Molecular regulation of the key specialized metabolism pathways in medicinal plants

Min Shi, Siwei Zhang, Zizhen Zheng, Itay Maoz, Lei Zhang, Guoyin Kai

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (3) : 510-531. DOI: 10.1111/jipb.13634
Invited Expert Review

Molecular regulation of the key specialized metabolism pathways in medicinal plants

Author information +
History +

Abstract

The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.

Keywords

biosynthesis / medicinal plants / omics / secondary metabolism / transcription factors

Cite this article

Download citation ▾
Min Shi, Siwei Zhang, Zizhen Zheng, Itay Maoz, Lei Zhang, Guoyin Kai. Molecular regulation of the key specialized metabolism pathways in medicinal plants. Journal of Integrative Plant Biology, 2024, 66(3): 510‒531 https://doi.org/10.1111/jipb.13634

References

[1]
Bai,Z., Li,W., Jia,Y., Yue, Z., Jiao,J., Huang,W., Xia,P., and Liang,Z. (2018). The ethylene response factor SmERF6 co-regulates the transcription of SmCPS1 and SmKSL1 and is involved in tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. Planta 248: 243-255.
[2]
Beaudoin,G.A., and Facchini, P.J. (2013). Isolation and characterization of a cDNA encoding (S)-cis-N-methylstylopine 14-hydroxylase from opium poppy, a key enzyme in sanguinarine biosynthesis. Biochem. Biophys. Res. Commun. 431: 597-603.
[3]
Cao,W., Wang,Y., Shi,M., Hao, X., Zhao,W., Wang,Y., Ren,J., and Kai,G. (2018). Transcription factor SmWRKY1 positively promotes the biosynthesis of tanshinones in Salvia miltiorrhiza. Front. Plant Sci. 9: 554.
[4]
Cao,X., Xu,L., Li,L., Wan, W., and Jiang,J. (2022). TcMYB29a, an ABA-responsive R2R3-MYB transcriptional factor, upregulates taxol biosynthesis in Taxus chinensis. Front. Plant Sci. 13: 804593.
[5]
Chang,C., Liu,Z., Wang,Y., Tang, Z., and Yu,F. (2019). A bZIP transcription factor, CaLMF, mediated light-regulated camptothecin biosynthesis in Camptotheca acuminata. Tree Physiol. 39: 372-380.
[6]
Chen,H., Chena,F., Chiu,F.C., and Lo, C.M. (2001). The effect of yeast elicitor on the growth and secondary metabolism of hairy root cultures of Salvia miltiorrhiza. Enzyme Microb. Technol. 28: 100-105.
[7]
Chen,J., Zhou,Y., Zhang,Q., Liu, Q., Li,L., Sun,C., Wang,K., Wang,Y., Zhao, M., Li,H., et al. (2020). Structural variation, functional differentiation and expression characteristics of the AP2/ERF gene family and its response to cold stress and methyl jasmonate in Panax ginseng C.A. Meyer. PLoS ONE 15: e0226055.
[8]
Chen,M., Yan,T., Shen,Q., Lu, X., Pan,Q., Huang,Y., Tang,Y., Fu,X., Liu, M., Jiang,W., et al. (2017). GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. New Phytol. 214: 304-316.
[9]
Chen,S., Xu,J., Liu,C., Zhu, Y., Nelson,D.R., Zhou,S., Li,C., Wang,L., Guo, X., Sun,Y., et al. (2012). Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat. Commun. 3: 913.
[10]
Chen,Y., Zhang,H., Zhang,M., Zhang, W., Ou,Z., Peng,Z., Fu,C., Zhao,C., and Yu, L. (2021). Salicylic acid-responsive factor TcWRKY33 positively regulates taxol biosynthesis in Taxus chinensis in direct and indirect ways. Front. Plant Sci. 12: 697476.
[11]
Cui,L., Huang,F., Zhang,D., Lin, Y., Liao,P., Zong,J., and Kai, G. (2015). Transcriptome exploration for further understanding of the tropane alkaloids biosynthesis in Anisodus acutangulus. Mol. Genet. Genomics 290: 1367-1377.
[12]
Deng,C., Hao,X., Shi,M., Fu, R., Wang,Y., Zhang,Y., Zhou,W., Feng,Y., Makunga, N.P., and Kai,G. (2019). Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots. Plant Sci. 284: 1-8.
[13]
Deng,C., Wang,Y., Huang,F., Lu, S., Zhao,L., Ma,X., and Kai, G. (2020a). SmMYB2 promotes salvianolic acid biosynthesis in the medicinal herb Salvia miltiorrhiza. J. Integr. Plant Biol. 62: 1688-1702.
[14]
Deng,C., Shi,M., Fu,R., Zhang, Y., Wang,Q., Zhou,Y., Wang,Y., Ma,X., and Kai, G. (2020b). ABA-responsive transcription factor bZIP1 is involved in modulating biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza. J. Exp. Bot. 71: 5948-5962.
[15]
Di,P., Zhang,L., Chen,J., Tan, H., Xiao,Y., Dong,X., Zhou,X., and Chen,W. (2013). ¹³C tracer reveals phenolic acids biosynthesis in hairy root cultures of Salvia miltiorrhiza. ACS Chem. Biol. 8: 1537-1548.
[16]
Ding,M., Zhang,B., Zhang,S., Hao, R., Xia,Y., Ma,P., and Dong, J. (2023). The SmNPR4-SmTGA5 module regulates SA-mediated phenolic acid biosynthesis in Salvia miltiorrhiza hairy roots. Hortic. Res. 10: uhad066.
[17]
Ding,Y., Lv,J., Shi,Y., Gao, J., Hua,J., Song,C., Gong,Z., and Yang,S. (2019). EGR2 phosphatase regulates OST1 kinase activity and freezing tolerance in Arabidopsis. EMBO J. 38: e99819.
[18]
Dong,J., Wan,G., and Liang,Z. (2010). Accumulation of salicylic acid induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J. Biotechnol. 148: 99-104.
