Genomic analysis of Nypa fruticans elucidates its intertidal adaptations and early palm evolution
Weihong Wu, Xiao Feng, Nan Wang, Shao Shao, Min Liu, Fa Si, Linhao Chen, Chuanfeng Jin, Shaohua Xu, Zixiao Guo, Cairong Zhong, Suhua Shi, Ziwen He
Genomic analysis of Nypa fruticans elucidates its intertidal adaptations and early palm evolution
Nypa fruticans (Wurmb), a mangrove palm species with origins dating back to the Late Cretaceous period, is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms. Here, we present a chromosome-level genome sequence and assembly for N. fruticans. We integrated the genomes of N. fruticans and other palm family members for a comparative genomic analysis, which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago, shaping the distinctive characteristics observed in this clade. We also inferred a low mutation rate for the N. fruticans genome, which underwent strong purifying selection and evolved slowly, thus contributing to its stability over a long evolutionary period. Moreover, ancient duplicates were preferentially retained, with critical genes having experienced positive selection, enhancing waterlogging tolerance in N. fruticans. Furthermore, we discovered that the pseudogenization of Early Methionine-labelled 1 (EM1) and EM6 in N. fruticans underly its crypto-vivipary characteristics, reflecting its intertidal adaptation. Our study provides valuable genomic insights into the evolutionary history, genome stability, and adaptive evolution of the mangrove palm. Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.
crypto-vivipary / genome stability / long-term adaptation / mangrove / Nypa fruticans / palm
[1] |
Al-Mssallem, I.S., Hu, S.N., Zhang, X.W., Lin, Q., Liu, W.F., Tan, J., Yu, X.G., Liu, J.C., Pan, L.L., Zhang, T.W., et al. (2013). Genome sequence of the date palm Phoenix dactylifera L. Nat. Commun. 4: 2274.
|
[2] |
Albert, V.A., Barbazuk, W.B., dePamphilis, C.W., Der, J.P., Leebens-Mack, J., Ma, H., Palmer, J.D., Rounsley, S., Sankoff, D., Schuster, S.C., et al. (2013). The Amborella genome and the evolution of flowering plants. Science 342: 1467.
|
[3] |
Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166-169.
|
[4] |
Asmussen, C.B., Dransfeld, J., Deickmann, V., Barfod, A.S., Pintaud, J.C., and Baker, W.J. (2006). A new subfamily classification of the palm family (Arecaceae): Evidence from plastid DNA phylogeny. Bot. J. Linn. Soc. 151: 15-38.
|
[5] |
Bao, W.D., Kojima, K.K., and Kohany, O. (2015). Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6: 11.
|
[6] |
Birney, E., Clamp, M., and Durbin, R. (2004). GeneWise and genomewise. Genome Res. 14: 988-995.
|
[7] |
Brawand, D., Wagner, C.E., Li, Y.I., Malinsky, M., Keller, I., Fan, S., Simakov, O., Ng, A.Y., Lim, Z.W., Bezault, E., et al. (2014). The genomic substrate for adaptive radiation in African cichlid fish. Nature 513: 375-381.
|
[8] |
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540-552.
|
[9] |
Chen, K., Durand, D., and Farach-Colton, M. (2000). NOTUNG: A program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7: 429-447.
|
[10] |
Chen, Q.P., Yang, H., Feng, X., Chen, Q.J., Shi, S.H., Wu, C.I., and He, Z.W. (2022a). Two decades of suspect evidence for adaptive molecular evolution-negative selection confounding positive-selection signals. Natl. Sci. Rev. 9: nwab217.
|
[11] |
Chen, S.F., Zhou, Y.Q., Chen, Y.R., and Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: 884-890.
|
[12] |
Chen, Y., Jin, Y.F., Wang, Y.S., Gao, Y.S., Wang, Q., and You, X. (2022b). Diverse roles of the CIPK gene family in transcription regulation and various biotic and abiotic stresses: A literature review and bibliometric study. Front. Genet. 13: 1041078.
|
[13] |
Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al. (2013). Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569.
