Functional genomics of Brassica napus: Progress, challenges, and perspectives
Zengdong Tan, Xu Han, Cheng Dai, Shaoping Lu, Hanzi He, Xuan Yao, Peng Chen, Chao Yang, Lun Zhao, Qing-Yong Yang, Jun Zou, Jing Wen, Dengfeng Hong, Chao Liu, Xianhong Ge, Chuchuan Fan, Bing Yi, Chunyu Zhang, Chaozhi Ma, Kede Liu, Jinxiong Shen, Jinxing Tu, Guangsheng Yang, Tingdong Fu, Liang Guo, Hu Zhao
Functional genomics of Brassica napus: Progress, challenges, and perspectives
Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.
accelerate breeding / Brassica napus / functional genomics / high resistance / high yield
[1] |
Abhinandan,K., Hickerson, N.M., Lan,X., and Samuel,M.A. (2023). Disabling of ARC1 through CRISPR-Cas9 leads to a complete breakdown of self-incompatibility responses in Brassica napus. Plant Commun. 4: 100504.
|
[2] |
Acosta-Motos,J.R., Ortuño, M.F., Bernal-Vicente,A., Diaz-Vivancos,P., Sanchez-Blanco, M.J., and Hernandez,J.A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy 7: 18.
|
[3] |
Ahmar,S., Zhai,Y., Huang,H., Yu, K., Khan,M.H.U., Shahid,M., Samad,R.A., Khan,S.U., Amoo, O., and Fan,C. (2022). Development of mutants with varying flowering times by targeted editing of multiple SVP gene copies in Brassica napus L. Crop J. 10: 67-74.
|
[4] |
Akagi,T., Masuda, K., Kuwada,E., Takeshita,K., Kawakatsu, T., Ariizumi,T., Kubo,Y., Ushijima, K., and Uchida,S. (2022). Genome-wide cis-decoding for expression design in tomato using cistrome data and explainable deep learning. Plant Cell 34: 2174-2187.
|
[5] |
Al-Tamimi,N., Brien,C., Oakey,H., Berger, B., Saade,S., Ho,Y.S., Schmöckel, S.M., Tester,M., and Negrão,S. (2016). Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Commun. 7: 13342.
|
[6] |
Amosova,A.V., Zoshchuk, S.A., Volovik,V.T., Shirokova,A.V., Horuzhiy, N.E., Mozgova,G.V., Yurkevich,O.Y., Artyukhova, M.A., Lemesh,V.A., and Samatadze,T.E. (2019). Phenotypic, biochemical and genomic variability in generations of the rapeseed (Brassica napus L.) mutant lines obtained via chemical mutagenesis. PLoS ONE 14: e0221699.
|
[7] |
Batool,M., El-Badri, A.M., Hassan,M.U., Haiyun,Y., Chunyun, W., Zhenkun,Y., Jie,K., Wang,B., and Zhou,G. (2022). Drought stress in Brassica napus: Effects, tolerance mechanisms, and management strategies. J. Plant Growth Regul. 42: 1-25.
|
[8] |
Baudry,A., Heim,M.A., Dubreucq,B., Caboche, M., Weisshaar,B., and Lepiniec,L. (2004). TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 39: 366-380.
|
[9] |
Bellaoui,M., Grelon, M., Pelletier,G., and Budar,F. (1999). The restorer Rfo gene acts post-translationally on the stability of the ORF138 Ogura CMS-associated protein in reproductive tissues of rapeseed cybrids. Plant Mol. Biol. 40: 893-902.
|
[10] |
Bennett,E.J., Roberts, J.A., and Wagstaff,C. (2011). The role of the pod in seed development: Strategies for manipulating yield. New Phytol. 190: 838-853.
|
[11] |
Bolser,D.M., Staines, D.M., Perry,E., and Kersey,P.J. (2017). Ensembl plants: Integrating tools for visualizing, mining, and analyzing plant genomic data. Methods Mol. Biol. 1533: 1-31.
|
[12] |
Braatz,J., Harloff, H.-J., Mascher,M., Stein,N., Himmelbach, A., and Jung,C. (2017). CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol. 174: 935-942.
|
[13] |
Bradshaw,A.D. (1965). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13: 115-155.
|
[14] |
Brown,G.G. (1999). Unique aspects of cytoplasmic male sterility and fertility restoration in Brassica napus. J. Hered. 90: 351-356.
|
[15] |
Cai,C., Tu,J., Fu,T., and Chen, B. (2008). The genetic basis of flowering time and photoperiod sensitivity in rapeseed Brassica napus L. Russ. J. Genet. 44: 326-333.
|
[16] |
Calderwood,A., Lloyd,A., Hepworth,J., Tudor, E.H., Jones,D.M., Woodhouse,S., Bilham, L., Chinoy,C., Williams,K., and Corke, F. (2021). Total FLC transcript dynamics from divergent paralogue expression explains flowering diversity in Brassica napus. New Phytol. 229: 3534-3548.
|
[17] |
Carré,P., and Pouzet, A. (2014). Rapeseed market, worldwide and in Europe. Ocl 21: D102.
|
[18] |
Chalhoub,B., Denoeud, F., Liu,S., Parkin,I.A., Tang,H., Wang,X., Chiquet, J., Belcram,H., Tong,C., and Samans, B. (2014). Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345: 950-953.
|
[19] |
Chao,H., Li,T., Luo,C., Huang, H., Ruan,Y., Li,X., Niu,Y., Fan,Y., Sun, W., and Zhang,K. (2020). BrassicaEDB: A gene expression database for Brassica crops. Int. J. Mol. Sci 21: 5831.
|
[20] |
Chen,B., and Heneen, W. (1992). Inheritance of seed colour in Brassica campestris L. and breeding for yellow-seeded B. napus L. Euphytica 59: 157-163.
|
[21] |
Chen,G., Geng,J., Rahman,M., Liu, X., Tu,J., Fu,T., Li,G., McVetty,P.B., and Tahir,M. (2010). Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175: 161-174.
|
[22] |
Chen,L., Dong,F., Cai,J., Xin, Q., Fang,C., Liu,L., Wan,L., Yang,G., and Hong, D. (2018). A 2.833-kb insertion in BnFLC.A2 and its homeologous exchange with BnFLC.C2 during breeding selection generated early-flowering rapeseed. Mol. Plant 11: 222-225.
|
[23] |
Chen,X., Chen,G., Truksa,M., Snyder, C.L., Shah,S., and Weselake,R.J. (2014). Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus. J. Exp. Bot. 65: 4201-4215.
|
[24] |
Chen,X., Tong,C., Zhang,X., Song, A., Hu,M., Dong,W., Chen,F., Wang,Y., Tu, J., and Liu,S. (2021). A high-quality Brassica napus genome reveals expansion of transposable elements, subgenome evolution and disease resistance. Plant Biotechnol. J. 19: 615-630.
|
[25] |
Cheng,F., Liu,S., Wu,J., Fang, L., Sun,S., Liu,B., Li,P., Hua,W., and Wang, X. (2011). BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol. 11: 1-6.
|
[26] |
Cheng,H., Hao,M., Ding,B., Mei, D., Wang,W., Wang,H., Zhou,R., Liu,J., Li, C., and Hu,Q. (2021). Base editing with high efficiency in allotetraploid oilseed rape by A3A-PBE system. Plant Biotechnol. J. 19: 87-97.
|
[27] |
Cyprys,P., Lindemeier, M., and Sprunck,S. (2019). Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. Nat. Plants 5: 253-257.
|
[28] |
Dalal,M., Tayal,D., Chinnusamy,V., and Bansal,K.C. (2009). Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J. Biotechnol. 139: 137-145.
|
[29] |
Del Río,L., Bradley, C., Henson,R., Endres,G., Hanson, B., McKay,K., Halvorson,M., Porter, P., Le Gare,D., and Lamey,H. (2007). Impact of Sclerotinia stem rot on yield of canola. Plant Dis. 91: 191-194.
|
[30] |
Derbyshire,M., and Denton-Giles, M. (2016). The control of sclerotinia stem rot on oilseed rape (Brassica napus): Current practices and future opportunities. Plant Pathol. 65: 859-877.
|
[31] |
Diepenbrock,W. (2000). Yield analysis of winter oilseed rape (Brassica napus L.): A review. Field Crops Res. 67: 35-49.
|
[32] |
Ding,Y., Mei,J., Li,Q., Liu, Y., Wan,H., Wang,L., Becker, H.C., and Qian,W. (2013). Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea. Genet. Resour. Crop. Ev. 60: 1615-1619.
|
[33] |
Dou,S., Zhang,T., Tu,J., Shen, J., Yi,B., Wen,J., Fu,T., Dai,C., and Ma, C. (2021). Generation of novel self-incompatible Brassica napus by CRISPR/Cas9. Plant Biotechnol. J. 19: 875.
|
[34] |
Downey,R., and Harvey, B. (1963). Methods of breeding for oil quality in rape. Can. J. Plant Sci. 43: 271-275.
|
[35] |
Du,K., Yang,Y., Li,J., Wang, M., Jiang,J., Wu,J., Fang,Y., Xiang,Y., and Wang, Y. (2023). Functional analysis of Bna-miR399c-PHO2 regulatory module involved in phosphorus stress in Brassica napus. Life 13: 310.
|
[36] |
Duan,Z., Zhang,Y., Tu,J., Shen, J., Yi,B., Fu,T., Dai,C., and Ma,C. (2020). The Brassica napus GATA transcription factor BnA5.ZML1 is a stigma compatibility factor. J. Integr. Plant Biol. 62: 1112-1131.
|
[37] |
Dun,X., Zhou,Z., Xia,S., Wen, J., Yi,B., Shen,J., Ma,C., Tu,J., and Fu, T. (2011). BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J. 68: 532-545.
|
[38] |
Ecke,W., Uzunova, M., and Weissleder,K. (1995). Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor. Appl. Genet. 91: 972-977.
|
[39] |
EFSA Panel on Contaminants in the Food Chain (CONTAM). Knutsen,H.K., Alexander,J., Barregård, L., Bignami,M., Brüschweiler,B., Ceccatelli, S., Dinovi,M., Edler,L., and Grasl-Kraupp, B. (2016). Erucic acid in feed and food. EFSA J. 14: e04593.
|
[40] |
Fan,C., Cai,G., Qin,J., Li, Q., Yang,M., Wu,J., Fu,T., Liu,K., and Zhou, Y. (2010). Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor. Appl. Genet. 121: 1289-1301.