[19]
Du,T., Niu,J., Su,J., Li, S., Guo,X., Li,L., Cao,X., and Kang,J. (2018). SmbHLH37 functions antagonistically with SmMYC2 in regulating jasmonate-mediated biosynthesis of phenolic acids in Salvia miltiorrhiza. Front. Plant Sci. 9: 1720.
[20]
Fang,S., Qiu,S., Chen,K., Lv, Z., and Chen,W. (2023a). The transcription factors SbMYB45 and SbMYB86.1 regulate flavone biosynthesis in Scutellaria baicalensis. Plant Physiol. Biochem. 200: 107794.
[21]
Fang,S., Zhang,C., Qiu,S., Xiao, Y., Chen,K., Lv,Z., and Chen, W. (2023b). SbWRKY75- and SbWRKY41-mediated jasmonic acid signaling regulates baicalin biosynthesis. Front. Plant Sci. 14: 1213662.
[22]
Fang,Y., Liu,J., Zheng,M., Zhu, S., Pei,T., Cui,M., Chang,L., Xiao,H., Yang, J., Martin,C., et al. (2022). SbMYB3 transcription factor promotes root-specific flavone biosynthesis in Scutellaria baicalensis. Hortic. Res. 10: uhac2.
[23]
Feng,G., Wu,J., Xu,Y., Lu, L., and Yi,H. (2021). High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis. Plant Biotechnol. J. 19: 1337-1353.
[24]
Fu,X., Peng,B., Hassani,D., Xie, L., Liu,H., Li,Y., Chen,T., Liu,P., Tang, Y., Li,L., et al. (2021). AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua. New Phytol. 231: 1858-1874.
[25]
Gao,W., Hillwig, M.L., Huang,L., Cui,G., Wang,X., Kong,J., Yang, B., and Peters,R.J. (2009). A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org. Lett. 11: 5170-5173.
[26]
Gao,J., Zhang,Y., Liu,X., Wu, X., Huang,L., and Gao,W. (2021). Triptolide: Pharmacological spectrum, biosynthesis, chemical synthesis and derivatives. Theranostics 11: 7199-7221.
[27]
Garg,A., Sharma, S., Srivastava,P., and Ghosh,S. (2021). Application of virus-induced gene silencing in Andrographis paniculata, an economically important medicinal plant. Protoplasma 258: 1155-1162.
[28]
Ge,X., and Wu, J. (2005). Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci. 168: 487-491.
[29]
Guo,J., Zhou,Y.J., Hillwig,M.L., Shen,Y., Yang,L., Wang,Y., Zhang, X., Liu,W., Peters,R.J., Chen,X., et al. (2013). CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc. Natl. Acad. Sci. U.S.A. 110: 12108-12113.
[30]
Guo,J., Ma,X., Cai,Y., Ma, Y., Zhan,Z., Zhou,Y.J., Liu,W., Guan,M., Yang, J., Cui,G., et al. (2016). Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones. New Phytol. 210: 525-534.
[31]
Guo,L., Winzer, T., Yang,X., Li,Y., Ning,Z., He,Z., Teodor, R., Lu,Y., Bowser,T.A., Graham, I.A., et al. (2018). The opium poppy genome and morphinan production. Science 362: 343-347.
[32]
Guo,X., Luo,Z., Zhang,M., Huang, L., Wang,H., Li,Y., Qiao,X., Li,A., and Wu, B. (2022). The spatiotemporal regulations of epicatechin biosynthesis under normal flowering and the continuous inflorescence removal treatment in Fagopyrum dibotrys. BMC Plant Biol. 22: 379.
[33]
Hao,X., Zhong,Y., Nützmann,H.W., Fu,X., Yan,T., Shen,Q., Chen, M., Ma,Y., Zhao,J., Osbourn, A., et al. (2019). Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua. Plant Cell Physiol. 60: 1747-1760.
[34]
Hao,X., Pu,Z., Cao,G., You, D., Zhou,Y., Deng,C., Shi,M., Nile,S.H., Wang, Y., Zhou,W., et al. (2020). Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots. J. Adv. Res. 23: 1-12.
[35]
Hao,X., Xie,C., Ruan,Q., Zhang, X., Wu,C., Han,B., Qian,J., Zhou,W., Nützmann, H.W., and Kai,G. (2021). The transcription factor OpWRKY2 positively regulates the biosynthesis of the anticancer drug camptothecin in Ophiorrhiza pumila. Hortic. Res. 8: 7.
[36]
Hao,X., Wang,C., Zhou,W., Ruan, Q., Xie,C., Yang,Y., Xiao,C., Cai,Y., Wang, J., Wang,Y., et al. (2023). OpNAC1 transcription factor regulates the biosynthesis of the anticancer drug camptothecin by targeting loganic acid O-methyltransferase in Ophiorrhiza pumila. J. Integr. Plant Biol. 65: 133-149.
[37]
Hassani,D., Fu,X., Shen,Q., Khalid, M., Rose,J.K.C., and Tang,K. (2020). Parallel transcriptional regulation of artemisinin and flavonoid biosynthesis. Trends Plant Sci. 25: 466-476.
[38]
Hevener,K., Verstak, T.A., Lutat,K.E., Riggsbee,D.L., and Mooney, J.W. (2018). Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm. Sin. B 8: 844-861.
[39]
Hou,M., Wang,R., Zhao,S., and Wang, Z. (2021). Ginsenosides in Panax genus and their biosynthesis. Acta Pharm. Sin. B 11: 1813-1834.
[40]
Hsieh,M.H., Pan,Z.J., Lai,P.H., Lu, H.C., Yeh,H.H., Hsu,C.C., Wu,W.L., Chung,M.C., Wang, S.S., Chen,W.H., et al. (2013). Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids. J. Exp. Bot. 64: 3869-3884.
[41]
Huang,C., Li,P., Yang,X., Niu, T., Zhao,S., Yang,L., Wang,R., and Wang,Z. (2023). Integrated transcriptome and proteome analyses reveal candidate genes for ginsenoside biosynthesis in Panax japonicus C. A. Meyer. Front. Plant Sci. 13: 1106145.
[42]
Huang,Q., Sun,M., Yuan,T., Wang, Y., Shi,M., Lu,S., Tang,B., Pan,J., Wang, Y., and Kai,G. (2019). The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Food Chem. 274: 368-375.