|
[14] |
Chomicki, G., Bidel, L.P.R., Baker, W.J., and Jay-Allemand, C. (2014). Palm snorkelling: Leaf bases as aeration structures in the mangrove palm (Nypa fruticans). Bot. J. Linn. Soc. 174: 257-270.
|
[15] |
Clark, J.W., and Donoghue, P.C.J. (2017). Constraining the timing of whole genome duplication in plant evolutionary history. Proc. R. Soc. B-Biol. Sci. 284: 20170912.
|
[16] |
Conant, G.C., and Wolfe, K.H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nat. Rev. Genet. 9: 938-950.
|
[17] |
Couvreur, T.L.P., Forest, F., and Baker, W.J. (2011). Origin and global diversification patterns of tropical rain forests: Inferences from a complete genus-level phylogeny of palms. BMC Biol. 9: 1-12.
|
[18] |
D'Hont, A., Denoeud, F., Aury, J.M., Baurens, F.C., Carreel, F., Garsmeur, O., Noel, B., Bocs, S., Droc, G., Rouard, M., et al. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488: 213-217.
|
[19] |
Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., et al. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356: 92-95.
|
[20] |
Durand, N.C., Robinson, J.T., Shamim, M.S., Machol, I., Mesirov, J.P., Lander, E.S., and Aiden, E.L. (2016a). Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3: 99-101.
|
[21] |
Durand, N.C., Shamim, M.S., Machol, I., Rao, S.S.P., Huntley, M.H., Lander, E.S., and Aiden, E.L. (2016b). Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3: 95-98.
|
[22] |
Edger, P.P., Heidel-Fischer, H.M., Bekaert, M., Rota, J., Gloeckner, G., Platts, A.E., Heckel, D.G., Der, J.P., Wafula, E.K., Tang, M., et al. (2015). The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl. Acad. Sci. U.S.A. 112: 8362-8366.
|
[23] |
Ellinghaus, D., Kurtz, S., and Willhoeft, U. (2008). LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform. 9: 1-14.
|
[24] |
El-Soughier, M.I., Mehrotra, R.C., Zhou, Z.Y., and Shi, G.L. (2011). Nypa fruits and seeds from the Maastrichtian-Danian sediments of Bir Abu Minqar, South Western Desert, Egypt. Palaeoworld 20: 75-83.
|
[25] |
Emms, D.M., and Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 20: 238.
|
[26] |
Feng, X., Li, G.H., Wu, W.H., Lyu, H.M., Wang, J.X., Liu, C., Zhong, C.R., Shi, S.H., and He, Z.W. (2023). Expansion and adaptive evolution of the WRKY transcription factor family in Avicennia mangrove trees. Mar. Life Sci. Technol. 5: 155-168.
|
[27] |
Feng, X., Li, G.H., Xu, S.H., Wu, W.H., Chen, Q.P.A., Shao, S., Liu, M., Wang, N., Zhong, C.R., He, Z.W., et al. (2021). Genomic insights into molecular adaptation to intertidal environments in the mangrove Aegiceras corniculatum. New Phytol. 231: 2346-2358.
|
[28] |
Feng, X., Xu, S.H., Li, J.F., Yang, Y.C., Chen, Q.P., Lyu, H.M., Zhong, C.R., He, Z.W., and Shi, S.H. (2020). Molecular adaptation to salinity fluctuation in tropical intertidal environments of a mangrove tree Sonneratia alba. BMC Plant Biol. 20: 178.
|
[29] |
Finkelstein, R.R., and Lynch, T.J. (2000). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12: 599-609.
|
[30] |
Flynn, J.M., Hubley, R., Goubert, C., Rosen, J., Clark, A.G., Feschotte, C., and Smit, A.F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. U.S.A. 117: 9451-9457.
|
[31] |
Gaubier, P., Raynal, M., Hull, G., Huestis, G.M., Grellet, F., Arenas, C., Pages, M., and Delseny, M. (1993). Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Mol. Gen. Genet. 238: 409-418.
|
[32] |
Gaut, B.S., Morton, B.R., McCaig, B.C., and Clegg, M.T. (1996). Substitution rate comparisons between grasses and palms: Synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl. Acad. Sci. U.S.A. 93: 10274-10279.
