SlBEL11 regulates flavonoid biosynthesis, thus fine-tuning auxin efflux to prevent premature fruit drop in tomato

Xiufen Dong, Xianfeng Liu, Lina Cheng, Ruizhen Li, Siqi Ge, Sai Wang, Yue Cai, Yang Liu, Sida Meng, Cai-Zhong Jiang, Chun-Lin Shi, Tianlai Li, Daqi Fu, Mingfang Qi, Tao Xu

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (4) : 749-770. DOI: 10.1111/jipb.13627
Research Article

SlBEL11 regulates flavonoid biosynthesis, thus fine-tuning auxin efflux to prevent premature fruit drop in tomato

Author information +
History +

Abstract

Auxin regulates flower and fruit abscission, but how developmental signals mediate auxin transport in abscission remains unclear. Here, we reveal the role of the transcription factor BEL1-LIKE HOMEODOMAIN11 (SlBEL11) in regulating auxin transport during abscission in tomato (Solanum lycopersicum). SlBEL11 is highly expressed in the fruit abscission zone, and its expression increases during fruit development. Knockdown of SlBEL11 expression by RNA interference (RNAi) caused premature fruit drop at the breaker (Br) and 3 d post-breaker (Br+3) stages of fruit development. Transcriptome and metabolome analysis of SlBEL11-RNAi lines revealed impaired flavonoid biosynthesis and decreased levels of most flavonoids, especially quercetin, which functions as an auxin transport inhibitor. This suggested that SlBEL11 prevents premature fruit abscission by modulating auxin efflux from fruits, which is crucial for the formation of an auxin response gradient. Indeed, quercetin treatment suppressed premature fruit drop in SlBEL11-RNAi plants. DNA affinity purification sequencing (DAP-seq) analysis indicated that SlBEL11 induced expression of the transcription factor gene SlMYB111 by directly binding to its promoter. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay showed that S. lycopersicum MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG111 (SlMYB111) induces the expression of the core flavonoid biosynthesis genes SlCHS1, SlCHI, SlF3H, and SlFLS by directly binding to their promoters. Our findings suggest that the SlBEL11-SlMYB111 module modulates flavonoid biosynthesis to fine-tune auxin efflux from fruits and thus maintain an auxin response gradient in the pedicel, thereby preventing premature fruit drop.

Keywords

abscission / auxin / flavonoid / SlBEL11 / tomato

Cite this article

Download citation ▾
Xiufen Dong, Xianfeng Liu, Lina Cheng, Ruizhen Li, Siqi Ge, Sai Wang, Yue Cai, Yang Liu, Sida Meng, Cai-Zhong Jiang, Chun-Lin Shi, Tianlai Li, Daqi Fu, Mingfang Qi, Tao Xu. SlBEL11 regulates flavonoid biosynthesis, thus fine-tuning auxin efflux to prevent premature fruit drop in tomato. Journal of Integrative Plant Biology, 2024, 66(4): 749‒770 https://doi.org/10.1111/jipb.13627