[43]
Huo,Y., Zhang,J., Zhang,B., Chen, L., Zhang,X., and Zhu,C. (2021a). MYC2 transcription factors TwMYC2a and TwMYC2b negatively regulate triptolide biosynthesis in Tripterygium wilfordii hairy roots. Plants 10: 679.
[44]
Huo,Y., Zhang,B., Chen,L., Zhang, J., Zhang,X., and Zhu,C. (2021b). Isolation and functional characterization of the promoters of miltiradiene synthase genes, TwTPS27a and TwTPS27b, and interaction analysis with the transcription factor TwTGA1 from Tripterygium wilfordii. Plants 10: 418.
[45]
Jia,N., Wang,J.J., Liu,J., Jiang, J., Sun,J., Yan,P., Sun,Y., Wan,P., Ye, W., and Fan,B. (2021). DcTT8, a bHLH transcription factor, regulates anthocyanin biosynthesis in Dendrobium candidum. Plant Physiol. Biochem. 162: 603-612.
[46]
Jia,Y., Bai,Z., Pei,T., Ding, K., Liang,Z., and Gong,Y. (2017). The protein kinase SmSnRK2.6 positively regulates phenolic acid biosynthesis in Salvia miltiorrhiza by interacting with SmAREB1. Front. Plant Sci. 8: 1384.
[47]
Jiang,B., Shi,Y., Zhang,X., Xin, X., Qi,L., Guo,H., Li,J., and Yang,S. (2017). PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 114: E6695-E6702.
[48]
Jiang,Z., Tu,L., Yang,W., Zhang, Y., Hu,T., Ma,B., Lu,Y., Cui,X., Gao, J., Wu,X., et al. (2021). The chromosome-level reference genome assembly for Panax notoginseng and insights into ginsenoside biosynthesis. Plant Commun. 2: 100113.
[49]
Jiao,H., Hua,Z., Zhou,J., Hu, J., Zhao,Y., Wang,Y., Yuan,Y., and Huang,L. (2023). Genome-wide analysis of Panax MADS-box genes reveals role of PgMADS41 and PgMADS44 in modulation of root development and ginsenoside synthesis. Int. J. Biol. Macromol. 233: 123648.
[50]
Jing,F., Zhang,L., Li,M., Tang, Y., Wang,Y., Wang,Y., Wang,Q., Pan,Q., Wang, G., and Tang,K. (2009). Abscisic acid (ABA) treatment increases artemisinin content in Artemisia annua by enhancing the expression of genes in artemisinin biosynthetic pathway. Biologia 64: 319-323.
[51]
Kai,G., Xu,H., Zhou,C., Liao, P., Xiao,J., Luo,X., You,L., and Zhang,L. (2011a). Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab. Eng. 13: 319-327.
[52]
Kai,G., Yang,S., Luo,X., Zhou, W., Fu,X., Zhang,A., Zhang,Y., and Xiao,J. (2011b). Co-expression of AaPMT and AaTRI effectively enhances the yields of tropane alkaloids in Anisodus acutangulus hairy roots. BMC Biotechnol. 11: 43.
[53]
Kai,G., Zhang,A., Guo,Y., Li, L., Cui,L., Luo,X., Liu,C., and Xiao,J. (2012). Enhancing the production of tropane alkaloids in transgenic Anisodus acutangulus hairy root cultures by over-expressing tropinone reductase I and hyoscyamine-6β-hydroxylase. Mol. BioSyst. 8: 2883-2890.
[54]
Kato,N., Dubouzet, E., Kokabu,Y., Yoshida,S., Taniguchi, Y., Dubouzet,J.G., Yazaki,K., and Sato, F. (2007). Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant Cell Physiol. 48: 8-18.
[55]
Kong,L., Sun,J., Jiang,Z., Ren, W., Wang,Z., Zhang,M., Liu,X., Wang,L., Ma, W., and Xu,J. (2023). Identification and expression analysis of YABBY family genes in Platycodon grandiflorus. Plant Signal. Behav. 18: 2163069.
[56]
Lei,J., Chen,Q., Deng,B., Zhang, J., Liu,D., Cui,X., and Ge, F. (2022). Biosynthesis of Panax notoginseng saponins regulated by R2R3-MYB transcription factor PnMYB1. Biotechnol. Bull 38: 74-83.
[57]
Lenka,S.K., Nims,N.E., Vongpaseuth,K., Boshar,R.A., Roberts, S.C., and Walker,E.L. (2015). Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4. Front. Plant Sci. 6: 115.
[58]
Li,C.Y., Leopold, A.L., Sander,G.W., Shanks,J.V., Zhao,L., and Gibson,S.I. (2013). The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. BMC Plant Biol. 13: 155.
[59]
Li,L., Wang,D., Zhou,L., Yu, X., Yan,X., Zhang,Q., Li,B., Liu,Y., Zhou, W., Cao,X., et al. (2020). JA-responsive transcription factor SmMYB97 promotes phenolic acid and tanshinone accumulation in Salvia miltiorrhiza. J. Agric. Food Chem. 68: 14850-14862.
[60]
Li,S., Wu,Y., Kuang,J., Wang, H., Du,T., Huang,Y., Zhang,Y., Cao,X., and Wang, Z. (2018). SmMYB111 is a key factor to phenolic acid biosynthesis and interacts with both SmTTG1 and SmbHLH51 in Salvia miltiorrhiza. J. Agric. Food Chem. 66: 8069-8078.
[61]
Li,Y., Yang,Y., Li,P., Sheng, M., Li,L., Ma,X., Du,Z., Tang,K., Hao, X., and Kai,G. (2023). AaABI5 transcription factor mediates light and abscisic acid signaling to promote anti-malarial drug artemisinin biosynthesis in Artemisia annua. Int. J. Biol. Macromol. 253: 127345.
[62]
Liu,C., Wang,K., Yun,Z., Liu, W., Zhao,M., Wang,Y., Hu,J., Liu,T., Wang, N., Wang,Y., et al. (2023a). Functional study of PgGRAS68-01 gene involved in the regulation of ginsenoside biosynthesis in Panax ginseng. Int. J. Mol. Sci. 24: 3347.