|
[33] |
Gee, C.T. (2001). The mangrove palm Nypa in the geologic past of the New World. Wetl. Ecol. Manag. 9: 181-194.
|
[34] |
Gibbs, D.J., Lee, S.C., Isa, N.M., Gramuglia, S., Fukao, T., Bassel, G.W., Correia, C.S., Corbineau, F., Theodoulou, F.L., Bailey-Serres, J., et al. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479: 415-U172.
|
[35] |
Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A., Loveland, T., Masek, J., and Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20: 154-159.
|
[36] |
Graeber, K., Nakabayashi, K., Miatton, E., Leubner-Metzger, G., and Soppe, W.J. (2012). Molecular mechanisms of seed dormancy. Plant Cell Environ. 35: 1769-1786.
|
[37] |
Gregor, H.J., and Hagn, H. (1982). Fossil fructifications from the Cretaceous-Palaeocene boundary of SW-Egypt (Danian, Bir Abu Munqar). Tertiary Res. 4: 121-147.
|
[38] |
Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Buell, C.R., and Wortman, J.R. (2008). Automated eukaryotic gene structure annotation using EvidenceModeler and the program to assemble spliced alignments. Genome Biol. 9: R7.
|
[39] |
Han, M.V., Thomas, G.W., Lugo-Martinez, J., and Hahn, M.W. (2013). Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE3. Mol. Biol. Evol. 30: 1987-1997.
|
[40] |
Harley, M.M. (2006). A summary of fossil records for Arecaceae. Bot. J. Linn. Soc. 151: 39-67.
|
[41] |
Hawkins, J.S., Proulx, S.R., Rapp, R.A., and Wendel, J.F. (2009). Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc. Natl. Acad. Sci. U.S.A. 106: 17811-17816.
|
[42] |
Hazzouri, K.M., Gros-Balthazard, M., Flowers, J.M., Copetti, D., Lemansour, A., Lebrun, M., Masmoudi, K., Ferrand, S., Dhar, M.I., Fresquez, Z.A., et al. (2019). Genome-wide association mapping of date palm fruit traits. Nat. Commun. 10: 4680.
|
[43] |
He, Z.W., Feng, X., Chen, Q.P., Li, L.W., Li, S., Han, K., Guo, Z.X., Wang, J.Y., Liu, M., Shi, C.C., et al. (2022). Evolution of coastal forests based on a full set of mangrove genomes. Nat. Ecol. Evol. 6: 738-749.
|
[44] |
He, Z.W., Li, X.N., Yang, M., Wang, X.F., Zhong, C.R., Duke, N.C., Wu, C.I., and Shi, S.H. (2019). Speciation with gene flow via cycles of isolation and migration: Insights from multiple mangrove taxa. Natl. Sci. Rev. 6: 275-288.
|
[45] |
He, Z.W., Xu, S.H., Zhang, Z., Guo, W.X., Lyu, H.M., Zhong, C.R., Boufford, D.E., Duke, N.C., The International Mangrove Consortium, and Shi, S.H. (2020). Convergent adaptation of the genomes of woody plants at the land-sea interface. Natl. Sci. Rev. 7: 978-993.
|
[46] |
He, Z.W., Zhang, Z., Guo, W.X., Zhang, Y., Zhou, R.C., and Shi, S.H. (2015). De novo assembly of coding sequences of the mangrove palm (Nypa fruticans) using RNA-seq and discovery of whole-genome duplications in the ancestor of palms. PLoS ONE 10: e0145385.
|
[47] |
Hinz, M., Wilson, I.W., Yang, J., Buerstenbinder, K., Llewellyn, D., Dennis, E.S., Sauter, M., and Dolferus, R. (2010). Arabidopsis RAP2.2: An ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 153: 757-772.
|
[48] |
Hu, M.J., Sun, W.H., Tsai, W.C., Xiang, S., Lai, X.K., Chen, D.Q., Liu, X.D., Wang, Y.F., Le, Y.X., Chen, S.M., et al. (2020). Chromosome-scale assembly of the Kandelia obovata genome. Hortic. Res. 7: 75.