References

[1]
Abeles, F.B., and Rubinstein, B. (1964). Regulation of ethylene evolution and leaf abscission by auxin. Plant Physiol. 39: 963-969.
[2]
Basu, M.M., González-Carranza, Z.H., Azam-Ali, S.N., Tang, S., Shahid, A.A., and Roberts, J.A. (2013). The manipulation of auxin in the abscission zone cells of arabidopsis flowers reveals that indoleacetic acid signaling is a prerequisite for organ shedding. Plant Physiol. 162: 106-196.
[3]
Bencivenga, S., Simonini, S., Benková, E., and Colombo, L. (2012). The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis. Plant Cell 24: 2886-2897.
[4]
Bencivenga, S., Serrano-Mislata, A., Bush, M., Fox, S., and Sablowski, R. (2016). Control of oriented tissue growth through repression of organ boundary genes promotes stem morphogenesis. Dev. Cell 39: 198-208.
[5]
Besseau, S.b., Hoffmann, L., Geoffroy, P., Lapierre, C., Pollet, B., and Legrand, M. (2007). Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19: 148-162.
[6]
Biain de Elizalde, M.M. (1980). Histology of the abscission zones of tomato flowers and fruit and some effects of 2-chloroethylphosphonic acid (Ethrel) application. Phyton 38: 71-80.
[7]
Brown, D.E., Rashotte, A.M., Murphy, A.S., Normanly, J., Tague, B.W., Peer, W.A., Taiz, L., and Muday, G.K. (2001). Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 126: 524-535.
[8]
Buta, J.G., and Spaulding, D.W. (1994). Changes in indole-3-acetic acid and abscisic acid levels during tomato (Lycopersicon esculentum Mill.) fruit development and ripening. J. Plant Growth Regul. 13: 163.
[9]
Butenko, M.A., Patterson, S.E., Grini, P.E., Stenvik, G.-E., Amundsen, S.S., Mandal, A., and Aalen, R.B. (2003). INFLORESCENCE DEFICIENT IN ABSCISSION controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15: 2296-2307.
[10]
Cheng, C., Zhang, L., Yang, X., and Zhong, G. (2015). Profiling gene expression in citrus fruit calyx abscission zone (AZ-C) treated with ethylene. Mol. Genet. Genomics 290: 1991-2006.
[11]
Cheng, L., Li, R., Wang, X., Ge, S., Wang, S., Liu, X., He, J., Jiang, C.-Z., Qi, M., Xu, T., et al. (2022). A SlCLV3-SlWUS module regulates auxin and ethylene homeostasis in low light-induced tomato flower abscission. Plant Cell 34: 4388-4408.
[12]
Cooper, W.C., Rasmussen, G.K., Rogers, B.J., Reece, P.C., and Henry, W.H. (1968). Control of abscission in agricultural crops and its physiological basis. Plant Physiol. 43: 1560-1576.
[13]
Dong, X., Ma, C., Xu, T., Reid, M.S., Jiang, C.Z., and Li, T. (2021). Auxin response and transport during induction of pedicel abscission in tomato. Hortic. Res. 8: 192.
[14]
España, L., Heredia-Guerrero, J.A., Reina-Pinto, J.J., Fernández-Muñoz, R., Heredia, A., and Domínguez, E. (2014). Transient silencing of CHALCONE SYNTHASE during fruit ripening modifies tomato epidermal cells and cuticle properties. Plant Physiol. 166: 1371-1386.
[15]
Estornell, L.H., Agustí, J., Merelo, P., Talón, M., and Tadeo, F.R. (2013). Elucidating mechanisms underlying organ abscission. Plant Sci. 199-200: 48-60.
[16]
Fernandez-Moreno, J.-P., Tzfadia, O., Forment, J., Presa, S., Rogachev, I., Meir, S., Orzaez, D., Aharoni, A., and Granell, A. (2016). Characterization of a new pink-fruited tomato mutant results in the identification of a null allele of the SlMYB12 transcription factor. Plant Physiol. 171: 1821-1836.
[17]
Flors, V., Leyva Mde, L., Vicedo, B., Finiti, I., Real, M.D., García-Agustín, P., Bennett, A.B., and González-Bosch, C. (2007). Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. Plant J. Cell Mol. Biol. 52: 1027-1040.