[63]
Liu,H., Li,L., Fu,X., Li, Y., Chen,T., Qin,W., Yan,X., Wu,Z., Xie, L., Kayani,S., et al. (2023b). AaMYB108 is the core factor integrating light and jasmonic acid signaling to regulate artemisinin biosynthesis in Artemisia annua. New Phytol. 237: 2224-2237.
[64]
Liu,J., Cai,J., Wang,R., and Yang, S. (2016). Transcriptional regulation and transport of terpenoid indole alkaloid in Catharanthus roseus: Exploration of new research directions. Int. J. Mol. Sci. 18: 53.
[65]
Liu,T., Luo,T., Guo,X., Zou, X., Zhou,D., Afrin,S., Li,G., Zhang,Y., Zhang, R., and Luo,Z. (2019a). PgMYB2, a MeJA-responsive transcription factor, positively regulates the dammarenediol synthase gene expression in Panax Ginseng. Int. J. Mol. Sci. 20: 2219.
[66]
Liu,Y., Patra,B., Pattanaik,S., Wang,Y., and Yuan, L. (2019b). GATA and phytochrome interacting factor transcription factors regulate light-induced vindoline biosynthesis in Catharanthus roseus. Plant Physiol. 180: 1336-1350.
[67]
Lu,X., Zhang,L., Zhang,F., Jiang, W., Shen,Q., Zhang,L., Lv,Z., Wang,G., and Tang, K. (2013). AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol. 198: 1191-1202.
[68]
Lv,Z., Wang,S., Zhang,F., Chen, L., Hao,X., Pan,Q., Fu,X., Li,L., Sun, X., and Tang,K. (2016). Overexpression of a novel NAC domain-containing transcription factor gene (AaNAC1) enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua. Plant Cell Physiol. 57: 1961-1971.
[69]
Lv,Z., Guo,Z., Zhang,L., Zhang, F., Jiang,W., Shen,Q., Fu,X., Yan,T., Shi, P., Hao,X., et al. (2019). Interaction of bZIP transcription factor TGA6 with salicylic acid signaling modulates artemisinin biosynthesis in Artemisia annua. J. Exp. Bot. 70: 3969-3979.
[70]
Lv,Z., Li,J., Qiu,S., Qi, F., Su,H., Bu,Q., Jiang,R., Tang,K., Zhang, L., and Chen,W. (2022). The transcription factors TLR1 and TLR2 negatively regulate trichome density and artemisinin levels in Artemisia annua. J. Integr. Plant Biol. 64: 1212-1228.
[71]
Ma,J., Dey,M., Yang,H., Poulev, A., Pouleva,R., Dorn,R., Lipsky, P.E., Kennelly,E.J., and Raskin,I. (2007). Anti-inflammatory and immunosuppressive compounds from Tripterygium wilfordii. Phytochemistry 68: 1172-1178.
[72]
Ma,X., Zhu,Q., Chen,Y., and Liu, Y.G. (2016). CRISPR/Cas9 platforms for genome editing in plants: Developments and applications. Mol. Plant 9: 961-974.
[73]
Ma,Y., Cui,G., Chen,T., Ma, X., Wang,R., Jin,B., Yang,J., Kang,L., Tang, J., Lai,C., et al. (2021). Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Nat. Commun. 12: 685.
[74]
Ma,Y., Xu,D., Li,L., Zhang, F., Fu,X., Shen,Q., Lyu,X.Y., Wu,Z., Pan, Q., Shi,P., et al. (2018). Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in Artemisia annua. Sci. Adv. 4: eaas9357.
[75]
Man,J., Shi,Y., Huang,Y., Zhang, X., Wang,X., Liu,S., He,G., An,K., Han, D., Wang,X., et al. (2023). PnMYB4 negatively modulates saponin biosynthesis in Panax notoginseng through interplay with PnMYB1. Hortic. Res. 10: uhad134.
[76]
Memelink,J., and Gantet, P. (2007). Transcription factors involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Phytochem. Rev. 6: 353-362.
[77]
Menke,F.L., Champion, A., Kijne,J.W., and Memelink,J. (1999). A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J. 18: 4455-4463.
[78]
Mishra,S., Phukan, U.J., Tripathi,V., Singh,D.K., Luqman, S., and Shukla,R.K. (2015). PsAP2 an AP2/ERF family transcription factor from Papaver somniferum enhances abiotic and biotic stress tolerance in transgenic tobacco. Plant Mol. Biol. 89: 173-186.
[79]
Pan,Q., Wang,C., Xiong,Z., Wang, H., Fu,X., Shen,Q., Peng,B., Ma,Y., Sun, X., and Tang,K. (2019). CrERF5, an AP2/ERF transcription factor, positively regulates the biosynthesis of bisindole alkaloids and their precursors in Catharanthus roseus. Front. Plant Sci. 10: 931.
[80]
Patra,B., Schluttenhofer, C., Wu,Y., Pattanaik,S., and Yuan, L. (2013). Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim. Biophys. Acta 1829: 1236-1247.
[81]
Paul,P., Singh,S.K., Patra,B., Sui, X., Pattanaik,S., and Yuan,L. (2017). A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol. 213: 1107-1123.
[82]
Peng,J.J., Wu,Y.C., Wang,S.Q., Niu, J.F., and Cao,X.Y. (2020). SmbHLH53 is relevant to jasmonate signaling and plays dual roles in regulating the genes for enzymes in the pathway for salvianolic acid B biosynthesis in Salvia miltiorrhiza. Gene 756: 144920.
[83]
Qiu,F., Yang,C., Yuan,L., Xiang, D., Lan,X., Chen,M., and Liao, Z. (2018). A phenylpyruvic acid reductase is required for biosynthesis of tropane alkaloids. Org. Lett. 20: 7807-7810.
[84]
Qiu,F., Zeng,J., Wang,J., Huang, J.P., Zhou,W., Yang,C., Lan,X., Chen,M., Huang, S.X., Kai,G., et al. (2020). Functional genomics analysis reveals two novel genes required for littorine biosynthesis. New Phytol. 225: 1906-1914.