|
[41] |
Fan,S., Zhang,L., Tang,M., Cai, Y., Liu,J., Liu,H., Liu,J., Terzaghi,W., Wang, H., and Hua,W. (2021). CRISPR/Cas9-targeted mutagenesis of the BnaA03.BP gene confers semi-dwarf and compact architecture to rapeseed (Brassica napus L.). Plant Biotechnol. J. 19: 2383.
|
[42] |
Fan,S., Liu,H., Liu,J., Hua, W., and Li,J. (2022). BnGF14-2c positively regulates flowering via the vernalization pathway in semi-winter rapeseed. Plants 11: 2312.
|
[43] |
Fang,S., Zhao,P., Tan,Z., Peng, Y., Xu,L., Jin,Y., Wei,F., Guo,L., and Yao, X. (2022). Combining physio-biochemical characterization and transcriptome analysis reveal the responses to varying degrees of drought stress in Brassica napus L. Int. J. Mol. Sci. 23: 8555.
|
[44] |
Fang,W., Wang,Z., Cui,R., Li, J., and Li,Y. (2012). Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. Plant J. 70: 929-939.
|
[45] |
Farhoudi,R. (2011). Effect of salt stress on physiological and morphological parameters of rapeseed cultivars. Adv. Environ. Biol. 5: 2501-2509.
|
[46] |
Feng,L., Dong,T., Jiang,P., Yang, Z., Dong,A., Xie,S.-Q., Griffin, C.H., and Wu,R. (2022). An eco-evo-devo genetic network model of stress response. Hort. Res. 9: uhac135.
|
[47] |
Feng,Y., Cui,R., Wang,S., He, M., Hua,Y., Shi,L., Ye,X., and Xu,F. (2020). Transcription factor BnaA9.WRKY47 contributes to the adaptation of Brassica napus to low boron stress by up-regulating the boric acid channel gene BnaA3.NIP5;1. Plant Biotechnol. J. 18: 1241-1254.
|
[48] |
Fu,W., Chen,D., Pan,Q., Li, F., Zhao,Z., Ge,X., and Li, Z. (2018). Production of red-flowered oilseed rape via the ectopic expression of O rychophragmus violaceus O v PAP 2. Plant Biotechnol. J. 16: 367-380.
|
[49] |
Garg,H., Sivasithamparam, K., Banga,S., and Barbetti,M. (2008). Cotyledon assay as a rapid and reliable method of screening for resistance against Sclerotinia sclerotiorum in Brassica napus genotypes. Australas. Plant Pathol. 37: 106-111.
|
[50] |
Geng,R., Shan,Y., Li,L., Shi, C.-L., Zhang,W., Wang,J., Sarwar, R., Xue,Y.-X., Li,Y.-L., Zhu,K.-M., et al. (2022). CRISPR-mediated BnaIDA editing prevents silique shattering, floral organ abscission, and spreading of Sclerotinia sclerotiorum in Brassica napus. Plant Commun. 3: 100452.
|
[51] |
Gilchrist,E.J., Sidebottom, C.H., Koh,C.S., MacInnes,T., Sharpe, A.G., and Haughn,G.W. (2013). A mutant Brassica napus (Canola) population for the identification of new genetic diversity via TILLING and next generation sequencing. PLoS ONE 8: e84303.
|
[52] |
Gómez-Campo,C., and Prakash, S. (1999). Origin and domestication. In Developments in Plant Genetics and Breeding, C.Gómez-Campo, ed. Amsterdam: Elsevier, pp. 33-58.
|
[53] |
Goyens,P., and Mensink, R. (2006). Effects of alpha-linolenic acid versus those of EPA/DHA on cardiovascular risk markers in healthy elderly subjects. Eur. J. Clin. Nutr. 60: 978-984.
|
[54] |
Gu,J., Chen,J., Xia,J., and Hong, D. (2023). BnaUBP15s positively regulates seed size and seed weight in Brassica napus. Oil Crop Sci. 8: 149-155.
|
[55] |
Gui,S., Wei,W., Jiang,C., Luo, J., Chen,L., Wu,S., Li,W., Wang,Y., Li, S., and Yang,N. (2022). A pan-Zea genome map for enhancing maize improvement. Genome Biol. 23: 1-22.
|
[56] |
Guo,N., Zuo,K., Zhang,M., Zhang, B., Qin,M., and Ma,N. (2020). Comprehensive analysis of major plant-type and yield triats in Brassica napus L. Acta Agriculturae Boreali-occidentalis Sinica 29: 898-906.
|
[57] |
Guo,Y., Kuang,L., Xu,Y., Yan, T., Jiang,L., Dong,J., and Wu, D. (2022). Construction of a worldwide core collection of rapeseed and association analysis for waterlogging tolerance. Plant Growth Regul. 98: 321-328.
|
[58] |
Haddadi,P., Larkan, N.J., Van deWouw,A., Zhang,Y., Neik,T.X., Beynon,E., Bayer, P., Edwards,D., Batley,J., and Borhan, M.H. (2022). Brassica napus genes Rlm4 and Rlm7, conferring resistance to Leptosphaeria maculans, are alleles of the Rlm9 wall-associated kinase-like resistance locus. Plant Biotechnol. J. 20: 1229.
|
[59] |
Haffani,Y., Gaude,T., Cock,J., and Goring, D. (2004). Antisense suppression of thioredoxin h mRNA in Brassica napus cv. Plant Mol. Biol. 55: 619-630.
|
[60] |
Han,B., Wang,C., Wu,T., Yan, J., Jiang,A., Liu,Y., Luo,Y., Cai,H., Ding, G., and Dong,X. (2022a). Identification of vacuolar phosphate influx transporters in Brassica napus. Plant Cell Environ. 45: 3338-3353.
|
[61] |
Han,X., Tang,Q., Xu,L., Guan, Z., Tu,J., Yi,B., Liu,K., Yao,X., Lu, S., and Guo,L. (2022b). Genome-wide detection of genotype environment interactions for flowering time in Brassica napus. Front. Plant Sci. 13: 1065766.
|
[62] |
Harloff,H.-J., Lemcke, S., Mittasch,J., Frolov,A., Wu,J.G., Dreyer,F., Leckband, G., and Jung,C. (2012). A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. Theor. Appl. Genet. 124: 957-969.
|
[63] |
Harvey,B., and Downey, R. (1964). The inheritance of erucic acid content in rapeseed (Brassica napus). Can. J. Plant Sci. 44: 104-111.
|
[64] |
Hatakeyama,K., Suwabe, K., Tomita,R.N., Kato,T., Nunome, T., Fukuoka,H., and Matsumoto,S. (2013). Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS ONE 8: e54745.
|
[65] |
He,M., Wang,S., Zhang,C., Liu, L., Zhang,J., Qiu,S., Wang,H., Yang,G., Xue, S., and Shi,L. (2021). Genetic variation of BnaA3.NIP5;1 expressing in the lateral root cap contributes to boron deficiency tolerance in Brassica napus. PLoS Genet. 17: e1009661.
|
[66] |
He,Y., Yang,Z., Tang,M., Yang, Q.-Y., Zhang,Y., and Liu,S. (2022). Enhancing canola breeding by editing a glucosinolate transporter gene lacking natural variation. Plant Physiol. 188: 1848-1851.
|
[67] |
Hu,L., Zhang,H., Yang,Q., Meng, Q., Han,S., Nwafor,C.C., Khan,M.H.U., Fan,C., and Zhou, Y. (2018). Promoter variations in a homeobox gene, BnA10.LMI1, determine lobed leaves in rapeseed (Brassica napus L.). Theor. Appl. Genet. 131: 2699-2708.
|
[68] |
Hou,J., Long,Y., Raman,H., Zou, X., Wang,J., Dai,S., Xiao,Q., Li,C., Fan, L., and Liu,B. (2012). A tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biol. 12: 1-13.
|
[69] |
Houle,D., Govindaraju, D.R., and Omholt,S. (2010). Phenomics: The next challenge. Nat. Rev. Genet. 11: 855-866.
|
[70] |
Hu,D., Jing,J., Snowdon,R.J., Mason,A.S., Shen,J., Meng,J., and Zou, J. (2021). Exploring the gene pool of Brassica napus by genomics-based approaches. Plant Biotechnol. J. 19: 1693-1712.
|
[71] |
Hu,J., Chen,B., Zhao,J., Zhang, F., Xie,T., Xu,K., Gao,G., Yan,G., Li, H., and Li,L. (2022). Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nat. Genet. 54: 694-704.
|
[72] |
Hua,Y., Zhang,D., Zhou,T., He, M., Ding,G., Shi,L., and Xu, F. (2016). Transcriptomics-assisted quantitative trait locus fine mapping for the rapid identification of a nodulin 26-like intrinsic protein gene regulating boron efficiency in allotetraploid rapeseed. Plant Cell Environ. 39: 1601-1618.
|
[73] |
Huang,K.-L., Tian,J., Wang,H., Fu, Y.-F., Li,Y., Zheng,Y., and Li, X.-B. (2021). Fatty acid export protein BnFAX6 functions in lipid synthesis and axillary bud growth in Brassica napus. Plant Physiol. 186: 2064-2077.
|
[74] |
Huang,Z., Chen,Y., Yi,B., Xiao, L., Ma,C., Tu,J., and Fu, T. (2007). Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor. Appl. Genet. 115: 113-118.
|
[75] |
Ichimura,K., Shinozaki, K., Tena,G., Sheen,J., Henry,Y., Champion,A., Kreis, M., Zhang,S., Hirt,H., and Wilson, C. (2002). Mitogen-activated protein kinase cascades in plants: A new nomenclature. Trends Plant Sci. 7: 301-308.
|
[76] |
Jacquier,N.M., Gilles, L.M., Pyott,D.E., Martinant,J.-P., Rogowsky, P.M., and Widiez,T. (2020). Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat. Plants 6: 610-619.
|
[77] |
Jahreis,G., and Schäfer, U. (2011). Rapeseed (Brassica napus) oil and its benefits for human health. In Nuts and Seeds in Health and Disease Prevention, R.P.Victor, R.W.Ronald, B.P.Vinood, eds. Academic Press, pp. 967-974.
|
[78] |
Jean,M., Brown,G., and Landry,B. (1997). Genetic mapping of nuclear fertility restorer genes for the ‘Polima’ cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers. Theor. Appl. Genet. 95: 321-328.
