., Li, Z.W., and Li, Y.Y. (2022). The transcription factor MdMYB2 influences cold tolerance and anthocyanin accumulation by activating SUMO E3 ligase MdSIZ1 in apple. Plant Physio. 189: 2044-2060.
[27]
Jiao, X., Zhao, B., Wang, B., and Yuan, F. (2022). An uncharacterized gene Lb1G04794 from Limonium bicolor promotes salt tolerance and trichome development in Arabidopsis. Front. Plant Sci. 13: 1079534.
[28]
Jin, J., Cardozo, T., Lovering, R.C., Elledge, S.J., Pagano, M., and Harper, J.W. (2004). Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18: 2573-2580.
[29]
Joo, H., Lim, C.W., and Lee, S.C. (2019). A pepper RING-type E3 ligase, CaASRF1, plays a positive role in drought tolerance via modulation of CaAIBZ1 stability. Plant J. 98: 5-18.
[30]
Joo, H., Lim, C.W., and Lee, S.C. (2020). The pepper RING-type E3 ligase, CaATIR1, positively regulates abscisic acid signalling and drought response by modulating the stability of CaATBZ1. Plant Cell Environ. 43: 1911-1924.
[31]
Kim, J.H., and Kim, W.T. (2013). The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol. 162: 1733-1749.
[32]
Kim, J.H., Lim, S.D., and Jang, C.S. (2020). Oryza sativa drought-, heat-, and salt-induced RING finger protein 1 (OsDHSRP1) negatively regulates abiotic stress-responsive gene expression. Plant Mol. Biol. 103: 235-252.
[33]
Kim, J.H., Lim, S.D., and Jang, C.S. (2021). Oryza sativa, C4HC3-type really interesting new gene (RING), OsRFPv6, is a positive regulator in response to salt stress by regulating Na(+) absorption. Physiol. Plant. 173: 883-895.
[34]
Kim, T.H., and Dekker, J. (2018). ChIP-Quantitative Polymerase Chain Reaction (ChIP-qPCR). Cold Spring Harb. Protoc. 5:
CrossRef Google scholar
[35]
Kobayashi, N.I., Takagi, H., Yang, X., Nishizawa-Yokoi, A., Segawa, T., Hoshina, T., Oonishi, T., Suzuki, H., Iwata, R., Toki, S., et al. (2023). Mutations in RZF1, a zinc-finger protein, reduce magnesium uptake in roots and translocation to shoots in rice. Plant Physiol. 192: 342-355.
[36]
Kokkirala, V.R., Yonggang, P., Abbagani, S., Zhu, Z., and Umate, P. (2010). Subcellular localization of proteins of Oryza sativa L. in the model tobacco and tomato plants. Plant Signaling Behav. 5: 1336-1341.
[37]
Kong, L., Cheng, J., Zhu, Y., Ding, Y., Meng, J., Chen, Z., Xie, Q., Guo, Y., Li, J., Yang, S., et al. (2015). Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nat. Commun. 6: 8630.
[38]
Li, B., Liu, R., Liu, J., Zhang, H., Tian, Y., Chen, T., Li, J., Jiao, F., Jia, T., Li, Y., et al. (2024). ZmMYB56 regulates stomatal closure and drought tolerance in maize seedlings by regulating ZmTOM7 expression at the transcriptional level. New Crops 1: 100012.
[39]
Li, G., Li, J., Hao, R., and Guo, Y. (2017). Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6CII. J. Genet. Genomics 44: 395-404.
[40]
Li, J., Liu, J., Wang, G., Cha, J.Y., Li, G., Chen, S., Li, Z., Guo, J., Zhang, C., Yang, Y., et al. (2015). A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis. Plant Cell 27: 908-925.
[41]
Li, J., Yuan, F., Liu, Y., Zhang, M., Liu, Y., Zhao, Y., Wang, B., and Chen, M. (2020). Exogenous melatonin enhances salt secretion from salt glands by upregulating the expression of ion transporter and vesicle transport genes in Limonium bicolor. BMC Plant Biol. 20: 493.
[42]
Li, Y., Qin, P., Sun, A., Xiao, W., Chen, F., He, Y., Yu, K., Li, Y., Zhang, M., and Guo, X. (2022). Genome-wide identification, new classification, expression analysis and screening of drought & heat resistance related candidates in the RING zinc finger gene family of bread wheat (Triticum aestivum L.). BMC Genomics 23: 696.
