Expansion and improvement of ChinaMu by MuT-seq and chromosome-level assembly of the Mu-starter genome

Lei Liang, Yuancong Wang, Yanbin Han, Yicong Chen, Mengfei Li, Yibo Wu, Zeyang Ma, Han Zhao, Rentao Song

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (4) : 645-659. DOI: 10.1111/jipb.13637
New Resources

Expansion and improvement of ChinaMu by MuT-seq and chromosome-level assembly of the Mu-starter genome

Author information +
History +

Abstract

ChinaMu is the largest sequence-indexed Mutator (Mu) transposon insertional library in maize (Zea mays). In this study, we made significant improvements to the size and quality of the ChinaMu library. We developed a new Mu-tag isolation method Mu-Tn5-seq (MuT-seq). Compared to the previous method used by ChinaMu, MuT-seq recovered 1/3 more germinal insertions, while requiring only about 1/14 of the sequencing volume and 1/5 of the experimental time. Using MuT-seq, we identified 113,879 germinal insertions from 3,168 Mu-active F1 families. We also assembled a high-quality genome for the Mu-active line Mu-starter, which harbors the initial active MuDR element and was used as the pollen donor for the mutation population. Using the Mu-starter genome, we recovered 33,662 (15.6%) additional germinal insertions in 3,244 (7.4%) genes in the Mu-starter line. The Mu-starter genome also improved the assignment of 117,689 (54.5%) germinal insertions. The newly upgraded ChinaMu dataset currently contains 215,889 high-quality germinal insertions. These insertions cover 32,224 pan-genes in the Mu-starter and B73Ref5 genomes, including 23,006 (80.4%) core genes shared by the two genomes. As a test model, we investigated Mu insertions in the pentatricopeptide repeat (PPR) superfamily, discovering insertions for 92% (449/487) of PPR genes in ChinaMu, demonstrating the usefulness of ChinaMu as a functional genomics resource for maize.

Keywords

ChinaMu / Mutator / MuT-seq / PPR gene / Zea mays

Cite this article

Download citation ▾
Lei Liang, Yuancong Wang, Yanbin Han, Yicong Chen, Mengfei Li, Yibo Wu, Zeyang Ma, Han Zhao, Rentao Song. Expansion and improvement of ChinaMu by MuT-seq and chromosome-level assembly of the Mu-starter genome. Journal of Integrative Plant Biology, 2024, 66(4): 645‒659 https://doi.org/10.1111/jipb.13637