[18]
Foo, E., Bullier, E., Goussot, M., Foucher, F., Rameau, C., and Beveridge, C.A. (2005). The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17: 464-474.
[19]
Gawadi, A.G., and Avery, G.S. (1950). Leaf abscission and the so-called “abscission layer”. Am. J. Bot. 37: 172-180.
[20]
Giulia, E., Alessandro, B., Mariano, D., Andrea, B., Benedetto, R., and Angelo, R. (2013). Early induction of apple fruitlet abscission is characterized by an increase of both isoprene emission and abscisic acid content. Plant Physiol. 161: 1952-1969.
[21]
Gulfishan, M., Jahan, A., Bhat, T.A., and Sahab, D. (2019). Plant senescence and organ abscission. In Senescence Signalling and Control in Plants, M. Sarwat and N. Tuteja eds, (India: Academic Press), pp. 255-272.
[22]
Haim, D., Shalom, L., Simhon, Y., Shlizerman, L., Kamara, I., Morozov, M., Albacete, A., Rivero, R.M., and Sadka, A. (2020). Alternate bearing in fruit trees: Fruit presence induces polar auxin transport in citrus and olive stem and represses IAA release from the bud. J. Exp. Bot. 72: 2450-2462.
[23]
Hakman, I., Hallberg, H., and Palovaara, J. (2009). The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development. Tree Physiol. 29: 483-496.
[24]
Hayes, S. (2019). PIF4 plays a conserved role in Solanum lycopersicum. Plant Physiol. 181: 838-839.
[25]
Iglesias, D.J., Tadeo, F.R., Primo-Millo, E., and Talon, M. (2006). Carbohydrate and ethylene levels related to fruitlet drop through abscission zone A in citrus. Trees 20: 348-355.
[26]
Ikeda, T., Tanaka, W., Toriba, T., Suzuki, C., Maeno, A., Tsuda, K., Shiroishi, T., Kurata, T., Sakamoto, T., Murai, M., et al. (2019). BELL1-like homeobox genes regulate inflorescence architecture and meristem maintenance in rice. Plant J. Cell Mol. Biol. 98: 465-478.
[27]
Jacobs, M., and Rubery, P.H. (1988). Naturally occurring auxin transport regulators. Science 241: 346-349.
[28]
Katsuhiro, M., Yoshimi, O., Nobutaka, M., Shingo, S., Yoichi, N., Amanda, R.W., Masaru, O.-T., Simon, P.R., Yasuo, Y., Masashi, M., et al. (2018). Buckwheat R2R3 MYB transcription factor FeMYBF1 regulates flavonol biosynthesis. Plant Sci. 274: 466-475.
[29]
Kühn, N., Serrano, A., Abello, C., Arce, A., Espinoza, C., Gouthu, S., Deluc, L., and Arce-Johnson, P. (2016). Regulation of polar auxin transport in grapevine fruitlets (Vitis vinifera L.) and the proposed role of auxin homeostasis during fruit abscission. BMC Plant Biol. 16: 234.
[30]
Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359.
[31]
Lewis, D.R., and Muday, G.K. (2009). Measurement of auxin transport in Arabidopsis thaliana. Nat. Protoc. 4: 437-451.
[32]
Lewis, D.R., Ramirez, M.V., Miller, N.D., Vallabhaneni, P., Ray, W.K., Helm, R.F., Winkel, B.S., and Muday, G.K. (2011). Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiol. 156: 144-164.
[33]
Li, R., Shi, C.L., Wang, X., Meng, Y., Cheng, L., Jiang, C.Z., Qi, M., Xu, T., and Li, T. (2021). Inflorescence abscission protein SlIDL6 promotes low light intensity-induced tomato flower abscission. Plant Physiol. 186: 1288-1301.
[34]
Li, Y., Chen, M., Wang, S., Ning, J., Ding, X., and Chu, Z. (2015). AtMYB11 regulates caffeoylquinic acid and flavonol synthesis in tomato and tobacco. Plant Cell Tissue Organ Cult. 122: 309-319.
[35]
Liang, Y., Jiang, C., Liu, Y., Gao, Y., Lu, J., Aiwaili, P., Fei, Z., Jiang, C.Z., Hong, B., Ma, C., et al. (2020). Auxin regulates sucrose transport to repress petal abscission in rose (Rosa hybrida). Plant Cell 32: 3485-3499.