|
[79] |
Jiang,L., Li,D., Jin,L., Ruan, Y., Shen,W.H., and Liu,C. (2018). Histone lysine methyltransferases BnaSDG8.A and BnaSDG8.C are involved in the floral transition in Brassica napus. Plant J. 95: 672-685.
|
[80] |
Karthika,K., Philip, P.S., and Neenu,S. (2020). Brassicaceae plants response and tolerance to nutrient deficiencies. In The Plant Family Brassicaceae, H.Mirza, ed. (Singapore: Springer), pp. 337-362.
|
[81] |
Katche,E., Quezada-Martinez, D., Katche,E.I., Vasquez-Teuber,P., and Mason, A.S. (2019). Interspecific hybridization for Brassica crop improvement. Crop Breed. Genet. Genom. 1: e190007.
|
[82] |
Kelly,A.A., Shaw,E., Powers,S.J., Kurup, S., and Eastmond,P.J. (2013). Suppression of the SUGAR-DEPENDENT 1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.). Plant Biotechnol. J. 11: 355-361.
|
[83] |
Khan,M.H., Hu,L., Zhu,M., Zhai, Y., Khan,S.U., Ahmar,S., Amoo,O., Zhang,K., Fan, C., and Zhou,Y. (2021). Targeted mutagenesis of EOD3 gene in Brassica napus L. regulates seed production. J. Cell. Physiol. 236: 1996-2007.
|
[84] |
King,G.J., and Baten, A. (2018). Brassica napus genomic resources. In The Brassica napus Genome, S.Liu, R.Snowdon, B.Chalhoub, eds. (Cham: Springer), pp. 233-244.
|
[85] |
Knee,E.M., Rivero, L., Crist,D., Grotewold,E., and Scholl, R. (2011). Germplasm and molecular resources. In Genetics and Genomics of the Brassicaceae, S.Renate, B.Ian, eds. (New York: Springer), pp. 437-467.
|
[86] |
Kumar,H., Akhatar, J., and Wani,S.H. (2020). Recent advances in cytoplasmic male sterility (CMS) in crop Brassicas. In Brassica Improvement, S.H.Wani, A.K.Thakur, Y.J.Khan, eds. (Switzerland: Springer), pp. 31-48.
|
[87] |
Landry,B.S., Hubert, N., Etoh,T., Harada,J.J., and Lincoln, S.E. (1991). A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 34: 543-552.
|
[88] |
Langridge,P., and Waugh, R. (2019). Harnessing the potential of germplasm collections. Nat. Genet. 51: 200-201.
|
[89] |
Lee,H., Chawla, H.S., Obermeier,C., Dreyer,F., Abbadi, A., and Snowdon,R. (2020). Chromosome-scale assembly of winter oilseed rape Brassica napus. Front. Plant Sci. 11: 496.
|
[90] |
Lee,K.-R., Kim,E.-H., Roh,K.H., Kim, J.-B., Kang,H.-C., Go,Y.S., Suh,M.C., and Kim,H.U. (2016). High-oleic oilseed rapes developed with seed-specific suppression of FAD2 gene expression. Appl. Biol. Chem. 59: 669-676.
|
[91] |
Lee,Y.-H., Park,W., Kim,K.-S., Jang, Y.-S., Lee,J.-E., Cha,Y.-L., Moon,Y.-H., Song,Y.-S., and Lee, K. (2018). EMS-induced mutation of an endoplasmic reticulum oleate desaturase gene (FAD2-2) results in elevated oleic acid content in rapeseed (Brassica napus L.). Euphytica 214: 1-12.
|
[92] |
Li,B., Yang,Q., Yang,L., Zhou, X., Deng,L., Qu,L., Guo,D., Hui,R., Guo, Y., and Liu,X. (2023a). A gap-free reference genome reveals structural variations associated with flowering time in rapeseed (Brassica napus). Hortic. Res. 10: uhad171.
|
[93] |
Li,F., Guo,K., and Liao,X. (2022). Risk assessment of China rapeseed supply chain and policy suggestions. Int. J. Environ. Res. 20: 465.
|
[94] |
Li,H., Fan,Y., Yu,J., Chai, L., Zhang,J., Jiang,J., Cui,C., Zheng,B., Jiang, L., and Lu,K. (2018a). Genome-wide identification of flowering-time genes in Brassica species and reveals a correlation between selective pressure and expression patterns of vernalization-pathway genes in Brassica napus. Int. J. Mol. Sci. 19: 3632.
|
[95] |
Li,H., Wang,Y., Li,X., Gao, Y., Wang,Z., Zhao,Y., and Wang, M. (2011). A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1. Mol. Biol. Rep. 38: 191-197.
|
[96] |
Li,H., Yu,K., Amoo,O., Yu, Y., Guo,M., Deng,S., Li,M., Hu,L., Wang, J., and Fan,C. (2022a). Site-directed mutagenesis of the carotenoid isomerase gene BnaCRTISO alters the color of petals and leaves in Brassica napus L. Front. Plant Sci. 13: 801456.
|
[97] |
Li,J., Xie,T., Chen,Y., Zhang, Y., Wang,C., Jiang,Z., Yang,W., Zhou,G., Guo, L., and Zhang,J. (2022b). High-throughput unmanned aerial vehicle-based phenotyping provides insights into the dynamic process and genetic basis of rapeseed waterlogging response in the field. J. Exp. Bot. 73: 5264-5278.
|
[98] |
Li,L., Chen,B., Yan,G., Gao, G., Xu,K., Xie,T., Zhang,F., and Wu,X. (2020). Proposed strategies and current progress of research and utilization of oilseed rape germplasm in China. J. Plant Genet. Resour. 21: 1-19.
|
[99] |
Li,L., Tian,Z., Chen,J., Tan, Z., Zhang,Y., Zhao,H., Wu,X., Yao,X., Wen, W., and Chen,W. (2023b). Characterization of novel loci controlling seed oil content in Brassica napus by marker metabolite-based multi-omics analysis. Genome Biol. 24: 141.
|
[100] |
Li,M., Chen,X., and Meng,J. (2006). Intersubgenomic heterosis in rapeseed production with a partial new-typed Brassica napus containing subgenome Ar from B. rapa and Cc from Brassica carinata. Crop Sci. 46: 234-242.
|
[101] |
Li,M., Zhang,Y.-W., Zhang,Z.-C., Xiang, Y., Liu,M.-H., Zhou,Y.-H., Zuo,J.-F., Zhang,H.-Q., Chen, Y., and Zhang,Y.-M. (2022c). A compressed variance component mixed model for detecting QTNs and QTN-by-environment and QTN-by-QTN interactions in genome-wide association studies. Mol. Plant 15: 630-650.
|
[102] |
Li,N., Song,D., Peng,W., Zhan, J., Shi,J., Wang,X., Liu,G., and Wang,H. (2019). Maternal control of seed weight in rapeseed (Brassica napus L.): The causal link between the size of pod (mother, source) and seed (offspring, sink). Plant Biotechnol. J. 17: 736-749.
|
[103] |
Li,Q., Luo,T., Cheng,T., Yang, S., She,H., Li,J., Wang,B., Kuai,J., Wang, J., and Xu,Z. (2023c). Evaluation and screening of rapeseed varieties (Brassica napus L.) suitable for mechanized harvesting with high yield and quality. Agronomy 13: 795.
|
[104] |
Li,S., Chen,L., Zhang,L., Li, X., Liu,Y., Wu,Z., Dong,F., Wan,L., Liu, K., and Hong,D. (2015). BnaC9.SMG7b functions as a positive regulator of the number of seeds per silique in Brassica napus by regulating the formation of functional female gametophytes. Plant Physiol. 169: 2744-2760.
|
[105] |
Li,S., Qian,Y., and Wu,Z. (1985). Inheritance and utilization of genetic male sterility in rapeseed (Brassica napus L.). Acta Agriculturae Shanghai 1: 1-12.
|
[106] |
Li,X., Guo,T., Mu,Q., Li, X., and Yu,J. (2018b). Genomic and environmental determinants and their interplay underlying phenotypic plasticity. Proc. Natl. Acad. Sci. U.S.A. 115: 6679-6684.
|
[107] |
Li,X.-Q., Jean,M., Landry,B.S., and Brown, G.G. (1998). Restorer genes for different forms of Brassica cytoplasmic male sterility map to a single nuclear locus that modifies transcripts of several mitochondrial genes. Proc. Natl. Acad. Sci. U.S.A. 95: 10032-10037.
|
[108] |
Li,Y., Guo,Y., Cao,Y., Xia, P., Xu,D., Sun,N., Jiang,L., and Dong,J. (2023d). Temporal control of the Aux/IAA genes BnIAA32 and BnIAA34 mediates Brassica napus dual shade responses. J. Integr. Plant Biol.