References

[1]
Adey, A., Morrison, H.G., Asan , Xun, X., Kitzman, J.O., Turner, E.H., Stackhouse, B., Mackenzie, A.P., Caruccio, N.C., Zhang, X., et al. (2010). Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 11: R119.
[2]
Barkan, A., and Small, I. (2014). Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 65: 415-442.
[3]
Baubec, T., Pecinka, A., Rozhon, W., and Mittelsten Scheid, O. (2009). Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine. Plant J. 57: 542-554.
[4]
Belton, J.M., McCord, R.P., Gibcus, J.H., Naumova, N., Zhan, Y., and Dekker, J. (2012). Hi-C: A comprehensive technique to capture the conformation of genomes. Methods 58: 268-276.
[5]
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. (2009). BLAST+: Architecture and applications. BMC Bioinform. 10: 421.
[6]
Cardi, T., Murovec, J., Bakhsh, A., Boniecka, J., Bruegmann, T., Bull, S.E., Eeckhaut, T., Fladung, M., Galovic, V., Linkiewicz, A., et al. (2023). CRISPR/Cas-mediated plant genome editing: Outstanding challenges a decade after implementation. Trends Plant Sci. 28: 1144-1165.
[7]
Chen, J., Lu, L., Benjamin, J., Diaz, S., Hancock, C.N., Stajich, J.E., and Wessler, S.R. (2019). Tracking the origin of two genetic components associated with transposable element bursts in domesticated rice. Nat. Commun. 10: 641.
[8]
Chen, J., Wang, Z., Tan, K., Huang, W., Shi, J., Li, T., Hu, J., Wang, K., Wang, C., Xin, B., et al. (2023). A complete telomere-to-telomere assembly of the maize genome. Nat. Genet. 55: 1221-1231.
[9]
Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., and Li, H. (2021). Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18: 170-175.
[10]
Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M., et al. (2021). Twelve years of SAMtools and BCFtools. Gigascience 10: giab008.
[11]
Durand, N.C., Robinson, J.T., Shamim, M.S., Machol, I., Mesirov, J.P., Lander, E.S., and Aiden, E.L. (2016). Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3: 99-101.
[12]
Gao, X., Mo, W., Shi, J., Song, N., Liang, P., Chen, J., Shi, Y., Guo, W., Li, X., Yang, X., et al. (2021). HITAC-seq enables high-throughput cost-effective sequencing of plasmids and DNA fragments with identity-tracked. J. Genet. Genomics 48: 671.
[13]
Goel, M., Sun, H., Jiao, W.B., and Schneeberger, K. (2019). SyRI: Finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20: 277.
[14]
Gordon, S.P., Contreras-Moreira, B., Woods, D.P., Des Marais, D.L., Burgess, D., Shu, S., Stritt, C., Roulin, A.C., Schackwitz, W., Tyler, L., et al. (2017). Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun. 8: 2184.
[15]
Hirsch, C.N., Foerster, J.M., Johnson, J.M., Sekhon, R.S., Muttoni, G., Vaillancourt, B., Peñagaricano, F., Lindquist, E., Pedraza, M.A., Barry, K., et al. (2014). Insights into the Maize Pan-Genome and Pan-Transcriptome. Plant Cell 26: 121-135.
[16]
Hufford, M.B., Seetharam, A.S., Woodhouse, M.R., Chougule, K.M., Ou, S., Liu, J., Ricci, W.A., Guo, T., Olson, A., Qiu, Y., et al. (2021). De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373: 655-662.
[17]
Jiao, Y., Peluso, P., Shi, J., Liang, T., Stitzer, M.C., Wang, B., Campbell, M.S., Stein, J.C., Wei, X., Chin, C.S., et al. (2017). Improved maize reference genome with single-molecule technologies. Nature 546: 524-527.
[18]
Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359.
[19]
Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics.
CrossRef Google scholar
[20]
Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34: 3094-3100.
[21]
Liang, L., Zhou, L., Tang, Y., Li, N., Song, T., Shao, W., Zhang, Z., Cai, P., Feng, F., Ma, Y., et al. (2019). A sequence-indexed mutator insertional library for maize functional genomics study. Plant Physiol. 181: 1404-1414.
[22]
Lisch, D., Chomet, P., and Freeling, M. (1995). Genetic characterization of the Mutator system in maize: Behavior and regulation of Mu transposons in a minimal line. Genetics 139: 1777-1796.
[23]
Long, J.C., Xia, A.A., Liu, J.H., Jing, J.L., Wang, Y.Z., Qi, C.Y., and He, Y. (2019). Decrease in DNA methylation 1 (DDM1) is required for the formation of (m) CHH islands in maize. J. Integr. Plant Biol. 61: 749-764.
[24]
Lu, L., Chen, J., Robb, S.M.C., Okumoto, Y., Stajich, J.E., and Wessler, S.R. (2017). Tracking the genome-wide outcomes of a transposable element burst over decades of amplification. Proc. Natl. Acad. Sci. U.S.A. 114: E10550-E10559.