[85]
Rai,A., Hirakawa, H., Nakabayashi,R., Kikuchi,S., Hayashi, K., Rai,M., Tsugawa,H., Nakaya, T., Mori,T., Nagasaki,H., et al. (2021). Chromosome-level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis. Nat. Commun. 12: 405.
[86]
Ran,Z., Chen,X., Li,R., Duan, W., Zhang,Y., Fang,L., Guo,L., and Zhou,J. (2023). Transcriptomics and metabolomics reveal the changes induced by arbuscular mycorrhizal fungi in Panax quinquefolius L. J. Sci. Food Agric. 103: 4919-4933.
[87]
Rohani,E.R., Chiba,M., Kawaharada,M., Asano,T., Oshima, Y., Mitsuda,N., Ohme-Takagi,M., Fukushima, A., Rai,A., Saito,K., et al. (2016). An MYB transcription factor regulating specialized metabolisms in Ophiorrhiza pumila. Plant Biotechnol. 33: 1-9.
[88]
Ruan,Q., Patel,G., Wang,J., Luo, E., Zhou,W., Sieniawska,E., Hao,X., and Kai,G. (2021). Current advances of endophytes as a platform for production of anti-cancer drug camptothecin. Food Chem. Toxicol. 151: 112113.
[89]
Schweizer,F., Colinas, M., Pollier,J., Van Moerkercke,A., Vanden Bossche, R., de Clercq,R., and Goossens,A. (2018). An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus. Metab. Eng. 48: 150-162.
[90]
Shen,Q., Lu,X., Yan,T., Fu, X., Lv,Z., Zhang,F., Pan,Q., Wang,G., Sun, X., and Tang,K. (2016). The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytol. 210: 1269-1281.
[91]
Shen,Q., Zhang,L., Liao,Z., Wang, S., Yan,T., Shi,P., Liu,M., Fu,X., Pan, Q., Wang,Y., et al. (2018). The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis. Mol. Plant 11: 776-788.
[92]
Shi,M., Luo,X., Ju,G., Yu, X., Hao,X., Huang,Q., Xiao,J., Cui,L., and Kai, G. (2014). Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Funct. Integr. Genomics 14: 603-615.
[93]
Shi,M., Luo,X., Ju,G., Li, L., Huang,S., Zhang,T., Wang,H., and Kai,G. (2016). Enhanced diterpene tanshinone accumulation and bioactivity of transgenic Salvia miltiorrhiza hairy roots by pathway engineering. J. Agric. Food Chem. 64: 2523-2530.
[94]
Shi,M., Gong,L., Cui,L., Wang, Q., Wang,C., Wang,Y., and Kai, G. (2020). Targeted metabolic engineering of committed steps improves anti-cancer drug camptothecin production in Ophiorrhiza pumila hairy roots. Ind. Crop Prod. 148: 112277.
[95]
Shi,M., Liao,P., Nile,S.H., Georgiev, M.I., and Kai,G. (2021a). Biotechnological exploration of transformed root culture for value-added products. Trends Biotechnol. 39: 137-149.
[96]
Shi,M., Hua,Q., and Kai,G. (2021b). Comprehensive transcriptomic analysis in response to abscisic acid in Salvia miltiorrhiza. Plant Cell Tiss. Org. 147: 389-404.
[97]
Shi,M., Du,Z., Hua,Q., and Kai, G. (2021c). CRISPR/Cas9-mediated targeted mutagenesis of bZIP2 in Salvia miltiorrhiza leads to promoted phenolic acid biosynthesis. Ind. Crop Prod 167: 113560.
[98]
Shi,M., Zhu,R., Zhang,Y., Zhang, S., Liu,T., Li,K., Liu,S., Wang,L., Wang, Y., Zhou,W., et al. (2022a). A novel WRKY34-bZIP3 module regulates phenolic acid and tanshinone biosynthesis in Salvia miltiorrhiza. Metab. Eng. 73: 182-191.
[99]
Shi,M., Huang,Q., Wang,Y., Wang, C., Zhu,R., Zhang,S., and Kai, G. (2022b). Genome-wide survey of the GATA gene family in camptothecin-producing plant Ophiorrhiza pumila. BMC Genomics 23: 256.
[100]
Shi,P., Fu,X., Shen,Q., Liu, M., Pan,Q., Tang,Y., Jiang,W., Lv,Z., Yan, T., Ma,Y., et al. (2018). The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in Artemisia annua. New Phytol. 217: 261-276.
[101]
Su,L., Zheng,L., Wang,H., Qu, Y., Ge,F., and Liu,D. (2023). Panax notoginseng transcription factor WRKY15 modulates resistance to Fusarium solani by up-regulating osmotin-like protein expression and inducing JA/SA signaling pathways. BMC Plant Biol. 23: 362.
[102]
Sui,X., Singh,S.K., Patra,B., Schluttenhofer, C., Guo,W., Pattanaik,S., and Yuan, L. (2018). Cross-family transcription factor interaction between MYC2 and GBFs modulates terpenoid indole alkaloid biosynthesis. J. Exp. Bot. 69: 4267-4281.
[103]
Sun,J., and Peebles, C.A. (2016). Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production. Protoplasma 253: 1255-1264.
[104]
Sun,M., Shi,M., Wang,Y., Huang, Q., Yuan,T., Wang,Q., Wang,C., Zhou,W., and Kai, G. (2019). The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. J. Exp. Bot. 70: 243-254.
[105]
Sun,Y., Niu,Y., Xu,J., Li, Y., Luo,H., Zhu,Y., Liu,M., Wu,Q., Song, J., Sun,C., et al. (2013). Discovery of WRKY transcription factors through transcriptome analysis and characterization of a novel methyl jasmonate inducible PqWRKY1 gene from Panax quinquefolius. Plant Cell Tiss. Org. 114: 269-277.
[106]
Suttipanta,N., Pattanaik, S., Kulshrestha,M., Patra,B., Singh,S.K., and Yuan,L. (2011). The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol. 157: 2081-2093.
[107]
Tu,L., Su,P., Zhang,Z., Gao, L., Wang,J., Hu,T., Zhou,J., Zhang,Y., Zhao, Y., Liu,Y., et al. (2020). Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nat. Commun. 11: 971.