|
[49] |
Hubley, R., Finn, R.D., Clements, J., Eddy, S.R., Jones, T.A., Bao, W.D., Smit, A.F.A., and Wheelers, T.J. (2016). The Dfam database of repetitive DNA families. Nucleic Acids Res. 44: D81-D89.
|
[50] |
Janssen, T., and Bremer, K. (2004). The age of major monocot groups inferred from 800+ rbcL sequences. Bot. J. Linn. Soc. 146: 385-398.
|
[51] |
Jiao, Y.N., Li, J.P., Tang, H.B., and Paterson, A.H. (2014). Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell 26: 2792-2802.
|
[52] |
Katoh, K., and Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9: 286-298.
|
[53] |
Kent, W.J. (2002). BLAT - The BLAST-like alignment tool. Genome Res. 12: 656-664.
|
[54] |
Kim, D., Landmead, B., and Salzberg, S.L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12: 357-U121.
|
[55] |
Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37: 907-915.
|
[56] |
Kim, K.N., Cheong, Y.H., Grant, J.J., Pandey, G.K., and Luan, S. (2003). CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15: 411-423.
|
[57] |
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
|
[58] |
Kozlov, A.M., Darriba, D., Flouri, T., Morel, B., and Stamatakis, A. (2019). RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35: 4453-4455.
|
[59] |
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.
|
[60] |
Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K., Alexander, D.L., Garcia-Hernandez, M., et al. (2012). The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Res. 40: D1202-D1210.
|
[61] |
Lantican, D.V., Strickler, S.R., Canama, A.O., Gardoce, R.R., Mueller, L.A., and Galvez, H.F. (2019). De novo genome sequence assembly of dwarf coconut (Cocos nucifera L. “catigan green dwarf”) provides insights into genomic variation between coconut types and related palm species. G3-Genes Genom. Genet. 8: 2377-2393.
|
[62] |
Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34: 3094-3100.
|
[63] |
Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589-595.
|
[64] |
Liu, J.P., Ishitani, M., Halfter, U., Kim, C.S., and Zhu, J.K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. U.S.A. 97: 3730-3734.
|
[65] |
Liu, Q.Q., Luo, L., and Zheng, L.Q. (2018). Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 19: 355.
|
[66] |
Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408.
|
[67] |
Llorens, C., Futami, R., Covelli, L., Dominguez-Escriba, L., Viu, J.M., Tamarit, D., Aguilar-Rodriguez, J., Vicente-Ripolles, M., Fuster, G., Bernet, G.P., et al. (2011). The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 39: D70-D74.
|
[68] |
Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome Biol. 15: 550.
|
[69] |
Lowe, T.M., and Eddy, S.R. (1997). TRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964.
|
[70] |
Luan, S. (2009). The CBL-CIPK network in plant calcium signaling. Trends Plant Sci. 14: 37-42.
|
[71] |
Lynch, M., and Conery, J.S. (2000). The evolutionary fate and consequences of duplicate genes. Science 290: 1151-1155.
|
[72] |
Lyu, H.M., He, Z.W., Wu, C.I., and Shi, S. (2018). Convergent adaptive evolution in marginal environments: Unloading transposable elements as a common strategy among mangrove genomes. New Phytol. 217: 428-438.
|
[73] |
Majoros, W.H., Pertea, M., and Salzberg, S.L. (2004). TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders. Bioinformatics 20: 2878-2879.
|
[74] |
Manfre, A.J., LaHatte, G.A., Climer, C.R., Marcotte Jr., W.R. (2009). Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1. Plant Cell Physiol. 50: 243-253.
|
[75] |
Marcais, G., and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27: 764-770.
|
[76] |
Ming, R., VanBuren, R., Wai, C.M., Tang, H.B., Schatz, M.C., Bowers, J.E., Lyons, E., Wang, M.L., Chen, J., Biggers, E., et al. (2015). The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 47: 1435-1442.
|
[77] |
Miryeganeh, M., Marletaz, F., Gavriouchkina, D., and Saze, H. (2021). De novo genome assembly and in natura epigenomics reveal salinity-induced DNA methylation in the mangrove tree Bruguiera gymnorhiza. New Phytol. 233: 2094-2110.