CrossRef
Google scholar
|
[109] |
Li,Y., Li,D., Xiao,Q., Wang, H., Wen,J., Tu,J., Shen,J., Fu,T., and Yi, B. (2022d). An in planta haploid induction system in Brassica napus. J. Integr. Plant Biol. 64: 1140-1144.
|
[110] |
Li,Y.-L., Yu,Y.-K., Zhu,K.-M., Ding, L.-N., Wang,Z., Yang,Y.-H., Cao,J., Xu,L.-Z., Li, Y.-M., and Tan,X.-L. (2021). Down-regulation of MANNANASE7 gene in Brassica napus L. enhances silique dehiscence-resistance. Plant Cell Rep. 40: 361-374.
|
[111] |
Li,Z., Mei,S., Mei,Z., Liu, X., Fu,T., Zhou,G., and Tu, J. (2014). Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape (Brassica napus). Euphytica 197: 341-353.
|
[112] |
Li-Beisson,Y., Shorrosh, B., Beisson,F., Andersson,M.X., Arondel, V., Bates,P.D., Baud,S., Bird,D., DeBono,A., and Durrett, T.P. (2013). Acyl-lipid metabolism. The Arabidopsis book/American Society of Plant Biologists 11: e0161.
|
[113] |
Lian,J., Lu,X., Yin,N., Ma, L., Lu,J., Liu,X., Li,J., Lu,J., Lei, B., and Wang,R. (2017). Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus. Plant Sci. 254: 32-47.
|
[114] |
Liang,Y., Kang,K., Gan,L., Ning, S., Xiong,J., Song,S., Xi,L., Lai,S., Yin, Y., and Gu,J. (2019). Drought-responsive genes, late embryogenesis abundant group3 (LEA 3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. Plant Biotechnol. J. 17: 2123-2142.
|
[115] |
Liu,C., Feng,Z.-C., Xiao,T.-H., Ma, X.-M., Zhou,G.-S., Huang,F., Li,J.-N., and Wang,H.-Z. (2019a). Development, potential and adaptation of Chinese rapeseed industry. Chin. J. Oil Crop Sci. 41: 485.
|
[116] |
Liu,D., Yu,L., Wei,L., Yu, P., Wang,J., Zhao,H., Zhang,Y., Zhang,S., Yang, Z., and Chen,G. (2021a). BnTIR: An online transcriptome platform for exploring RNA-seq libraries for oil crop Brassica napus. Plant Biotechnol. J. 19: 1895.
|
[117] |
Liu,F., Li,X., Wang,M., Wen, J., Yi,B., Shen,J., Ma,C., Fu,T., and Tu, J. (2018). Interactions of WRKY 15 and WRKY 33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection. Plant Biotechnol. J. 16: 911-925.
|
[118] |
Liu,F., Wang,M., Wen,J., Yi, B., Shen,J., Ma,C., Tu,J., and Fu,T. (2015a). Overexpression of barley oxalate oxidase gene induces partial leaf resistance to Sclerotinia sclerotiorum in transgenic oilseed rape. Plant Pathol. 64: 1407-1416.
|
[119] |
Liu,J., Hao,W., Liu,J., Fan, S., Zhao,W., Deng,L., Wang,X., Hu,Z., Hua, W., and Wang,H. (2019b). A novel chimeric mitochondrial gene confers cytoplasmic effects on seed oil content in polyploid rapeseed (Brassica napus). Mol. Plant 12: 582-596.
|
[120] |
Liu,J., Hua,W., Hu,Z., Yang, H., Zhang,L., Li,R., Deng,L., Sun,X., Wang, X., and Wang,H. (2015b). Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc. Natl. Acad. Sci. U.S.A. 112: E5123-E5132.
|
[121] |
Liu,J., Hua,W., Yang,H.-L., Zhan, G.-M., Li,R.-J., Deng,L.-B., Wang,X.-F., Liu,G.-H., and Wang, H.-Z. (2012). The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J. Exp. Bot. 63: 3727-3740.
|
[122] |
Liu,J., Liu,J., Deng,L., Liu, H., Liu,H., Zhao,W., Zhao,Y., Sun,X., Fan, S., and Wang,H. (2023a). An intrinsically disordered region-containing protein mitigates the drought-growth trade-off to boost yields. Plant Physiol. 192: 274-292.
|
[123] |
Liu,J., Wu,Y., Zhang,X., Gill, R.A., Hu,M., Bai,Z., Zhao,C., Zhang,Y., Liu, Y., and Hu,Q. (2023b). Functional and evolutionary study of MLO gene family in the regulation of Sclerotinia stem rot resistance in Brassica napus L. Biotechnol. Biofuels Bioprod. 16: 1-16.
|
[124] |
Liu,J., Zhou,R., Wang,W., Wang, H., Qiu,Y., Raman,R., Mei,D., Raman,H., and Hu, Q. (2020a). A copia-like retrotransposon insertion in the upstream region of the SHATTERPROOF1 gene, BnSHP1.A9, is associated with quantitative variation in pod shattering resistance in oilseed rape. J. Exp. Bot. 71: 5402-5413.
|
[125] |
Liu,N., Du,Y., Warburton,M.L., Xiao,Y., and Yan, J. (2021b). Phenotypic plasticity contributes to maize adaptation and heterosis. Mol. Biol. Evol. 38: 1262-1275.
|
[126] |
Liu,Y., Du,H., Li,P., Shen, Y., Peng,H., Liu,S., Zhou,G.-A., Zhang,H., Liu, Z., and Shi,M. (2020b). Pan-genome of wild and cultivated soybeans. Cell 182: 162-176.
|
[127] |
Liu,Y., Ye,S., Yuan,G., Ma, X., Heng,S., Yi,B., Ma,C., Shen,J., Tu, J., and Fu,T. (2020c). Gene silencing of BnaA09.ZEP and BnaC09.ZEP confers orange color in Brassica napus flowers. Plant J. 104: 932-949.
|
[128] |
Liu,Z., Dong,F., Wang,X., Wang, T., Su,R., Hong,D., and Yang, G. (2017). A pentatricopeptide repeat protein restores nap cytoplasmic male sterility in Brassica napus. J. Exp. Bot. 68: 4115-4123.
|
[129] |
Liu,Z., Yang,Z., Wang,X., Li, K., An,H., Liu,J., Yang,G., Fu,T., Yi, B., and Hong,D. (2016). A mitochondria-targeted PPR protein restores pol cytoplasmic male sterility by reducing orf224 transcript levels in oilseed rape. Mol. Plant 9: 1082-1084.
|
[130] |
Lohani,N., Jain,D., Singh,M.B., and Bhalla, P.L. (2020). Engineering multiple abiotic stress tolerance in canola, Brassica napus. Front. Plant Sci. 11: 3.
|
[131] |
Lou,H., Zhao,B., Peng,Y., El-Badri, A.M., Batool,M., Wang,C., Wang,Z., Huang,W., Wang, T., and Li,Z. (2023). Auxin plays a key role in nitrogen and plant density-modulated root growth and yield in different plant types of rapeseed. Field Crops Res. 302: 109066.
|
[132] |
Lu,G. (2003). Engineering Sclerotinia sclerotiorum resistance in oilseed crops. Afr. J. Biotechnol. 2: 509-516.
|
[133] |
Lu,K., Wei,L., Li,X., Wang, Y., Wu,J., Liu,M., Zhang,C., Chen,Z., Xiao, Z., Jian,H., et al. (2019a). Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat. Commun. 10: 1154.
|
[134] |
Lu,S., Bahn,S.C., Qu,G., Qin, H., Hong,Y., Xu,Q., Zhou,Y., Hong,Y., and Wang, X. (2013). Increased expression of phospholipase D α1 in guard cells decreases water loss with improved seed production under drought in B rassica napus. Plant Biotechnol. J. 11: 380-389.
|
[135] |
Lu,S., Fadlalla, T., Tang,S., Li,L., Ali,U., Li,Q., and Guo, L. (2019b). Genome-wide analysis of phospholipase D gene family and profiling of phospholipids under abiotic stresses in Brassica napus. Plant Cell Physiol. 60: 1556-1566.
|
[136] |
Luu,D.-T., Marty-Mazars, D., Trick,M., Dumas,C., and Heizmann, P. (1999). Pollen-stigma adhesion in Brassica spp involves SLG and SLR1 glycoproteins. Plant Cell 11: 251-262.
|
[137] |
Matar,S., Kumar,A., Holtgräwe,D., Weisshaar,B., and Melzer, S. (2021). The transition to flowering in winter rapeseed during vernalization. Plant Cell Environ. 44: 506-518.
|
[138] |
Meena,A., and Talekar, N. (2022). Breeding for quality in rapeseed-mustard: A review. Pharma Innov. 11: 235-241.
|
[139] |
Mei,J., Guo,Z., Wang,J., Feng, Y., Ma,G., Zhang,C., Qian,W., and Chen,G. (2019). Understanding the resistance mechanism in Brassica napus to clubroot caused by Plasmodiophora brassicae. Phytopathology 109: 810-818.
|
[140] |
Meng,J., Shi,S., Gan,L., Li, Z., and Qu,X. (1998). The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica 103: 329-333.
|
[141] |
Morton,M.J., Awlia,M., Al-Tamimi,N., Saade,S., Pailles, Y., Negrão,S., and Tester,M. (2019). Salt stress under the scalpel-dissecting the genetics of salt tolerance. Plant J. 97: 148-163.
|
[142] |
Muthu,R.K., Kumar,A., Venugopal,B.P., and Shanmugam,K. (2021). IAA combine with kinetin elevates the α-linolenic acid in callus tissues of soybean by stimulating the expression of FAD3 gene. Plant Gene 28: 100336.
|
[143] |
Naheed,H., Sohail, Q., and Nadia,K. (2017). Genetic analysis for yield and yield components in rapeseed. Turk. J. Agric. Natural Sci. 4: 376-384.
|
[144] |
Nakamura,Y. (2013). Phosphate starvation and membrane lipid remodeling in seed plants. Prog. Lipid Res. 52: 43-50.
|
[145] |
Ni,Y., Zhang,F.-C., Wang,Y.-C., Pu, F., Wang,R., Chai,Y.-R., and Li, J.-N. (2011). Cloning and functional analysis of enoyl-CoA reductase gene BnECR from oilseed rape (Brassica napus L.). Acta Agronomica Sinica 37: 424-432.
|
[146] |
Okuley,J., Lightner, J., Feldmann,K., Yadav,N., Lark,E., and Browse,J. (1994). Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6: 147-158.
|
[147] |
Okuzaki,A., Ogawa,T., Koizuka,C., Kaneko, K., Inaba,M., Imamura,J., and Koizuka, N. (2018). CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol. Biochem. 131: 63-69.
|
[148] |
Olalekan,A., Hu,L.-M, Zhai,Y.-G, Fan, C.-C, Zhou,Y.-M (2022). Regulation of shoot branching by BRANCHED1 in Brassica napus based on gene editing technology. Biotechnol. Bull. 38: 97.
|
[149] |
Özer,H., Oral,E., and Doğru,Ü. (1999). Relationships between yield and yield components on currently improved spring rapeseed cultivars. Turk J. Agric. For. 23: 603-608.
|
[150] |
Parvin,E., Mahmud, F., Bhuiyan,M.S.R., and Haque,M.M. (2019). Multivariate analysis of genetic variation in rapeseed (Brassica Napus L.). Agric. Food Sci. 6: 1-8.
|
[151] |
Peng,Q., Hu,Y., Wei,R., Zhang, Y., Guan,C., Ruan,Y., and Liu, C. (2010). Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Rep. 29: 317-325.
|
[152] |
Pigliucci,M., Murren, C.J., and Schlichting,C.D. (2006). Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 209: 2362-2367.