[43]
Lim, C.W., Baek, W., and Lee, S.C. (2017). The pepper RING-type E3 ligase CaAIRF1 regulates ABA and drought signaling via CaADIP1 protein phosphatase degradation. Plant Physiol. 173: 2323-2339.
[44]
Litalien, A., and Zeeb, B. (2020). Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 698: 134235.
[45]
Lu, C., Feng, Z., Yuan, F., Han, G., Guo, J., Chen, M., and Wang, B. (2020). The SNARE protein LbSYP61 participates in salt secretion in Limonium bicolor. Environ. Exp. Bot. 176: 104076.
[46]
Ma, K., Xiao, J., Li, X., Zhang, Q., and Lian, X. (2009). Sequence and expression analysis of the C3HC4-type RING finger gene family in rice. Gene 444: 33-45.
[47]
Mccormick, K., Salcedo, J. (2017). SPSS Statistics for Data Analysis and Visualization. Hoboken, New Jersey, USA: John Wiley & Sons.
[48]
Mevissen, T.E.T., Prasad, A.V., and Walter, J.C. (2023). TRIM21-dependent target protein ubiquitination mediates cell-free Trim-Away. Cell Rep. 42: 112125.
[49]
Mittler, R., Kim, Y., Song, L., Coutu, J., Coutu, A., Ciftci-Yilmaz, S., Lee, H., Stevenson, B., and Zhu, J.K. (2006). Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett. 580: 6537-6542.
[50]
Noman, M., Jameel, A., Qiang, W.D., Ahmad, N., Liu, W.C., Wang, F.W., and Li, H.Y. (2019). Overexpression of GmCAMTA12 enhanced drought tolerance in Arabidopsis and soybean. Int. J. Mol. Sci. 20: 4849.
[51]
Norén, H., Svensson, P., and Andersson, B. (2004). A convenient and versatile hydroponic cultivation system for Arabidopsis thaliana. Physiol. Plant. 121: 343-348.
[52]
Park, Y.C., Lim, S.D., Moon, J.C., and Jang, C.S. (2019). A rice really interesting new gene H2-type E3 ligase, OsSIRH2-14, enhances salinity tolerance via ubiquitin/26S proteasome-mediated degradation of salt-related proteins. Plant Cell Environ. 42: 3061-3076.
[53]
Purushothaman, S., and Seifert, A.W. (2023). Whole-mount in situ hybridization (WISH) for salamander embryos and larvae. Methods Mol. Biol. 2562: 95-107.
[54]
Ranal, M.A., and Santana, D.G.D. (2006). How and why to measure the germination process. Braz. J. Bot. 29: 1-11.
[55]
Sami, F., Yusuf, M., Faizan, M., Faraz, A., and Hayat, S. (2016). Role of sugars under abiotic stress. Plant Physiol. Biochem. 109: 54-61.
[56]
Shrivastava, P., and Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22: 123-131.
[57]
Sofo, A., Scopa, A., Nuzzaci, M., and Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int. J. Mol. Sci. 16: 13561-13578.
[58]
Song, R.F., Li, T.T., and Liu, W.C. (2021a). Jasmonic acid impairs Arabidopsis seedling salt stress tolerance through MYC2-mediated repression of CAT2 expression. Front. Plant Sci. 12: 730228.
[59]
Song, X., Yang, Q., Liu, Y., Li, J., Chang, X., Xian, L., and Zhang, J. (2021b). Genome-wide identification of Pistacia R2R3-MYB gene family and function characterization of PcMYB113 during autumn leaf coloration in Pistacia chinensis. Int. J. Biol. Macromol. 192: 16-27.
[60]
Song, J., Lin, R., Tang, M., Wang, L., Fan, P., Xia, X., Yu, J., and Zhou, Y. (2023). SlMPK1- and SlMPK2-mediated SlBBX17 phosphorylation positively regulates CBF-dependent cold tolerance in tomato. New Phytol. 239: 1887-1902.
[61]
Stone, S.L., Hauksdóttir, H., Troy, A., Herschleb, J., Kraft, E., and Callis, J. (2005). Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 137: 13-30.