[25]
Lyu, M., Liu, H., Waititu, J.K., Sun, Y., Wang, H., Fu, J., Chen, Y., Liu, J., Ku, L., and Cheng, X. (2021). TEAseq-based identification of 35,696 Dissociation insertional mutations facilitates functional genomic studies in maize. J. Genet. Genomics 48: 961-971.
[26]
Manni, M., Berkeley, M.R., Seppey, M., Simão, F.A., and Zdobnov, E.M. (2021). BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38: 4647-4654.
[27]
Marcon, C., Altrogge, L., Win, Y.N., Stocker, T., Gardiner, J.M., Portwood, J.L., Opitz, N., Kortz, A., Baldauf, J.A., Hunter, C.T., et al. (2020). BonnMu: A sequence-indexed resource of transposon-induced maize mutations for functional genomics studies. Plant Physiol. 184: 620-631.
[28]
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J. 17: 10.
[29]
May, B.P., Liu, H., Vollbrecht, E., Senior, L., Rabinowicz, P.D., Roh, D., Pan, X., Stein, L., Freeling, M., Alexander, D., et al. (2003). Maize-targeted mutagenesis: A knockout resource for maize. Proc. Natl. Acad. Sci. U.S.A. 100: 11541-11546.
[30]
Mccarty, D.R., Latshaw, S., Wu, S., Suzuki, M., Hunter, C.T., Avigne, W.T., and Koch, K.E. (2013). Mu-seq: Sequence-based mapping and identification of transposon induced mutations. PLoS ONE 8: e77172.
[31]
McCarty, D.R., Settles, A.M., Suzuki, M., Tan, B.C., Latshaw, S., Porch, T., Robin, K., Baier, J., Avigne, W., Lai, J., et al. (2005). Steady-state transposon mutagenesis in inbred maize. Plant J. 44: 52-61.
[32]
O'Malley, R.C., and Ecker, J.R. (2010). Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J. 61: 928-940.
[33]
Ou, S., Chen, J., and Jiang, N. (2018). Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res. 46: e126.
[34]
Pendleton, M., Sebra, R., Pang, A.W., Ummat, A., Franzen, O., Rausch, T., Stutz, A.M., Stedman, W., Anantharaman, T., Hastie, A., et al. (2015). Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods 12: 780-786.
[35]
Picelli, S., Björklund, Å.K., Reinius, B., Sagasser, S., Winberg, G., and Sandberg, R. (2014). Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 24: 2033-2040.
[36]
Settles, A.M., Latshaw, S., and McCarty, D.R. (2004). Molecular analysis of high-copy insertion sites in maize. Nucleic Acids Res. 32: e54.
[37]
Shen, W., Le, S., Li, Y., and Hu, F. (2016). SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11: e0163962.
[38]
Silong, S., Yingsi, Z., Jian, C., Junpeng, S., Haiming, Z., Hainan, Z., Weibin, S., Mei, Z., Yang, C., Xiaomei, D., et al. (2018). Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat. Genet. 50: 1289-1295.
[39]
Springer, N.M., Anderson, S.N., Andorf, C.M., Ahern, K.R., Bai, F., Barad, O., Barbazuk, W.B., Bass, H.W., Baruch, K., Ben-Zvi, G., et al. (2018). The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat. Genet. 50: 1282-1288.
[40]
Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38: e164.
[41]
Wang, N., Long, T., Yao, W., Xiong, L., Zhang, Q., and Wu, C. (2013). Mutant resources for the functional analysis of the rice genome. Mol. Plant 6: 596-604.
[42]
Williams-Carrier, R., Stiffler, N., Belcher, S., Kroeger, T., Stern, D.B., Monde, R.-A., Coalter, R., and Barkan, A. (2010). Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J. 63: 167-177.
[43]
Woodhouse, M.R., Cannon, E.K., Portwood, J.L., Harper, L.C., Gardiner, J.M., Schaeffer, M.L., and Andorf, C.M. (2021). A pan-genomic approach to genome databases using maize as a model system. BMC Plant Biol. 21: 385.
[44]
Xiao, C.L., Chen, Y., Xie, S.Q., Chen, K.N., Wang, Y., Han, Y., Luo, F., and Xie, Z. (2017). MECAT: Fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14: 1072-1074.
[45]
Xu, M., Guo, L., Gu, S., Wang, O., Zhang, R., Peters, B.A., Fan, G., Liu, X., Xu, X., Deng, L., et al. (2020). TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience 9: giaa094.
[46]
Zhang, X., Zhang, S., Zhao, Q., Ming, R., and Tang, H. (2019). Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat. Plants 5: 833-845.
[47]
Zhang, X., Zhao, M., McCarty, D.R., and Lisch, D. (2020). Transposable elements employ distinct integration strategies with respect to transcriptional landscapes in eukaryotic genomes. Nucleic Acids Res. 48: 6685-6698.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/