[108]
Udomsom,N., Rai,A., Suzuki,H., Okuyama, J., Imai,R., Mori,T., Nakabayashi, R., Saito,K., and Yamazaki,M. (2016). Function of AP2/ERF transcription factors involved in the regulation of specialized metabolism in Ophiorrhiza pumila revealed by transcriptomics and metabolomics. Front. Plant Sci. 7: 1861.
[109]
van der Fits,L., and Memelink, J. (2000). ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289: 295-297.
[110]
Van Moerkercke,A., Steensma, P., Gariboldi,I., Espoz,J., Purnama, P.C., Schweizer,F., Miettinen,K., Vanden Bossche, R., De Clercq,R., Memelink,J., et al. (2016). The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. Plant J. 88: 3-12.
[111]
Van Moerkercke,A., Steensma, P., Schweizer,F., Pollier,J., Gariboldi, I., Payne,R., Vanden Bossche,R., Miettinen, K., Espoz,J., Purnama,P.C., et al. (2015). The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proc. Natl. Acad. Sci. U.S.A. 112: 8130-8135.
[112]
Wang,C., Hao,X., Wang,Y., Maoz, I., Zhou,W., Zhou,Z., and Kai, G. (2022). Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorrhiza pumila. Hortic. Res. 9: uhac099.
[113]
Wang,C., Wu,C., Wang,Y., Xie, C., Shi,M., Nile,S., Zhou,Z., and Kai,G. (2019). Transcription factor OpWRKY3 is involved in the development and biosynthesis of camptothecin and its precursors in Ophiorrhiza pumila hairy roots. Int. J. Mol. Sci. 20: 3996.
[114]
Wang,J., Li,J., Li,J., Liu, S., Wu,X., Li,J., and Gao, W. (2016). Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to methyl jasmonate in Panax Quinquefolium adventitious root. Sci. Rep. 6: 37263.
[115]
Wang,J., Li,Y., Yang,Y., Xiao, C., Ruan,Q., Li,P., Zhou,Q., Sheng,M., Hao, X., and Kai,G. (2023). Comprehensive analysis of OpHD-ZIP transcription factors related to the regulation of camptothecin biosynthesis in Ophiorrhiza pumila. Int. J. Biol. Macromol. 242: 124910.
[116]
Wang,M., Qiu,X., Pan,X., and Li, C. (2021). Transcriptional factor-mediated regulation of active component biosynthesis in medicinal plants. Curr. Pharm. Biotechnol. 22: 848-866.
[117]
Wang,W., Hu,S., Yang,J., Zhang, C., Zhang,T., Wang,D., Cao,X., and Wang,Z. (2022). A novel R2R3-MYB transcription factor SbMYB12 positively regulates baicalin biosynthesis in Scutellaria baicalensis Georgi. Int. J. Mol. Sci. 23: 15452.
[118]
Wu,B., Long,Q., Gao,Y., Wang, Z., Shao,T., Liu,Y., Li,Y., and Ding,W. (2015). Comprehensive characterization of a time-course transcriptional response induced by autotoxins in Panax ginseng using RNA-Seq. BMC Genomics 16: 1010.
[119]
Wu,Z.H., Wang,R.Z., Sun,Z.L., Su, Y., and Xiao,L.T. (2022). A mass spectrometry imaging approach on spatiotemporal distribution of multiple alkaloids in Gelsemium elegans. Front. Plant Sci. 13: 1051756.
[120]
Xiang,L., Zhu,S., Zhao,T., Zhang, M., Liu,W., Chen,M., Lan,X., and Liao,Z. (2015). Enhancement of artemisinin content and relative expression of genes of artemisinin biosynthesis in Artemisia annua by exogenous MeJA treatment. Plant Growth Regul. 75: 435-441.
[121]
Xiao,Y., Feng,J., Li,Q., Zhou, Y., Bu,Q., Zhou,J., Tan,H., Yang,Y., Zhang, L., and Chen,W. (2020). IiWRKY34 positively regulates yield, lignan biosynthesis and stress tolerance in Isatis indigotica. Acta Pharm. Sin. B 10: 2417-2432.
[122]
Xiao,Y., Zhang,L., Gao,S., Saechao, S., Di,P., Chen,J., and Chen, W. (2011). The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS ONE 6: e29713.
[123]
Xie,L., Yan,T., Li,L., Chen, M., Hassani,D., Li,Y., Qin,W., Liu,H., Chen, T., Fu,X., et al. (2021). An HD-ZIP-MYB complex regulates glandular secretory trichome initiation in Artemisia annua. New Phytol. 231: 2050-2064.
[124]
Xie,Z., Yang,C., Liu,S., Li, M., Gu,L., Peng,X., and Zhang, Z. (2022). Identification of AP2/ERF transcription factors in Tetrastigma hemsleyanum revealed the specific roles of ERF46 under cold stress. Front. Plant Sci. 13: 936602.
[125]
Xu,H., Song,J., Luo,H., Zhang, Y., Li,Q., Zhu,Y., Xu,J., Li,Y., Song, C., Wang,B., et al. (2016). Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol. Plant 9: 949-952.
[126]
Xu,J., Chu,Y., Liao,B., Xiao, S., Yin,Q., Bai,R., Su,H., Dong,L., Li, X., Qian,J., et al. (2017). Panax ginseng genome examination for ginsenoside biosynthesis. Gigascience 6: 1-15.
[127]
Xu,M., Wu,C., Zhao,L., Wang, Y., Wang,C., Zhou,W., Ming,Y., and Kai,G. (2020). WRKY transcription factor OpWRKY1 acts as a negative regulator of camptothecin biosynthesis in Ophiorrhiza pumila hairy roots. Plant Cell Tiss. Org. 142: 69-78.
[128]
Yamada,Y., Kokabu, Y., Chaki,K., Yoshimoto,T., Ohgaki, M., Yoshida,S., Kato,N., Koyama, T., and Sato,F. (2011). Isoquinoline alkaloid biosynthesis is regulated by a unique bHLH-type transcription factor in Coptis japonica. Plant Cell Physiol. 52: 1131-1141.