|
[153] |
Pommerrenig,B., Junker, A., Abreu,I., Bieber,A., Fuge,J., Willner,E., Bienert, M.D., Altmann,T., and Bienert,G.P. (2018). Identification of rapeseed (Brassica napus) cultivars with a high tolerance to boron-deficient conditions. Front. Plant Sci. 9: 1142.
|
[154] |
Priyanka,V., Kumar,R., Dhaliwal,I., and Kaushik, P. (2021). Germplasm conservation: Instrumental in agricultural biodiversity-A review. Sustainability 13: 6743.
|
[155] |
Pröbsting,M., Schenke, D., Hossain,R., Häder,C., Thurau, T., Wighardt,L., Schuster,A., Zhou,Z., Ye,W., and Rietz, S. (2020). Loss of function of CRT1a (calreticulin) reduces plant susceptibility to Verticillium longisporum in both Arabidopsis thaliana and oilseed rape (Brassica napus). Plant Biotechnol. J. 18: 2328-2344.
|
[156] |
Qian,W., Meng,J., Li,M., Frauen, M., Sass,O., Noack,J., and Jung, C. (2006). Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.), with emphasis on the evolution of Chinese rapeseed. Theor. Appl. Genet. 113: 49-54.
|
[157] |
Qin,C., Li,H., Zhang,S., Lin, X., Jia,Z., Zhao,F., Wei,X., Jiao,Y., Li, Z., and Niu,Z. (2023). GmEID1 modulates light signaling through the evening complex to control flowering time and yield in soybean. Proc. Natl. Acad. Sci. U.S.A. 120: e2212468120.
|
[158] |
Qing,Y., Li,Y., Xu,L., and Ma, Z. (2021). Screen oilseed rape (Brassica napus) suitable for low-loss mechanized harvesting. Agriculture 11: 504.
|
[159] |
Qu,C., Zhu,M., Hu,R., Niu, Y., Chen,S., Zhao,H., Li,C., Wang,Z., Yin, N., and Sun,F. (2023). Comparative genomic analyses reveal the genetic basis of the yellow-seed trait in Brassica napus. Nat. Commun. 14: 5194.
|
[160] |
Rad,A.H.S., and Abbasian, A. (2011). Evaluation of drought tolerance in rapeseed genotypes under non stress and drought stress conditions. Not. Bot. Horti. Agrobot. Cluj. Napoca. 39: 164-171.
|
[161] |
Radić,V., Balalić, I., Krstić,M., and Marjanović-Jeromela,A. (2021). Correlation and path analysis of yield and yield components in winter rapeseed. Genetika 53: 157-166.
|
[162] |
Radoev,M., Becker, H.C., and Ecke,W. (2008). Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179: 1547-1558.
|
[163] |
Rai,B. (1995). Development of hybrid cultivars in oilseed Brassicas: Status and strategies. J. Oilseeds Res. 12: 239-244.
|
[164] |
Raza,A., Razzaq, A., Mehmood,S.S., Hussain,M.A., Wei,S., He,H., Zaman, Q.U., Xuekun,Z., Yong,C., and Hasanuzzaman, M. (2021). Omics: The way forward to enhance abiotic stress tolerance in Brassica napus L. GM Crops Food 12: 251-281.
|
[165] |
Ren,F., Guo,Q.-Q., Chang,L.-L., Chen, L., Zhao,C.-Z., Zhong,H., and Li, X.-B. (2012). Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation. PLoS ONE 7: e44005.
|
[166] |
Richards,R., and Thurling, N. (1978). Variation between and within species of rapeseed (Brassica campestris and B. napus) in response to drought stress. I. Sensitivity at different stages of development. Aust. J. Agric. Res. 29: 469-477.
|
[167] |
Riou,C., Freyssinet, G., and Fevre,M. (1991). Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl. Environ. Microbiol. 57: 1478-1484.
|
[168] |
Robert,L.S., Robson, F., Sharpe,A., Lydiate,D., and Coupland, G. (1998). Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol. Biol. 37: 763-772.
|
[169] |
Rousseau-Gueutin,M., Belser, C., Da Silva,C., Richard,G., Istace, B., Cruaud,C., Falentin,C., Boideau, F., Boutte,J., and Delourme,R. (2020). Long-read assembly of the Brassica napus reference genome Darmor-bzh. Gigascience 9: giaa137.
|
[170] |
Schofield,R., and Kirkby, M. (2003). Application of salinization indicators and initial development of potential global soil salinization scenario under climatic change. Global Biogeochem. Cycles 17: 1078-1091.
|
[171] |
Shang,L., Li,X., He,H., Yuan, Q., Song,Y., Wei,Z., Lin,H., Hu,M., Zhao, F., and Zhang,C. (2022). A super pan-genomic landscape of rice. Cell Res. 32: 878-896.
|
[172] |
Shen,J., Liu,Y., Wang,X., Bai, J., Lin,L., Luo,F., and Zhong, H. (2023). A comprehensive review of health-benefiting components in rapeseed oil. Nutrients 15: 999.
|
[173] |
Shi,J., Lang,C., Wang,F., Wu, X., Liu,R., Zheng,T., Zhang,D., Chen,J., and Wu, G. (2017). Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds. Plant Sci. 263: 177-182.
|
[174] |
Shi,J., Tian,Z., Lai,J., and Huang, X. (2023). Plant pan-genomics and its applications. Mol. Plant 16: 168-186.
|
[175] |
Shi,L., Song,J., Guo,C., Wang, B., Guan,Z., Yang,P., Chen,X., Zhang,Q., King, G.J., and Wang,J. (2019). A CACTA-like transposable element in the upstream region of BnaA9.CYP78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Plant J. 98: 524-539.
|
[176] |
Si,P., and Walton, G. (2004). Determinants of oil concentration and seed yield in canola and Indian mustard in the lower rainfall areas of Western Australia. Aust. J. Agric. Res. 55: 367-377.
|
[177] |
Silva,N., Stone,S., Christie,L., Sulaman, W., Nazarian,K., Burnett,L., Arnoldo, M., Rothstein,S., and Goring,D. (2001). Expression of the S receptor kinase in self-compatible Brassica napus cv. Westar leads to the allele-specific rejection of self-incompatible Brassica napus pollen. Mol. Genet. Genom. 265: 552-559.
|
[178] |
Singh,M., and Brown, G.G. (1993). Characterization of expression of a mitochondrial gene region associated with the Brassica “Polima” CMS: Developmental influences. Curr. Genet. 24: 316-322.
|
[179] |
Song,G., Li,X., Munir,R., Khan, A.R., Azhar,W., Khan,S., and Gan, Y. (2021a). BnaA02.NIP6;1a encodes a boron transporter required for plant development under boron deficiency in Brassica napus. Plant Physiol. Biochem. 161: 36-45.
|
[180] |
Song,J.-M., Guan,Z., Hu,J., Guo, C., Yang,Z., Wang,S., Liu,D., Wang,B., Lu, S., and Zhou,R. (2020). Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6: 34-45.
|
[181] |
Song,J.M., Liu,D.X., Xie,W.Z., Yang, Z., Guo,L., Liu,K., Yang,Q.Y., and Chen,L.L. (2021b). BnPIR: Brassica napus pan-genome information resource for 1689 accessions. Plant Biotechnol. J. 19: 412.
|
[182] |
Song,L., Zhou,Z., Tang,S., Zhang, Z., Xia,S., Qin,M., Li,B., Wen,J., Yi, B., and Shen,J. (2016). Ectopic expression of BnaC.CP20.1 results in premature tapetal programmed cell death in Arabidopsis. Plant Cell Physiol. 57: 1972-1984.
|
[183] |
Spasibionek,S., Mikołajczyk, K., Ćwiek-Kupczyńska, H., Piętka,T., Krótka,K., Matuszczak, M., Nowakowska,J., Michalski,K., and Bartkowiak-Broda, I. (2020). Marker assisted selection of new high oleic and low linolenic winter oilseed rape (Brassica napus L.) inbred lines revealing good agricultural value. PLoS ONE 15: e0233959.
|
[184] |
Sriboon,S., Li,H., Guo,C., Senkhamwong, T., Dai,C., and Liu,K. (2020). Knock-out of TERMINAL FLOWER 1 genes altered flowering time and plant architecture in Brassica napus. BMC Genet. 21: 1-13.
|
[185] |
Stanic,M., Hickerson, N.M., Arunraj,R., and Samuel,M.A. (2021). Gene-editing of the strigolactone receptor BnD14 confers promising shoot architectural changes in Brassica napus (canola). Plant Biotechnol. J. 19: 639.
|
[186] |
Stephenson,P., Stacey, N., Brüser,M., Pullen,N., Ilyas,M., O'Neill,C., Wells, R., and Østergaard,L. (2019). The power of model-to-crop translation illustrated by reducing seed loss from pod shatter in oilseed rape. Plant Reprod. 32: 331-340.
|
[187] |
Sun,F., Fan,G., Hu,Q., Zhou, Y., Guan,M., Tong,C., Li,J., Du,D., Qi, C., and Jiang,L. (2017). The high-quality genome of Brassica napus cultivar ‘ZS 11’ reveals the introgression history in semi-winter morphotype. Plant J. 92: 452-468.
|
[188] |
Sun,Q., Lin,L., Liu,D., Wu, D., Fang,Y., Wu,J., and Wang, Y. (2018). CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L. Int. J. Mol. Sci. 19: 2716.
|
[189] |
Tadege,M., Sheldon, C.C., Helliwell,C.A., Stoutjesdijk,P., Dennis, E.S., and Peacock,W.J. (2001). Control of flowering time by FLC orthologues in Brassica napus. Plant J. 28: 545-553.
|
[190] |
Takano,J., Noguchi, K., Yasumori,M., Kobayashi,M., Gajdos, Z., Miwa,K., Hayashi,H., Yoneyama, T., and Fujiwara,T. (2002). Arabidopsis boron transporter for xylem loading. Nature 420: 337-340.
|
[191] |
Takayama,S., Shiba,H., Iwano,M., Shimosato, H., Che,F.-S., Kai,N., Watanabe, M., Suzuki,G., Hinata,K., and Isogai, A. (2000). The pollen determinant of self-incompatibility in Brassica campestris. Proc. Natl. Acad. Sci. U.S.A. 97: 1920-1925.
|
[192] |
Tan,H., Yang,X., Zhang,F., Zheng, X., Qu,C., Mu,J., Fu,F., Li,J., Guan, R., and Zhang,H. (2011). Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol. 156: 1577-1588.