[36]
Liu, H., Liu, L., Liang, D., Zhang, M., Jia, C., Qi, M., Liu, Y., Shao, Z., Meng, F., Hu, S., et al. (2021a). SlBES1 promotes tomato fruit softening through transcriptional inhibition of PMEU1. iScience 24: 102926.
[37]
Liu, L., Jia, C., Zhang, M., Chen, D., Chen, S., Guo, R., Guo, D., and Wang, Q. (2014). Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnol. J. 12: 105-115.
[38]
Liu, W., Feng, Y., Yu, S., Fan, Z., Li, X., Li, J., and Yin, H. (2021b). The flavonoid biosynthesis network in plants. Int. J. Mol. Sci. 22: 12824.
[39]
Liu, X., Cheng, L., Li, R., Cai, Y., Wang, X., Fu, X., Dong, X., Qi, M., Jiang, C.Z., Xu, T., et al. (2022). The HD-Zip transcription factor SlHB15A regulates abscission by modulating jasmonoyl-isoleucine biosynthesis. Plant Physiol. 189: 2396-2412.
[40]
Louie, D.S., and Addicott, F.T. (1970). Applied auxin gradients and abscission in explants. Plant Physiol. 45: 654-657.
[41]
Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome Biol. 15: 550.
[42]
Luo, J., Butelli, E., Hill, L., Parr, A., Niggeweg, R., Bailey, P., Weisshaar, B., and Martin, C. (2008). AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: Expression in fruit results in very high levels of both types of polyphenol. Plant J. Cell Mol. Biol. 56: 316-326.
[43]
Ma, C., Meir, S., Xiao, L., Tong, J., Liu, Q., Reid, M.S., and Jiang, C.-Z. (2015). A KNOTTED1-LIKE HOMEOBOX protein regulates abscission in tomato by modulating the auxin pathway. Plant Physiol. 167: 844-853.
[44]
Mao, Y., Zhang, H., Xu, N., Zhang, B., Gou, F., and Zhu, J.K. (2013). Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol. Plant 6: 2008-2011.
[45]
Mehrtens, F., Kranz, H., Bednarek, P., and Weisshaar, B. (2005). The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol. 138: 1083-1096.
[46]
Meir, S., Philosoph-Hadas, S., Sundaresan, S., Selvaraj, K.S., Burd, S., Ophir, R., Kochanek, B., Reid, M.S., Jiang, C.Z., and Lers, A. (2010). Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiol. 154: 1929-1956.
[47]
Meng, L., Fan, Z., Zhang, Q., Wang, C., Gao, Y., Deng, Y., Zhu, B., Zhu, H., Chen, J., Shan, W., et al. (2018). BEL1-LIKE HOMEODOMAIN 11 regulates chloroplast development and chlorophyll synthesis in tomato fruit. Plant J. Cell Mol. Biol. 94: 1126-1140.
[48]
Morgan, P.W., and Durham, J.I. (1972). Abscission: Potentiating action of auxin transport inhibitors. Plant Physiol. 50: 313-318.
[49]
Morgan, P.W., Jordan, W.R., Davenport, T.L., and Durham, J.I. (1977). Abscission responses to moisture stress, auxin transport inhibitors, and ethephon 1. Plant Physiol. 59: 710-712.
[50]
Mounet, F., Moing, A., Kowalczyk, M., Rohrmann, J., Petit, J., Garcia, V., Maucourt, M., Yano, K., Deborde, C., Aoki, K., et al. (2012). Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. J. Exp. Bot. 63: 4901-4917.
[51]
Murphy, A., Peer, W.A., and Taiz, L. (2000). Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta 211: 315-324.
[52]
O'Malley, R.C., Huang, S.C., Song, L., Lewsey, M.G., Bartlett, A., Nery, J.R., Galli, M., Gallavotti, A., and Ecker, J.R. (2016). Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165: 1280-1292.
[53]
Pandey, A., Misra, P., Bhambhani, S., Bhatia, C., and Trivedi, P.K. (2014). Expression of Arabidopsis MYB transcription factor, AtMYB111, in tobacco requires light to modulate flavonol content. Sci. Rep. 4: 5018.
[54]