|
[78] |
Muller, J. (1968). Palynology of the Pedawan and Plateau sandstone formations (Cretaceous - Eocene) in Sarawak, Malaysia. Micropaleontology 14: 1-37.
|
[79] |
Nawrocki, E.P., Kolbe, D.L., and Eddy, S.R. (2009). Infernal 1.0: Inference of RNA alignments. Bioinformatics 25: 1335-1337.
|
[80] |
Nevado, B., Atchison, G.W., Hughes, C.E., and Filatov, D.A. (2016). Widespread adaptive evolution during repeated evolutionary radiations in New World lupins. Nat. Commun. 7: 12384.
|
[81] |
Nevado, B., Wong, E.L.Y., Osborne, O.G., and Filatov, D.A. (2019). Adaptive evolution is common in rapid evolutionary radiations. Curr. Biol. 29: 3081-3086.e5.
|
[82] |
Ou, S.J., and Jiang, N. (2018). LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176: 1410-1422.
|
[83] |
Ouyang, S., Zhu, W., Hamilton, J., Lin, H., Campbell, M., Childs, K., Thibaud-Nissen, F., Malek, R.L., Lee, Y., Zheng, L., et al. (2007). The TIGR rice genome annotation resource: Improvements and new features. Nucleic Acids Res. 35: D883-D887.
|
[84] |
Van de Peer, Y., Mizrachi, E., and Marchal, K. (2017). The evolutionary significance of polyploidy. Nat. Rev. Genet. 18: 411-424.
|
[85] |
Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., and Salzberg, S.L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33: 290-295.
|
[86] |
Plaziat, J.C., Cavagnetto, C., Koeniguer, J.C., and Baltzer, F. (2001). History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. Wetl. Ecol. Manag. 9: 161-179.
|
[87] |
Pond, S.L.K., Poon, A.F.Y., Velazquez, R., Weaver, S., Hepler, N.L., Murrell, B., Shank, S.D., Magalis, B.R., Bouvier, D., Nekrutenko, A., et al. (2020). HyPhy 2.5-a customizable platform for evolutionary hypothesis testing using phylogenies. Mol. Biol. Evol. 37: 295-299.
|
[88] |
Qiao, H.M., Zhou, X.X., Su, W.Y., Zhao, X., Jin, P.F., He, S.S., Hu, W., Fu, M.P., Yu, D.T., Hao, S.Q., et al. (2020). The genomic and transcriptomic foundations of viviparous seed development in mangroves. bioRxiv,
CrossRef
Google scholar
|
[89] |
Robertson, F.M., Gundappa, M.K., Grammes, F., Hvidsten, T.R., Redmond, A.K., Lien, S., Martin, S.A.M., Holland, P.W.H., Sandve, S.R., and Macqueen, D.J. (2017). Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biol. 18: 111.
|
[90] |
Ruan, J., and Li, H. (2020). Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17: 155-158.
|
[91] |
Schrank, E. (1987). Palaeozoic and Mesozoic palynomorphs from northeast Africa (Egypt and Sudan) with special reference to Late Cretaceous pollen and dinoflagellates. Berl. Geowiss. Abh. Reihe A. Geol Palaeontol. 75: 249-310.
|
[92] |
Serrato-Capuchina, A., and Matute, D.R. (2018). The role of transposable elements in speciation. Genes 9: 254.
|
[93] |
Servant, N., Varoquaux, N., Lajoie, B.R., Viara, E., Chen, C.J., Vert, J.P., Heard, E., Dekker, J., and Barillot, E. (2015). HiC-Pro: An optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16: 259.
|
[94] |
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504.
|
[95] |
Shi, T., Huneau, C., Zhang, Y., Li, Y., Chen, J.M., Salse, J., and Wang, Q.F. (2022). The slow-evolving Acorus tatarinowii genome sheds light on ancestral monocot evolution. Nat. Plants 8: 764-777.