|
[193] |
Tan,Z., Peng,Y., Xiong,Y., Xiong, F., Zhang,Y., Guo,N., Tu,Z., Zong,Z., Wu, X., and Ye,J. (2022a). Comprehensive transcriptional variability analysis reveals gene networks regulating seed oil content of Brassica napus. Genome Biol. 23: 233.
|
[194] |
Tan,Z., Xie,Z., Dai,L., Zhang, Y., Zhao,H., Tang,S., Wan,L., Yao,X., Guo, L., and Hong,D. (2022b). Genome-and transcriptome-wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in Brassica napus. Plant Biotechnol. J. 20: 211-225.
|
[195] |
Tang,S., Liu,D.X., Lu,S., Yu, L., Li,Y., Lin,S., Li,L., Du,Z., Liu, X., and Li,X. (2020). Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napus. Plant J. 104: 1410-1422.
|
[196] |
Tang,S., Zhao,H., Lu,S., Yu, L., Zhang,G., Zhang,Y., Yang,Q.-Y., Zhou,Y., Wang, X., and Ma,W. (2021). Genome-and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Mol. Plant 14: 470-487.
|
[197] |
Tang,Z., Li,J., Zhang,X., Chen, L., and Wang,R. (1997). Genetic variation of yellow-seeded rapeseed lines (Brassica napus L.) from different genetic sources. Plant Breed 116: 471-474.
|
[198] |
Tao,D., Fanya,Z., and Shuhui,W. (1988). A study on breeding and application of GMS line of low erucic acid in rapeseed (B. napus). Oil Crop China 3: 5-8.
|
[199] |
Taylor,D.C., Zhang,Y., Kumar,A., Francis, T., Giblin,E.M., Barton,D.L., Ferrie, J.R., Laroche,A., Shah,S., and Zhu, W. (2009). Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions. Botany 87: 533-543.
|
[200] |
Tian,Q., Li,B., Feng,Y., Zhao, W., Huang,J., and Chao,H. (2022). Application of CRISPR/Cas9 in rapeseed for gene function research and genetic improvement. Agronomy 12: 824.
|
[201] |
Tian,X., Yu,X., Wang,Z., Guo, L., Tu,J., Shen,J., Yi,B., Fu,T., Wen, J., and Ma,C. (2023). BnaMPK3s promote organ size by interacting with BnaARF2s in Brassica napus. Plant Biotechnol. J. 21: 899.
|
[202] |
Ueno,H., Matsumoto, E., Aruga,D., Kitagawa,S., Matsumura, H., and Hayashida,N. (2012). Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol. Biol. 80: 621-629.
|
[203] |
Uliaie,E.D., Ghareyazi, B., Farsi,M., and Kogel,K.-H. (2012). Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1. J. Plant Mol. Breed. 1: 34-42.
|
[204] |
VanEtten,C.H., and Tookey, H.L. (2018). Glucosinolates. In Handbook of Naturally Occurring Food Toxicants, M.Rechcigl, ed. CRC Press, pp. 15-30.
|
[205] |
Vetter,W., Darwisch, V., and Lehnert,K. (2020). Erucic acid in Brassicaceae and salmon-An evaluation of the new proposed limits of erucic acid in food. NFS J. 19: 9-15.
|
[206] |
Vigeolas,H., Waldeck, P., Zank,T., and Geigenberger,P. (2007). Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol. J. 5: 431-441.
|
[207] |
Wallace,J.G., Rodgers-Melnick, E., and Buckler,E.S. (2018). On the road to breeding 4.0: Unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 52: 421-444.
|
[208] |
Wang,A.-f, Kang,L., Li,P.-f, and Li, Z.-y (2016). Review on new germplasm development in Brassica napus through wide hybridizations in China. Chin. J. of Oil. Crop Sci. 38: 691.
|
[209] |
Wang,F., Li,Y., Li,G., and Chen, S. (2023a). Genetic components of self-incompatibility in Brassica vegetables. Horticulturae 9: 265.
|
[210] |
Wang,H. (2010). Review and future development of rapeseed industry in China. Chin. J. of Oil. Crop Sci. 32: 300-302.
|
[211] |
Wang,H., Cimen,E., Singh,N., and Buckler, E. (2020a). Deep learning for plant genomics and crop improvement. Curr. Opin. Plant Biol. 54: 34-41.
|
[212] |
Wang,H.-Z. (2004). Strategy for rapeseed genetic improvement in China in the coming fifteen years. Chin. J. Oil Crop Sci. 26: 98-101.
|
[213] |
Wang,J., Long,Y., Wu,B., Liu, J., Jiang,C., Shi,L., Zhao,J., King,G.J., and Meng, J. (2009a). The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks. BMC Evol. Biol. 9: 1-13.
|
[214] |
Wang,J., Zhang,C., Chen,Y., Shao, Y., Liao,M., Hou,Q., Zhang,W., Zhu,Y., Guo, Y., and Liu,Z. (2023b). The BnTFL1-BnGF14nu-BnFD module regulates flower development and plant architecture in Brassica napus. Crop J. 11: 1696-1710.
|
[215] |
Wang,J.L., Tang,M.Q., Chen,S., Zheng, X.F., Mo,H.X., Li,S.J., Wang,Z., Zhu,K.M., Ding, L.N., and Liu,S.Y. (2017). Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napus. Plant Biotechnol. J. 15: 1024-1033.
|
[216] |
Wang,M., Liu,M., Li,D., Wu, J., Li,X., and Yang,Y. (2010a). Overexpression of FAD2 promotes seed germination and hypocotyl elongation in Brassica napus. Plant Cell, Tissue Organ Cult. 102: 205-211.
|
[217] |
Wang,N., Shi,L., Tian,F., Ning, H., Wu,X., Long,Y., and Meng, J. (2010b). Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents. BMC Plant Biol. 10: 1-11.
|
[218] |
Wang,N., Wang,Y., Tian,F., King, G.J., Zhang,C., Long,Y., Shi,L., and Meng,J. (2008). A functional genomics resource for Brassica napus: Development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol. 180: 751-765.
|
[219] |
Wang,P., Song,Y., Xie,Z., Wan, M., Xia,R., Jiao,Y., Zhang,H., Yang,G., Fan, Z., and Yang,Q.-Y. (2023c). Xiaoyun, a model accession for functional genomics research in Brassica napus. Plant Commun. 5: 100727.
|
[220] |
Wang,P., Xiong,X., Zhang,X., Wu, G., and Liu,F. (2022). A review of erucic acid production in Brassicaceae oilseeds: Progress and prospects for the genetic engineering of high and low-erucic acid rapeseeds (Brassica napus). Front. Plant Sci. 13: 899076.
|
[221] |
Wang,T., Guo,Y., Wu,Z., Xia, S., Hua,S., Tu,J., Li,M., and Chen,W. (2020b). Genetic characterization of a new radish introgression line carrying the restorer gene for Ogura CMS in Brassica napus. PLoS ONE 15: e0236273.
|
[222] |
Wang,W., Liu,H., Xie,Y., King, G.J., White,P.J., Zou,J., Xu,F., and Shi,L. (2023d). Rapid identification of a major locus qPRL-C06 affecting primary root length in Brassica napus by QTL-seq. Ann. Bot. 131: 569-583.
|
[223] |
Wang,W., Qin,L., Zhang,W., Tang, L., Zhang,C., Dong,X., Miao,P., Shen,M., Du, H., and Cheng,H. (2023e). WeiTsing, a pericycle-expressed ion channel, safeguards the stele to confer clubroot resistance. Cell 186: 2656-2671.
|
[224] |
Wang,X., Wu,J., Liang,J., Cheng, F., and Wang,X. (2015). Brassica database (BRAD) version 2.0: Integrating and mining Brassicaceae species genomic resources. Database 2015: bav093.
|
[225] |
Wang,Y., Jin,S., Xu,Y., Li, S., Zhang,S., Yuan,Z., Li,J., and Ni,Y. (2020c). Overexpression of BnKCS1-1, BnKCS1-2, and BnCER1-2 promotes cuticular wax production and increases drought tolerance in Brassica napus. Crop J. 8: 26-37.
|
[226] |
Wang,Y., Wang,H., Wei,L., Li, S., Liu,L., and Wang,X. (2020d). Synthetic promoter design in Escherichia coli based on a deep generative network. Nucleic Acids Res. 48: 6403-6412.
|
[227] |
Wang,Z., Bao,L.-L., Zhao,F.-Y., Tang, M.-Q., Chen,T., Li,Y., Wang,B.-X., Fu,B., Fang, H., and Li,G.-Y. (2019). BnaMPK3 is a key regulator of defense responses to the devastating plant pathogen Sclerotinia sclerotiorum in oilseed rape. Front. Plant Sci. 10: 91.
|
[228] |
Wang,Z., Fang,H., Chen,Y., Chen, K., Li,G., Gu,S., and Tan, X. (2014). Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Mol. Plant Pathol. 15: 677-689.
|
[229] |
Wang,Z., Mao,H., Dong,C., Ji, R., Cai,L., Fu,H., and Liu, S. (2009b). Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Mol. Plant Microbe. Interact. 22: 235-244.
|
[230] |
Wang,Z., Zhang,W.-H., Ma,L.-Y., Li, X., Zhao,F.-Y., and Tan,X.-L. (2020e). Overexpression of Brassica napus NPR1 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Physiol. Mol. Plant Pathol. 110: 101460.
|
[231] |
Wang,Z., Zhao,F.-Y., Tang,M.-Q., Chen, T., Bao,L.-L., Cao,J., Li,Y.-L., Yang,Y.-H., Zhu, K.-M., and Liu,S. (2020f). BnaMPK6 is a determinant of quantitative disease resistance against Sclerotinia sclerotiorum in oilseed rape. Plant Sci. 291: 110362.
|
[232] |
Wei,W., Wang,H., and Liu,G. (2009). Cytological and molecular characterization of a new cytoplasmic male sterility in rapeseed. Plant Breed 128: 426-428.
|
[233] |
Wells,R., Trick,M., Soumpourou,E., Clissold,L., Morgan, C., Werner,P., Gibbard,C., Clarke, M., Jennaway,R., and Bancroft,I. (2014). The control of seed oil polyunsaturate content in the polyploid crop species Brassica napus. Mol. Breed. 33: 349-362.