Pattison, R.J., and Catalá, C. (2012). Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. Plant J. Cell Mol. Biol. 70: 585-598.
[55]
Peer, W.A., and Murphy, A.S. (2007). Flavonoids and auxin transport: Modulators or regulators? Trends Plant Sci. 12: 556-563.
[56]
Peer, W.A., Bandyopadhyay, A., Blakeslee, J.J., Makam, S.N., Chen, R.J., Masson, P.H., and Murphy, A.S. (2004). Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana. Plant Cell 16: 1898-1911.
[57]
Priyanka, S., Yamshi, A., Andrzej, B., and Shamsul, H. (2021). The role of quercetin in plants. Plant Physiol. Biochem. 166: 10-19.
[58]
Rangjin, X., Ting, G., Jing, Z., Xiaoting, P., Yanyan, M., Shilai, Y., and Yongqiang, Z. (2018). The molecular events of IAA inhibiting citrus fruitlet abscission revealed by digital gene expression profiling. Plant Physiol. Biochem. 130: 192-204.
[59]
Roberts, J.A., Elliott, K.A., and Gonzalez-Carranza, Z.H. (2002). Abscission, dehiscence, and other cell separation processes. Annu. Rev. Plant. Biol. 53: 131-158.
[60]
Rosado, D., Gramegna, G., Cruz, A., Lira, B.S., Freschi, L., de Setta, N., and Rossi, M. (2016). Phytochrome interacting factors (PIFs) in Solanum lycopersicum: Diversity, evolutionary history and expression profiling during different developmental processes. PLoS ONE 11: e0165929.
[61]
Sanyal, D., and Bangerth, F.K. (1998). Stress induced ethylene evolution and its possible relationship to auxin-transport, cytokinin levels, and flower bud induction in shoots of apple seedlings and bearing apple trees. Plant Growth Regul. 24: 127-134.
[62]
Sawicki, M., Aït Barka, E., Clément, C., Vaillant-Gaveau, N., and Jacquard, C. (2015). Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. J. Exp. Bot. 66: 1707-1719.
[63]
Sexton R., and Roberts J.A. (1982). Cell biology of abscission. Annu. Rev. Plant Physiol. 33: 133-162
[64]
Sexton, R. (1982). Abscission since Newton. Nature 300: 665.
[65]
Shi, Z., Jiang, Y., Han, X., Liu, X., Cao, R., Qi, M., Xu, T., and Li, T. (2017). SlPIN1 regulates auxin efflux to affect flower abscission process. Sci. Rep. 7: 14919.
[66]
Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., Teramura, H., Yamamoto, T., Komatsu, H., Miura, K., et al. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35: 441-443.
[67]
Shimon Meir, D.A.H., Jen-Chih, C., Vita, H., and Reid, M.S. (2006). Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa. Plant Physiol. 141: 1604-1616.
[68]
Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K., and Weisshaar, B. (2007). Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. Cell Mol. Biol. 50: 660-677.
[69]
Sun, C., Wang, F., Zhang, Y., Yu, J., and Wang, X. (2020). Mass spectrometry imaging-based metabolomics to visualize the spatially resolved reprogramming of carnitine metabolism in breast cancer. Theranostics 10: 7070-7082.
[70]
Tabuchi, T., Daimon, T., Ito, S., Nishiyama, M., and Tanaka, H. (2000). Anatomical study of abscission zone formation and development on wild tomato species, Lycopersicon pennellii. Acta Hortic. 28: 193-196.
[71]
Taesakul, P., Siriphanich, J., and van Doorn, W.G. (2015). Two abscission zones proximal to Lansium domesticum fruit: One more sensitive to exogenous ethylene than the other. Front. Plant Sci. 6: 264.
[72]
Taylor, J.E., and Whitelaw, C.A. (2001). Signals in abscission. New Phytol. 151: 323-340.
[73]
van Doorn, W.G., and Stead, A.D. (1997). Abscission of flowers and floral parts. J. Exp. Bot. 48: 821-837.
[74]