[62]
Taji, T., Seki, M., Satou, M., Sakurai, T., Kobayashi, M., Ishiyama, K., Narusaka, Y., Narusaka, M., Zhu, J.-K., and Shinozaki, K.J.P.P. (2004). Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 135: 1697-1709.
[63]
Tang, L., Cai, H., Ji, W., Luo, X., Wang, Z., Wu, J., Wang, X., Cui, L., Wang, Y., Zhu, Y., et al. (2013). Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiol. Biochem. 71: 22-30.
[64]
Tao, L., Zhu, H., Huang, Q., Xiao, X., Luo, Y., Wang, H., Li, Y., Li, X., Liu, J., Jásik, J., et al. (2023). PIN2/3/4 auxin carriers mediate root growth inhibition under conditions of boron deprivation in Arabidopsis. Plant J. 115: 1357-1376.
[65]
Tian, M., Lou, L., Liu, L., Yu, F., Zhao, Q., Zhang, H., Wu, Y., Tang, S., Xia, R., Zhu, B., et al. (2015). The RING finger E3 ligase STRF1 is involved in membrane trafficking and modulates salt-stress response in Arabidopsis thaliana. Plant J. 82: 81-92.
[66]
Trinh Le, A., Mccutchen, M.D., Bonner-Fraser, M., Fraser, S.E., Bumm, L.A., and Mccauley, D.W. (2007). Fluorescent in situ hybridization employing the conventional NBT/BCIP chromogenic stain. Biotechniques 42: 756-759.
[67]
Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 524: 13-30.
[68]
Tuteja, N (2007). Abscisic acid and abiotic stress signaling. Plant Signal. Behav. 2: 135-138.
[69]
Wang, C., Huang, L., Buchenauer, H., Han, Q., Zhang, H., and Kang, Z. (2007). Histochemical studies on the accumulation of reactive oxygen species (O2− and H2O2) in the incompatible and compatible interaction of wheat—Puccinia striiformis f. sp. tritici. Physiol. Mol. Plant Pathol. 71: 230-239.
[70]
Wang, F., Zhang, L., Chen, X., Wu, X., Xiang, X., Zhou, J., Xia, X., Shi, K., Yu, J., Foyer, C.H., et al. (2019). SlHY5 integrates temperature, light, and hormone signaling to balance plant growth and cold tolerance. Plant Physiol. 179: 749-760.
[71]
Wang, L., Yu, G., Macho, A.P., and Lozano-Durán, R. (2021). Split-luciferase complementation imaging assay to study protein-protein interactions in Nicotiana benthamiana. Bio. Protoc. 11: e4237.
[72]
Wang, W., Shi, B., Cong, R., Hao, M., Peng, Y., Yang, H., Song, J., Feng, D., Zhang, N., and Li, D. (2022a). RING-finger E3 ligases regulatory network in PI3K/AKT-mediated glucose metabolism. Cell Death Discov. 8: 372.
[73]
Wang, X., Chen, E., Ge, X., Gong, Q., Butt, H., Zhang, C., Yang, Z., Li, F., and Zhang, X. (2018). Overexpressed BRH1, a RING finger gene, alters rosette leaf shape in Arabidopsis thaliana. Sci. China Life Sci. 61: 79-87.
[74]
Wang, X., Wang, B., and Yuan, F. (2022b). Lb1G04202, an uncharacterized protein from recretohalophyte Limonium bicolor, is important in salt tolerance. Int. J. Mol. Sci. 23: 5401.
[75]
Wiehe, W., and Breckle, S.W. (1990). Die ontogenese der salzdrüsen von Limonium (Plumbaginaceae); the ontogenesis of the salt glands of Limonium (Plumbaginaceae). Bot. Acta 103: 107-110.
[76]
Wu, S., Zhang, H., Wang, R., Chang, G., Jing, Y., Li, Z., and Chen, L. (2022). GhWRKY33 interacts with GhTIFY10A to synergistically modulate both ageing and JA-mediated leaf senescence in Arabidopsis. Cells 11: 2328.
[77]
Wu, W., Cheng, Z., Liu, M., Yang, X., and Qiu, D. (2014). C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana. PLoS ONE 9: e99352.