|
[234] |
Weng,C., Lu,J., Wan,H., Wang, S., Wang,Z., Lu,K., and Liang, Y. (2014). Over-expression of BnMAPK1 in Brassica napus enhances tolerance to drought stress. J. Integr. Agri. 13: 2407-2415.
|
[235] |
Wilen,R.W., Gusta,L.V., Lei,B., Abrams, S.R., and Ewan,B.E. (1994). Effects of abscisic acid (ABA) and ABA analogs on freezing tolerance, low-temperature growth, and flowering in rapeseed. J. Plant Growth Regul. 13: 235-241.
|
[236] |
Williams,C.M. (2000). Dietary fatty acids and human health. Ann. Zootech. 49: 165-180.
|
[237] |
Wu,D., Liang,Z., Yan,T., Xu, Y., Xuan,L., Tang,J., Zhou,G., Lohwasser,U., Hua,S., and Wang, H. (2019). Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol. Plant 12: 30-43.
|
[238] |
Wu,G., Wu,Y., Xiao,L., Li, X., and Lu,C. (2008). Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor. Appl. Genet. 116: 491-499.
|
[239] |
Wu,G.-Z., Shi,Q.-M., Niu,Y., Xing, M.-Q., and Xue,H.-W. (2007). Shanghai RAPESEED Database: A resource for functional genomics studies of seed development and fatty acid metabolism of Brassica. Nucleic Acids Res. 36: D1044-D1047.
|
[240] |
Wu,J., Cai,G., Tu,J., Li, L., Liu,S., Luo,X., Zhou,L., Fan,C., and Zhou, Y. (2013). Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS ONE 8: e67740.
|
[241] |
Wu,J., Liu,H., Ren,S., Li, P., Li,X., Lin,L., Sun,Q., Zhang,L., Lin, C., and Wang,Y. (2022). Generating an oilseed rape mutant with non-abscising floral organs using CRISPR/Cas9 technology. Plant Physiol. 190: 1562-1565.
|
[242] |
Wu,J., Yan,G., Duan,Z., Wang, Z., Kang,C., Guo,L., Liu,K., Tu,J., Shen, J., and Yi,B. (2020). Roles of the Brassica napus DELLA protein BnaA6.RGA, in modulating drought tolerance by interacting with the ABA signaling component BnaA10.ABF2. Front. Plant Sci. 11: 577.
|
[243] |
Wu,X.L., Liu,Z.H., Hu,Z.H., and Huang, R.Z. (2014). BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J. Integr. Plant. Biol. 56: 582-593.
|
[244] |
Wu,Z., Johnston, K.E., Arnold,F.H., and Yang,K.K. (2021). Protein sequence design with deep generative models. Curr. Opin. Chem. Biol. 65: 18-27.
|
[245] |
Xia,S., Wang,Z., Zhang,H., Hu, K., Zhang,Z., Qin,M., Dun,X., Yi,B., Wen, J., and Ma,C. (2016). Altered transcription and neofunctionalization of duplicated genes rescue the harmful effects of a chimeric gene in Brassica napus. Plant Cell 28: 2060-2078.
|
[246] |
Xiao,M., Wang,H., Li,X., Mason, A.S., and Fu,D. (2021). Rapeseed as an ornamental. Horticulturae 8: 27.
|
[247] |
Xie,T., Chen,X., Guo,T., Rong, H., Chen,Z., Sun,Q., Batley, J., Jiang,J., and Wang,Y. (2020). Targeted knockout of BnTT2 homologues for yellow-seeded Brassica napus with reduced flavonoids and improved fatty acid composition. J. Agric. Food Chem. 68: 5676-5690.
|
[248] |
Xin,Q., Wang,X., Gao,Y., Xu, D., Xie,Z., Dong,F., Wan,L., Yang,L., Yang, G., and Hong,D. (2020). Molecular mechanisms underpinning the multiallelic inheritance of MS5 in Brassica napus. Plant J. 103: 1723-1734.
|
[249] |
Xu,L., Hu,K., Zhang,Z., Guan, C., Chen,S., Hua,W., Li,J., Wen,J., Yi, B., and Shen,J. (2016). Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res. 23: 43-52.
|
[250] |
Xu,Y., Zhang,X., Li,H., Zheng, H., Zhang,J., Olsen,M.S., Varshney, R.K., Prasanna,B.M., and Qian,Q. (2022). Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Mol. Plant 15: 1664-1695.
|
[251] |
Yan,J., and Wang, X. (2023). Machine learning bridges omics sciences and plant breeding. Trends Plant Sci. 28: 199-210.
|
[252] |
Yan,T., Yao,Y., Wu,D., and Jiang, L. (2021). BnaGVD: A genomic variation database of rapeseed (Brassica napus). Plant Cell Physiol. 62: 378-383.
|
[253] |
Yan,X., Zhang,L., Chen,B., Xiong, Z., Chen,C., Wang,L., Yu,J., Lu,C., and Wei, W. (2012). Functional identification and characterization of the Brassica napus transcription factor gene BnAP2, the ortholog of Arabidopsis thaliana APETALA2. PLoS ONE 7: e33890.
|
[254] |
Yang,B., Li,J., Yan,J., Zhang, K., Ouyang,Z., Lu,Y., Wei,H., Li,Q., Yao, X., and Lu,S. (2023a). NON-SPECIFIC PHOSPHOLIPASE C4 hydrolyzes phosphosphingolipids and phosphoglycerolipids and promotes rapeseed growth and yield. J. Integr. Plant Biol. 65: 2421-2436.
|
[255] |
Yang,D., Jin,Y., He,X., Dong, A., Wang,J., and Wu,R. (2021). Inferring multilayer interactome networks shaping phenotypic plasticity and evolution. Nat. Commun. 12: 5304.
|
[256] |
Yang,M., Ding,G., Shi,L., Xu, F., and Meng,J. (2011a). Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant Soil 339: 97-111.
|
[257] |
Yang,M., Wan,S., Chen,J., Chen, W., Wang,Y., Li,W., Wang,M., and Guan,R. (2023b). Mutation to a cytochrome P450-like gene alters the leaf color by affecting the heme and chlorophyll biosynthesis pathways in Brassica napus. Plant J. 116: 432-445.
|
[258] |
Yang,M., Yang,Q., Fu,T., and Zhou, Y. (2011b). Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rep. 30: 373-388.
|
[259] |
Yang,W., Feng,H., Zhang,X., Zhang, J., Doonan,J.H., Batchelor,W.D., Xiong,L., and Yan,J. (2020). Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol. Plant 13: 187-214.
|
[260] |
Yang,Y., Zhu,K., Li,H., Han, S., Meng,Q., Khan,S.U., Fan,C., Xie,K., and Zhou, Y. (2018). Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol. J. 16: 1322-1335.
|
[261] |
Yang,Z., Jiang,Y., Gong,J., Li, Q., Dun,B., Liu,D., Yin,F., Yuan,L., Zhou, X., and Wang,H. (2022a). R gene triplication confers European fodder turnip with improved clubroot resistance. Plant Biotechnol. J. 20: 1502-1517.
|
[262] |
Yang,Z., Liang,C., Wei,L., Wang, S., Yin,F., Liu,D., Guo,L., Zhou,Y., and Yang, Q.-Y. (2022b). BnVIR: Bridging the genotype-phenotype gap to accelerate mining of candidate variations underlying agronomic traits in Brassica napus. Mol. Plant 15: 779-782.
|
[263] |
Yang,Z., Wang,S., Wei,L., Huang, Y., Liu,D., Jia,Y., Luo,C., Lin,Y., Liang, C., and Hu,Y. (2023c). BnIR: A multi-omics database with various tools for Brassica napus research and breeding. Mol. Plant 16: 775-789.
|
[264] |
Ye,S., Hua,S., Ma,T., Ma, X., Chen,Y., Wu,L., Zhao,L., Yi,B., Ma, C., and Tu,J. (2022). Genetic and multi-omics analyses reveal BnaA07.PAP2 In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers. J. Exp. Bot. 73: 6630-6645.
|
[265] |
Yeom,W.W., Kim,H.J., Lee,K.-R., Cho, H.S., Kim,J.-Y., Jung,H.W., Oh,S.-W., Jun,S.E., Kim, H.U., and Chung,Y.-S. (2020). Increased production of α-linolenic acid in soybean seeds by overexpression of lesquerella FAD3-1. Front. Plant Sci. 10: 1812.
|
[266] |
Yin,N., Li,B., Liu,X., Liang, Y., Lian,J., Xue,Y., Qu,C., Lu,K., Wei, L., and Wang,R. (2022). Two types of cinnamoyl-CoA reductase function divergently in accumulation of lignins, flavonoids and glucosinolates and enhance lodging resistance in Brassica napus. Crop J. 10: 647-660.
|
[267] |
Yi,B., Zeng,F., Lei,S., Chen, Y., Yao,X., Zhu,Y., Wen,J., Shen,J., Ma, C., and Tu,J. (2010). Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J. 63: 925-938.
|
[268] |
Yi,L., Chen,C., Yin,S., Li, H., Li,Z., Wang,B., King,G.J., Wang,J., and Liu, K. (2018). Sequence variation and functional analysis of a FRIGIDA orthologue (BnaA3.FRI) in Brassica napus. BMC Plant Biol. 18: 1-13.
|
[269] |
Yu,Q., Hu,Y., Li,J., Wu, Q., and Lin,Z. (2005). Sense and antisense expression of plasma membrane aquaporin BnPIP1 from Brassica napus in tobacco and its effects on plant drought resistance. Plant Sci. 169: 647-656.
|
[270] |
Zaman,Q.U., Chu,W., Hao,M., Shi, Y., Sun,M., Sang,S.-F., Mei,D., Cheng,H., Liu, J., and Li,C. (2019). CRISPR/Cas9-mediated multiplex genome editing of JAGGED gene in Brassica napus L. Biomolecules 9: 725.
|
[271] |
Zhai,Y., Cai,S., Hu,L., Yang, Y., Amoo,O., Fan,C., and Zhou, Y. (2019). CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L. Theor. Appl. Genet. 132: 2111-2123.
|
[272] |
Zhai,Y., Yu,K., Cai,S., Hu, L., Amoo,O., Xu,L., Yang,Y., Ma,B., Jiao, Y., and Zhang,C. (2020). Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnol. J. 18: 1153-1168.
|
[273] |
Zhang,B., Liu,C., Wang,Y., Yao, X., Wang,F., Wu,J., King,G.J., and Liu,K. (2015a). Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species. New Phytol. 206: 1513-1526.