Wang, N., Xu, H., Jiang, S., Zhang, Z., Lu, N., Qiu, H., Qu, C., Wang, Y., Wu, S., and Chen, X. (2017). MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant J. Cell Mol. Biol. 90: 276-292.
[75]
Wang, R., Li, R., Cheng, L., Wang, X., Fu, X., Dong, X., Qi, M., Jiang, C., Xu, T., and Li, T. (2021). SlERF52 regulates SlTIP1;1 expression to accelerate tomato pedicel abscission. Plant Physiol. 185: 1829-1846.
[76]
Wang, S., Chu, Z., Jia, R., Dan, F., Shen, X., Li, Y., and Ding, X. (2018a). SlMYB12 regulates flavonol synthesis in three different cherry tomato varieties. Sci. Rep. 8: 1582.
[77]
Wang, Y., Li, T., Meng, H., and Sun, X. (2005). Optimal and spatial analysis of hormones, degrading enzymes and isozyme profiles in tomato pedicel explants during ethylene-induced abscission. Plant Growth Regul. 46: 97-107.
[78]
Wang, Y., Zou, W., Xiao, Y., Cheng, L., Liu, Y., Gao, S., Shi, Z., Jiang, Y., Qi, M., Xu, T., et al. (2018b). MicroRNA1917 targets CTR4 splice variants to regulate ethylene responses in tomato. J. Exp. Bot. 69: 1011-1025.
[79]
Ware, A., Walker, C.H., Šimura, J., González-Suárez, P., Ljung, K., Bishopp, A., Wilson, Z.A., and Bennett, T. (2020). Auxin export from proximal fruits drives arrest in temporally competent inflorescences. Nat. Plants 6: 699-707.
[80]
Xin-Ran, L., Renske, M.A.V., Samantha, F., Verônica, A.G., Lars, Ø., and Athanasius, F.M.M. (2019). Systems biology approach pinpoints minimum requirements for auxin distribution during fruit opening. Mol. Plant 12: 863-878.
[81]
Xu, X., Zhang, Q., Gao, X., Wu, G., Wu, M., Yuan, Y., Zheng, X., Gong, Z., Hu, X., Gong, M., et al. (2022). Auxin and abscisic acid antagonistically regulate ascorbic acid production via the SlMAPK8-SlARF4-SlMYB11 module in tomato. Plant Cell 34: 4409-4427.
[82]
Yan, F., Gong, Z., Hu, G., Ma, X., Bai, R., Yu, R., Zhang, Q., Deng, W., Li, Z., and Wuriyanghan, H. (2021). Tomato SlBL4 plays an important role in fruit pedicel organogenesis and abscission. Hortic. Res. 8: 78.
[83]
Yan, F., Gao, Y., Pang, X., Xu, X., Zhu, N., Chan, H., Hu, G., Wu, M., Yuan, Y., Li, H., et al. (2020). BEL1-LIKE HOMEODOMAIN4 regulates chlorophyll accumulation, chloroplast development, and cell wall metabolism in tomato fruit. J. Exp. Bot. 71: 5549-5561.
[84]
Yoon, J., Cho, L.H., Kim, S.L., Choi, H., Koh, H.J., and An, G. (2014). The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. Plant J. Cell Mol. Biol 79: 717-728.
[85]
Yu, G., Wang, L.-G., and He, Q.-Y. (2015). ChIPseeker: An R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31: 2382-2383.
[86]
Yu, Y., Hu, H., Doust, A.N., and Kellogg, E.A. (2020). Divergent gene expression networks underlie morphological diversity of abscission zones in grasses. New Phytol. 225: 1799-1815.
[87]
Zhang, L., Liu, D., Wang, D., Zhang, R., Geng, S., Wu, L., Li, A., and Mao, L. (2013). Over expression of the wheat BEL1-like gene TaqSH1 affects floral organ abscission in Arabidopsis thaliana. J. Plant Biol. 56: 98-105.
[88]
Zhang, Y., De Stefano, R., Robine, M., Butelli, E., Bulling, K., Hill, L., Rejzek, M., Martin, C., and Schoonbeek, H.J. (2015a). Different reactive oxygen species scavenging properties of flavonoids determine their abilities to extend the shelf life of tomato. Plant Physiol. 169: 1568-1583.
[89]
Zhang, Y., Butelli, E., Alseekh, S., Tohge, T., Rallapalli, G., Luo, J., Kawar, P.G., Hill, L., Santino, A., Fernie, A.R., et al. (2015b). Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nat. Commun. 6: 8635.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/