[129]
Yamada,Y., Motomura, Y., and Sato,F. (2015). CjbHLH1 homologs regulate sanguinarine biosynthesis in Eschscholzia californica cells. Plant Cell Physiol. 56: 1019-1030.
[130]
Yamada,Y., and Sato, F. (2021). Transcription factors in alkaloid engineering. Biomolecules 11: 1719.
[131]
Yan,T., Chen,M., Shen,Q., Li, L., Fu,X., Pan,Q., Tang,Y., Shi,P., Lv, Z., Jiang,W., et al. (2017). HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua. New Phytol. 213: 1145-1155.
[132]
Yan,T., Li,L., Xie,L., Chen, M., Shen,Q., Pan,Q., Fu,X., Shi,P., Tang, Y., Huang,H., et al. (2018). A novel HD-ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in Artemisia annua. New Phytol. 218: 567-578.
[133]
Yang,C.Q., Fang,X., Wu,X.M., Mao, Y.B., Wang,L.J., and Chen,X.Y. (2012). Transcriptional regulation of plant secondary metabolism. J. Integr. Plant Biol. 54: 703-712.
[134]
Yang,M., Wang,Q., Liu,Y., Hao, X., Wang,C., Liang,Y., Chen,J., Xiao,Y., and Kai, G. (2021). Divergent camptothecin biosynthetic pathway in Ophiorrhiza pumila. BMC Biol. 19: 122.
[135]
Yang,N., Zhou,W., Su,J., Wang, X., Li,L., Wang,L., Cao,X., and Wang,Z. (2017). Overexpression of SmMYC2 increases the production of phenolic acids in Salvia miltiorrhiza. Front. Plant Sci. 8: 1804.
[136]
Yang,Q., Xiang,W., Li,Z., Nian, Y., Fu,X., Zhou,G., Li,L., Zhang,J., Huang, G., Han,X., et al. (2022). Genome-wide characterization and expression analysis of HD-ZIP gene family in Dendrobium officinale. Front. Genet. 13: 797014.
[137]
Yang,R., Wang,S., Zou,H., Li, L., Li,Y., Wang,D., Xu,H., and Cao,X. (2021). R2R3-MYB transcription factor SmMYB52 positively regulates biosynthesis of salvianolic acid B and inhibits root growth in Salvia miltiorrhiza. Int. J. Mol. Sci. 22: 9538.
[138]
Yao,L., Wang,J., Sun,J., He, J., Park,K.Y., Park,S.Y., Huang,L., and Gao,W. (2020). A WRKY transcription factor, PgWRKY4X, positively regulates ginsenoside biosynthesis by activating squalene epoxidase transcription in Panax ginseng. Ind. Crop Prod. 154: 112671.
[139]
Yu,C., Hou,K., Zhang,H., Liang, X., Chen,C., Wang,Z., Wu,Q., Chen,G., He, J., Bai,E., et al. (2023). Integrated mass spectrometry imaging and single-cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems. Plant J. 115: 1243-1260.
[140]
Yu,C., Luo,X., Zhang,C., Xu, X., Huang,J., Chen,Y., Feng,S., Zhan,X., Zhang, L., Yuan,H., et al. (2020). Tissue-specific study across the stem of Taxus media identifies a phloem-specific TmMYB3 involved in the transcriptional regulation of paclitaxel biosynthesis. Plant J. 103: 95-110.
[141]
Yu,C., Huang,J., Wu,Q., Zhang, C., Li,X., Xu,X., Feng,S., Zhan,X., Chen, Z., Wang,H., et al. (2022a). Role of female-predominant MYB39-bHLH13 complex in sexually dimorphic accumulation of taxol in Taxus media. Hortic. Res. 9: uhac062.
[142]
Yu,S., Lan,X., Zhou,J., Gao, K., Zhong,C., and Xie,J. (2022b). Dioscorea composita WRKY3 positively regulates salt-stress tolerance in transgenic Arabidopsis thaliana. J. Plant Physiol. 269: 153592.
[143]
Yu,S., Yang,L., Gao,K., Zhou, J., Lan,X., Xie,J., and Zhong, C. (2023). Dioscorea composita WRKY5 positively regulates AtSOD1 and AtABF2 to enhance drought and salt tolerances. Plant Cell Rep. 42: 1365-1378.
[144]
Yuan,M., Shu,G., Zhou,J., He, P., Xiang,L., Yang,C., Chen,M., Liao,Z., and Zhang, F. (2023). AabHLH113 integrates jasmonic acid and abscisic acid signaling to positively regulate artemisinin biosynthesis in Artemisia annua. New Phytol. 237: 885-899.
[145]
Zeng,J., Wang,J., Liu,X., Qin, J., Lan,X., Chen,M., and Liao, Z. (2020). An auxin-responsive transcription factor AbLBD1 promotes the development of lateral roots and reduces the biosynthesis of tropane alkaloids in Atropa belladonna. Plant Cell Tiss. Org. 142: 559-569.
[146]
Zhang,C., Wang,W., Wang,D., Hu, S., Zhang,Q., Wang,Z., and Cui, L. (2022b). Genome-wide identification and characterization of the WRKY gene family in Scutellaria baicalensis Georgi under diverse abiotic stress. Int. J. Mol. Sci. 23: 4225.
[147]
Zhang,D., Li,W., Xia,E.H., Zhang, Q.J., Liu,Y., Zhang,Y., Tong,Y., Zhao,Y., Niu, Y.C., Xu,J.H., et al. (2017a). The medicinal herb Panax notoginseng genome provides insights into ginsenoside biosynthesis and genome evolution. Mol. Plant 10: 903-907.
[148]
Zhang,F., Fu,X., Lv,Z., Lu, X., Shen,Q., Zhang,L., Zhu,M., Wang,G., Sun, X., Liao,Z., et al. (2015a). A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Mol. Plant 8: 163-175.
[149]
Zhang,X., Ge,F., Deng,B., Shah, T., Huang,Z., Liu,D., and Chen, C. (2017c). Molecular cloning and characterization of PnbHLH1 transcription factor in Panax notoginseng. Molecules 22: 1268.