|
[274] |
Zhang,B., Wu,S., Zhang,Y., Xu, T., Guo,F., Tang,H., Li,X., Wang,P., Qian, W., and Xue,Y. (2016). A high temperature-dependent mitochondrial lipase EXTRA GLUME1 promotes floral phenotypic robustness against temperature fluctuation in rice (Oryza sativa L.). PLoS Genet. 12: e1006152.
|
[275] |
Zhang,G., Zhou,J., Peng,Y., Tan, Z., Li,L., Yu,L., Jin,C., Fang,S., Lu, S., and Guo,L. (2022a). Genome-wide association studies of salt tolerance at seed germination and seedling stages in Brassica napus. Front. Plant Sci. 12: 772708.
|
[276] |
Zhang,G., Zhou,J., Peng,Y., Tan, Z., Zhang,Y., Zhao,H., Liu,D., Liu,X., Li, L., and Yu,L. (2023). High-throughput phenotyping-based quantitative trait loci mapping reveals the genetic architecture of the salt stress tolerance of Brassica napus. Plant Cell Environ. 46: 549-566.
|
[277] |
Zhang,H., Berger, J.D., and Milroy,S.P. (2013). Genotype × environment interaction studies highlight the role of phenology in specific adaptation of canola (Brassica napus) to contrasting Mediterranean climates. Field Crops Res. 144: 77-88.
|
[278] |
Zhang,H., Wu,J., Dai,Z., Qin, M., Hao,L., Ren,Y., Li,Q., and Zhang,L. (2017a). Allelism analysis of BrRfp locus in different restorer lines and map-based cloning of a fertility restorer gene, BrRfp1, for pol CMS in Chinese cabbage (Brassica rapa L.). Theor. Appl. Genet. 130: 539-547.
|
[279] |
Zhang,H., Zhu,J., Gong,Z., and Zhu, J.-K. (2022b). Abiotic stress responses in plants. Nat. Rev. Genet. 23: 104-119.
|
[280] |
Zhang,K., He,J., Yin,Y., Chen, K., Deng,X., Yu,P., Li,H., Zhao,W., Yan, S., and Li,M. (2022c). Lysophosphatidic acid acyltransferase 2 and 5 commonly, but differently, promote seed oil accumulation in Brassica napus. Biotechnol. Biofuels 15: 1-19.
|
[281] |
Zhang,K., Liu,F., Wang,Z., Zhuo, C., Hu,K., Li,X., Wen,J., Yi,B., Shen, J., and Ma,C. (2022d). Transcription factor WRKY28 curbs WRKY33-mediated resistance to Sclerotinia sclerotiorum in Brassica napus. Plant Physiol. 190: 2757-2774.
|
[282] |
Zhang,L., Liu,L., Li,H., He, J., Chao,H., Yan,S., Yin,Y., Zhao,W., and Li, M. (2024). 3D genome structural variations play important roles in regulating seed oil content of Brassica napus. Plant Commun. 5: 100666.
|
[283] |
Zhang,Q., Chen,H., He,M., Zhao, Z., Cai,H., Ding,G., Shi,L., and Xu,F. (2017b). The boron transporter BnaC4.BOR1;1c is critical for inflorescence development and fertility under boron limitation in Brassica napus. Plant Cell Environ. 40: 1819-1833.
|
[284] |
Zhang,Q., Guan,P., Zhao,L., Ma, M., Xie,L., Li,Y., Zheng,R., Ouyang,W., Wang, S., and Li,H. (2021). Asymmetric epigenome maps of subgenomes reveal imbalanced transcription and distinct evolutionary trends in Brassica napus. Mol. Plant 14: 604-619.
|
[285] |
Zhang,Y., Huai,D., Yang,Q., Cheng, Y., Ma,M., Kliebenstein,D.J., and Zhou, Y. (2015b). Overexpression of three glucosinolate biosynthesis genes in Brassica napus identifies enhanced resistance to Sclerotinia sclerotiorum and Botrytis cinerea. PLoS ONE 10: e0140491.
|
[286] |
Zhang,Y., Zhang,H., Zhao,H., Xia, Y., Zheng,X., Fan,R., Tan,Z., Duan,C., Fu, Y., and Li,L. (2022e). Multi-omics analysis dissects the genetic architecture of seed coat content in Brassica napus. Genome Biol. 23: 86.
|
[287] |
Zhang,Y., Zhao,Z., and Xue,Y. (2009). Roles of proteolysis in plant self-incompatibility. Annu. Rev. Plant Biol. 60: 21-42.
|
[288] |
Zhang,Y., Wu,X.-P., Zhang,F., Luo, L.-X., Guo,R.-X., and Tu,J.-X. (2020a). Analysis of evolutionary history and future development of Chinese rapeseed varieties based on genomic data. Chin. J. Oil Crop Sci. 42: 325.
|
[289] |
Zhang,Z., Fan,Y., Xiong,J., Guo, X., Hu,K., Wang,Z., Gao,J., Wen,J., Yi, B., and Shen,J. (2020b). Two young genes reshape a novel interaction network in Brassica napus. New Phytol. 225: 530-545.
|
[290] |
Zhang,Z., Yin,Y., Liu,F., Wang, J., and Fu,T. (2018). Current situation and development countermeasures of Chinese rapeseed multifunctional development and utilization. Chin. J. of Oil. Crop Sci. 40: 618-623.
|
[291] |
Zhao,B.-Y., Hu,Y.-F., Li,J.-j, Yao, X., and LiuK.-d. (2016). BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis. Bot. Stud. 57: 1-12.
|
[292] |
Zhao,C., Safdar, L.B., Xie,M., Shi,M., Dong,Z., Yang,L., Cheng, X., Liu,Y., Bai,Z., and Xiang, Y. (2021a). Mutation of the PHYTOENE DESATURASE 3 gene causes yellowish-white petals in Brassica napus. Crop J. 9: 1124-1134.
|
[293] |
Zhao,C., Xie,M., Liang,L., Yang, L., Han,H., Qin,X., Zhao,J., Hou,Y., Dai, W., and Du,C. (2022). Genome-wide association analysis combined with quantitative trait loci mapping and dynamic transcriptome unveil the genetic control of seed oil content in Brassica napus L. Front. Plant Sci. 13: 929197.
|
[294] |
Zhao,C., Zhang,Y., Gao,L., Xie, M., Zhang,X., Zeng,L., Liu,J., Liu,Y., Zhang, Y., and Tong,C. (2024). Genome editing of RECEPTOR-LIKE KINASE 902 confers resistance to necrotrophic fungal pathogens in Brassica napus without growth penalties. Plant Biotechnol. J. 22: 538-540.
|
[295] |
Zhao,H., Li,J., Yang,L., Qin, G., Xia,C., Xu,X., Su,Y., Liu,Y., Ming, L., and Chen,L.-L. (2021b). An inferred functional impact map of genetic variants in rice. Mol. Plant 14: 1584-1599.
|
[296] |
Zhao,H., Tu,Z., Liu,Y., Zong, Z., Li,J., Liu,H., Xiong,F., Zhan,J., Hu, X., and Xie,W. (2021c). PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants. Nucleic Acids Res. 49: W523-W529.
|
[297] |
Zhao,J., and Meng, J. (2003). Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor. Appl. Genet. 106: 759-764.
|
[298] |
Zheng,M., Terzaghi, W., Wang,H., and Hua,W. (2022). Integrated strategies for increasing rapeseed yield. Trends Plant Sci. 27: 742-745.
|
[299] |
Zheng,M., Zhang,L., Tang,M., Liu, J., Liu,H., Yang,H., Fan,S., Terzaghi,W., Wang, H., and Hua,W. (2020). Knockout of two BnaX1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol. J. 18: 644-654.
|
[300] |
Zhou,J., and Troyanskaya, O.G. (2015). Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 12: 931-934.
|
[301] |
Zhou,Q., Zhou,C., Zheng,W., Mason, A.S., Fan,S., Wu,C., Fu,D., and Huang,Y. (2017). Genome-wide SNP markers based on SLAF-seq uncover breeding traces in rapeseed (Brassica napus L.). Front. Plant Sci. 8: 648.
|
[302] |
Zhou,X., Zhang,H., Wang,P., Liu, Y., Zhang,X., Song,Y., Wang,Z., Ali,A., Wan, L., and Yang,G. (2022). BnaC7.ROT3, the causal gene of cqSL-C7, mediates silique length by affecting cell elongation in Brassica napus. J. Exp. Bot. 73: 154-167.
|
[303] |
Zhou,X., Zhang,H., Xie,Z., Liu, Y., Wang,P., Dai,L., Zhang,X., Wang,Z., Wang, Z., and Wan,L. (2023). Natural variation and artificial selection at the BnaC2.MYB28 locus modulate Brassica napus seed glucosinolate. Plant Physiol. 191: 352-368.
|
[304] |
Zhou,Z., Dun,X., Xia,S., Shi, D., Qin,M., Yi,B., Wen,J., Shen,J., Ma, C., and Tu,J. (2012). BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus. J. Exp. Bot. 63: 2041-2058.
|
[305] |
Zhu,J.-K. (2007). Plant salt stress. In Encyclopedia of Life Sciences. (New York: John Wiley & Sons, Ltd) pp. 1-3.
|
[306] |
Zhu,Y., Cao,Z., Xu,F., Huang, Y., Chen,M., Guo,W., Zhou,W., Zhu,J., Meng, J., and Zou,J. (2012). Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.). Theor. Appl. Genet. 124: 515-531.
|
[307] |
Zou,J., Mao,L., Qiu,J., Wang, M., Jia,L., Wu,D., He,Z., Chen,M., Shen, Y., and Shen,E. (2019). Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnol. J. 17: 1998-2010.
|
[308] |
Zou,Z., and Fernando, W.D. (2023). Overexpression of BnNAC19 in Brassica napus enhances resistance to Leptosphaeria maculans, the blackleg pathogen of canola. Plant Pathol. 73: 104-114.
|
[309] |
Zou,Z., Liu,F., Huang,S., and Fernando, W.D. (2021). Genome-wide identification and analysis of the valine-glutamine motif-containing gene family in Brassica napus and functional characterization of BnMKS1 in response to Leptosphaeria maculans. Phytopathology 111: 281-292.
|
/
〈 | 〉 |