[78]
Xiao, X., Ling, F., Chen, C.B., Liang, J., Cao, Y., Xu, Y., and Chen, H. (2022). PRPF31 interacts with PRPH2 confirmed by co-immunoprecipitation and co-localization. Biochem. Biophys. Res. Commun. 629: 12-16.
[79]
Xing, Y., Wang, K., Huang, C., Huang, J., Zhao, Y., Si, X., and Li, Y. (2022). Global transcriptome analysis revealed the molecular regulation mechanism of pigment and reactive oxygen species metabolism during the stigma development of Carya cathayensis. Front. Plant Sci. 13: 881394.
[80]
Xu, Y., Jiao, X., Wang, X., Zhang, H., Wang, B., and Yuan, F. (2020). Importin-β from the recretohalophyte Limonium bicolor enhances salt tolerance in Arabidopsis thaliana by reducing root hair development and abscisic acid sensitivity. Front. Plant Sci. 11: 582459.
[81]
Yasmin, F., and Samad, N. (2020). REPORT—Association between serum electrolytes and erythrocytes Na+, K+ in hypertensive and normotensive male compared to female. Pak. J. Pharm. Sci. 33: 207-214.
[82]
You, J., and Chan, Z. (2015). ROS regulation during abiotic stress responses in crop plants. Front. Plant Sci. 6: 1092.
[83]
Yu, S., Wu, J., Sun, Y., Zhu, H., Sun, Q., Zhao, P., Huang, R., and Guo, Z. (2022). A calmodulin-like protein (CML10) interacts with cytosolic enzymes GSTU8 and FBA6 to regulate cold tolerance. Plant Physiol. 190: 1321-1333.
[84]
Yu, Y., Guo, D.D., Min, D.H., Cao, T., Ning, L., Jiang, Q.Y., Sun, X.J., Zhang, H., Tang, W.S., Gao, S.Q., et al. (2023). Foxtail millet MYB-like transcription factor SiMYB16 confers salt tolerance in transgenic rice by regulating phenylpropane pathway. Plant Physiol. Biochem. 195: 310-321.
[85]
Yuan, F., Chen, M., Yang, J., Leng, B., and Wang, B. (2014). A system for the transformation and regeneration of the recretohalophyte Limonium bicolor. In Vitro Cell. Dev. Biol. Plant 50: 610-617.
[86]
Yuan, F., Lyu, M.J., Leng, B.Y., Zheng, G.Y., Feng, Z.T., Li, P.H., Zhu, X.G., and Wang, B.S. (2015). Comparative transcriptome analysis of developmental stages of the Limonium bicolor leaf generates insights into salt gland differentiation. Plant Cell Environ. 38: 1637-1657.
[87]
Yuan, F., Wang, X., Zhao, B., Xu, X., Shi, M., Leng, B., Dong, X., Lu, C., Feng, Z., Guo, J., et al. (2022). The genome of the recretohalophyte Limonium bicolor provides insights into salt gland development and salinity adaptation during terrestrial evolution. Mol. Plant 15: 1024-1044.
[88]
Yuan, N., Rai, K.M., Balasubramanian, V.K., Upadhyay, S.K., Luo, H., and Mendu, V. (2018). Genome-wide identification and characterization of LRR-RLKs reveal functional conservation of the SIF subfamily in cotton (Gossypium hirsutum). BMC Plant Biol. 18: 1-17.
[89]
Zhang, G., Yu, Z., Yao, B., Teixeira Da Silva, J.A., and Wen, D. (2022). SsMYB113, a Schima superba MYB transcription factor, regulates the accumulation of flavonoids and functions in drought stress tolerance by modulating ROS generation. Plant Soil 478: 427-444.
[90]
Zhang, H., Yu, F., Xie, P., Sun, S., Qiao, X., Tang, S., Chen, C., Yang, S., Mei, C., Yang, D., et al. (2023a). A Gγ protein regulates alkaline sensitivity in crops. Science 379: eade8416.
[91]
Zhang, L., Yu, Z., Xu, Y., Yu, M., Ren, Y., Zhang, S., Yang, G., Huang, J., Yan, K., Zheng, C., et al. (2021a). Regulation of the stability and ABA import activity of NRT1.2/NPF4.6 by CEPR2-mediated phosphorylation in Arabidopsis. Mol. Plant 14: 633-646.