[150]
Zhang,F., Xiang,L., Yu,Q., Zhang, H., Zhang,T., Zeng,J., Geng,C., Li,L., Fu, X., Shen,Q., et al. (2018a). ARTEMISININ BIOSYNTHESIS PROMOTING KINASE 1 positively regulates artemisinin biosynthesis through phosphorylating AabZIP1. J. Exp. Bot. 69: 1109-1123.
[151]
Zhang,H., Hedhili, S., Montiel,G., Zhang,Y., Chatel, G., Pré,M., Gantet,P., and Memelink, J. (2011). The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J. 67: 61-71.
[152]
Zhang,F., Lu,X., Lv,Z., Zhang, L., Zhu,M., Jiang,W., Wang,G., Sun,X., and Tang, K. (2013). Overexpression of the Artemisia orthologue of ABA receptor, AaPYL9, enhances ABA sensitivity and improves artemisinin content in Artemisia annual. PLoS ONE 8: e56697.
[153]
Zhang,H., Shen,X., Sun,S., Li, Y., Wang,S., Wei,J., Guo,B., and Sun,C. (2023). Integrated transcriptome and proteome analysis provides new insights into camptothecin biosynthesis and regulation in Camptotheca acuminata. Physiol. Plant. 175: e13916.
[154]
Zhang,J., Zhou,L., Zheng,X., Zhang, J., Yang,L., Tan,R., and Zhao, S. (2017b). Overexpression of SmMYB9b enhances tanshinone concentration in Salvia miltiorrhiza hairy roots. Plant Cell Rep. 36: 1297-1309.
[155]
Zhang,M., Li,S., Nie,L., Chen, Q., Xu,X., Yu,L., and Fu, C. (2015b). Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and activator of tasy gene of taxol biosynthesis in Taxus chinensis. Plant Mol. Biol. 89: 463-473.
[156]
Zhang,M., Jin,X., Chen,Y., Wei, M., Liao,W., Zhao,S., Fu,C., and Yu,L. (2018b). TcMYC2a, a basic helix-loop-helix transcription factor, transduces JA-signals and regulates taxol biosynthesis in Taxus chinensis. Front. Plant Sci. 9: 863.
[157]
Zhang,M., Liu,N., Teixeira da Silva,J.A., Liu,X., Deng,R., Yao,Y., Duan, J., and He,C. (2022c). Physiological and transcriptomic analysis uncovers salinity stress mechanisms in a facultative crassulacean acid metabolism plant Dendrobium officinale. Front. Plant Sci. 13: 1028245.
[158]
Zhang,Q., Liang,M., Zeng,J., Yang, C., Qin,J., Qiang,W., Lan,X., Chen,M., Lin, M., and Liao,Z. (2022a). Engineering tropane alkaloid production and glyphosate resistance by overexpressing AbCaM1 and G2-EPSPS in Atropa belladonna. Metab. Eng. 72: 237-246.
[159]
Zhang,X., Dong,J., Liu,H., Wang, J., Qi,Y., and Liang,Z. (2016). Transcriptome sequencing in response to salicylic acid in Salvia miltiorrhiza. PLoS ONE 11: e0147849.
[160]
Zhang,Y., Ji,A., Xu,Z., Luo, H., and Song,J. (2019). The AP2/ERF transcription factor SmERF128 positively regulates diterpenoid biosynthesis in Salvia miltiorrhiza. Plant Mol. Biol. 100: 83-93.
[161]
Zhao,D., Hamilton, J.P., Pham,G.M., Crisovan,E., Wiegert-Rininger, K., Vaillancourt,B., DellaPenna,D., and Buell, C.R. (2017). De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. Gigascience 6: 1-7.
[162]
Zhao,Q., Zhang,Y., Wang,G., Hill, L., Weng,J.K., Chen,X.Y., Xue,H., and Martin,C. (2016). A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Sci. Adv. 2: e1501780.
[163]
Zhao,Y., Liu,G., Yang,F., Liang, Y., Gao,Q., Xiang,C., Li,X., Yang,R., Zhang, G., Jiang,H., et al. (2023). Multilayered regulation of secondary metabolism in medicinal plants. Mol. Hortic. 3: 11.
[164]
Zheng,H., Fu,X., Shao,J., Tang, Y., Yu,M., Li,L., Huang,L., and Tang,K. (2023). Transcriptional regulatory network of high-value active ingredients in medicinal plants. Trends Plant Sci. 28: 429-446.
[165]
Zheng,H., Jing,L., Jiang,X., Pu, C., Zhao,S., Yang,J., Guo,J., Cui,G., Tang, J., Ma,Y., et al. (2021). The ERF-VII transcription factor SmERF73 coordinately regulates tanshinone biosynthesis in response to stress elicitors in Salvia miltiorrhiza. New Phytol. 231: 1940-1955.
[166]
Zheng,L., Qiu,B., Su,L., Wang, H., Cui,X., Ge,F., and Liu, D. (2022). Panax notoginseng WRKY transcription factor 9 is a positive regulator in responding to root rot pathogen Fusarium solani. Front. Plant Sci. 13: 930644.
[167]
Zhou,W., Huang,Q., Wu,X., Zhou, Z., Ding,M., Shi,M., Huang,F., Li,S., Wang, Y., and Kai,G. (2017). Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci. Rep. 7: 10554.
[168]
Zhou,W., Shi,M., Deng,C., Lu, S., Huang,F., Wang,Y., and Kai, G. (2021). The methyl jasmonate-responsive transcription factor SmMYB1 promotes phenolic acid biosynthesis in Salvia miltiorrhiza. Hortic. Res. 8: 10.
[169]
Zhou,W., Wang,C., Hao,X., Chen, F., Huang,Q., Liu,T., Xu,J., Guo,S., Liao, B., Liu,Z., et al. (2024). A chromosome-level genome assembly of anesthetic drug-producing Anisodus acutangulus provides insights into its evolution and the biosynthesis of tropane alkaloids. Plant Commun. 5: 100680.
[170]
Zhou,Z., Tan,H., Li,Q., Chen, J., Gao,S., Wang,Y., Chen,W., and Zhang,L. (2018). CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochemistry 148: 63-70.

RIGHTS & PERMISSIONS

2024 2024 Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/