[92]
Zhang, P., Liu, X., Yu, X., Wang, F., Long, J., Shen, W., Jiang, D., and Zhao, X. (2020). The MYB transcription factor CiMYB42 regulates limonoids biosynthesis in citrus. BMC Plant Biol. 20: 254.
[93]
Zhang, X., Henriques, R., Lin, S.-S., Niu, Q.-W., and Chua, N.-H.J.N.P. (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1: 641-646.
[94]
Zhang, X., Wang, H., Chen, Y., Huang, M., and Zhu, S. (2023b). The Over-expression of two R2R3-MYB genes, PdMYB2R089 and PdMYB2R151, increases the drought-resistant capacity of transgenic Arabidopsis. Int. J. Mol. Sci. 24: 13466.
[95]
Zhang, Y., Wang, L.F., Li, T.T., and Liu, W.C. (2021b). Mutual promotion of LAP2 and CAT2 synergistically regulates plant salt and osmotic stress tolerance. Front. Plant Sci. 12: 672672.
[96]
Zhang, Y., Ma, X., Xie, X., and Liu, Y.G. (2017). CRISPR/Cas9-based genome editing in plants. Prog. Mol. Biol. Transl. Sci. 149: 133-150.
[97]
Zhang, Y., Yang, C., Li, Y., Zheng, N., Chen, H., Zhao, Q., Gao, T., Guo, H., and Xie, Q. (2007). SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19: 1912-1929.
[98]
Zhao, B., Zhou, Y., Jiao, X., Wang, X., Wang, B., and Yuan, F. (2023a). Bracelet salt glands of the recretohalophyte Limonium bicolor: Distribution, morphology, and induction. J. Integr. Plant Biol. 65: 950-966.
[99]
Zhao, D., Gao, F., Guan, P., Gao, J., Guo, Z., Guo, J., Cui, H., Li, Y., Zhang, G., Li, Z., et al. (2023b). Identification and analysis of differentially expressed trihelix genes in maize (Zea mays) under abiotic stresses. PeerJ 11: e15312.
[100]
Zheng, X., Chen, B., Lu, G., and Han, B. (2009). Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem. Biophys. Res. Commun. 379: 985-989.
[101]
Zhong, S., Joung, J.-G., Zheng, Y., Chen, Y.-r, Liu, B., Shao, Y., Xiang, J.Z., Fei, Z., and Giovannoni, J.J. (2011). High-throughput illumina strand-specific RNA sequencing library preparation. Cold Spring Harb. Protoc. 2011: 940-949.
[102]
Zhou, L., He, Y., Li, J., Liu, Y., and Chen, H. (2020). CBFs function in anthocyanin biosynthesis by interacting with MYB113 in eggplant (Solanum melongena L.). Plant Cell Physiol. 61: 416-426.
[103]
Zhou, X., Li, J., Wang, Y., Liang, X., Zhang, M., Lu, M., Guo, Y., Qin, F., and Jiang, C. (2022). The classical SOS pathway confers natural variation of salt tolerance in maize. New Phytol. 236: 479-494.
[104]
Zhou, Y., Li, X.H., Guo, Q.H., Liu, P., Li, Y., Wu, C.A., Yang, G.D., Huang, J.G., Zhang, S.Z., Zheng, C.C., et al. (2021). Salt responsive alternative splicing of a RING finger E3 ligase modulates the salt stress tolerance by fine-tuning the balance of COP9 signalosome subunit 5A. PLoS Genet. 17: e1009898.
[105]
Zhou, Y., Zhang, H., Ren, Y., Wang, X., Wang, B., and Yuan, F. (2023). The transmembrane protein LbRSG from the recretohalophyte Limonium bicolor enhances salt gland development and salt tolerance. Plant J. 117: 498-515.
[106]
Zhu, X., Wang, P., Bai, Z., Herde, M., Ma, Y., Li, N., Liu, S., Huang, C.F., Cui, R., Ma, H., et al. (2022). Calmodulin-like protein CML24 interacts with CAMTA2 and WRKY46 to regulate ALMT1-dependent Al resistance in Arabidopsis thaliana. New Phytol. 233: 2471-2487.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/