|
[96] |
Silvestro, D., Bacon, C.D., Ding, W.N., Zhang, Q.Y., Donoghue, P.C.J., Antonelli, A., and Xing, Y.W. (2021). Fossil data support a pre-Cretaceous origin of flowering plants. Nat. Ecol. Evol. 5: 449-457.
|
[97] |
Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210-3212.
|
[98] |
Singh, R., Ong-Abdullah, M., Low, E.T., Manaf, M.A., Rosli, R., Nookiah, R., Ooi, L.C., Ooi, S.E., Chan, K.L., Halim, M.A., et al. (2013). Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature 500: 335-339.
|
[99] |
Soltis, P.S., and Soltis, D.E. (2016). Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30: 159-165.
|
[100] |
Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., and Morgenstern, B. (2006). AUGUSTUS: Ab initio prediction of alternative transcripts. Nucleic Acids Res. 34: W435-W439.
|
[101] |
Steinbiss, S., Willhoeft, U., Gremme, G., and Kurtz, S. (2009). Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res. 37: 7002-7013.
|
[102] |
Stewart Jr., C.N., and Via, L.E. (1993). A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14: 748-750.
|
[103] |
Stewart, J.J., Akiyama, T., Chapple, C., Ralph, J., and Mansfield, S.D. (2009). The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiol. 150: 621-635.
|
[104] |
Suyama, M., Torrents, D., and Bork, P. (2006). PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34: W609-W612.
|
[105] |
Tajima, F. (1993). Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135: 599-607.
|
[106] |
Tarailo-Graovac, M., and Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinf. 25: 4.10.1-4.10.14.
|
[107] |
Tomlinson, P.B. (2006). The uniqueness of palms. Bot. J. Linn. Soc. 151: 5-14.
|
[108] |
Tomlinson, P.B. (2016). The Botany of Mangroves. 2nd ed. (Cambridge, UK: Cambridge University Press).
|
[109] |
Tuan, P.A., Kumar, R., Rehal, P.K., Toora, P.K., and Ayele, B.T. (2018). Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Front. Plant Sci. 9: 668.
|
[110] |
Vishwanath, S.J., Delude, C., Domergue, F., and Rowland, O. (2015). Suberin: Biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep. 34: 573-586.
|
[111] |
Vurture, G.W., Sedlazeck, F.J., Nattestad, M., Underwood, C.J., Fang, H., Gurtowski, J., and Schatz, M.C. (2017). GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics 33: 2202-2204.
|
[112] |
Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q.D., Wortman, J., Young, S.K., et al. (2014). Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9: e112963.
|
[113] |
Wang, D.P., Zhang, Y.B., Zhang, Z., Zhu, J., and Yu, J. (2010). KaKs_Calculator 2.0: A toolkit incorporating gamma-Series methods and sliding window strategies. Genom. Proteom. Bioinform. 8: 77-80.
|
[114] |
Wang, S.C., Xiao, Y., Zhou, Z.W., Yuan, J.Q., Guo, H., Yang, Z., Yang, J., Sun, P.C., Sun, L.S., Deng, Y., et al. (2021). High-quality reference genome sequences of two coconut cultivars provide insights into evolution of monocot chromosomes and differentiation of fiber content and plant height. Genome Biol. 22: 304.
|
[115] |
Wang, W., Haberer, G., Gundlach, H., Glasser, C., Nussbaumer, T., Luo, M.C., Lomsadze, A., Borodovsky, M., Kerstetter, R.A., Shanklin, J., et al. (2014). The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 5: 3311.
|
[116] |
Wang, Y.P., Tang, H.B., DeBarry, J.D., Tan, X., Li, J.P., Wang, X.Y., Lee, T.H., Jin, H.Z., Marler, B., Guo, H., et al. (2012). MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40: e49.
|
[117] |
Watanabe, K., Nishiuchi, S., Kulichikhin, K., and Nakazono, M. (2013). Does suberin accumulation in plant roots contribute to waterlogging tolerance? Front. Plant Sci. 4: 178.
|
[118] |
Wertheim, J.O., Murrell, B., Smith, M.D., Pond, S.L.K., and Scheffler, K. (2015). RELAX: Detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32: 820-832.
|
[119] |
Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., et al. (2007). A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8: 973-982.
|
[120] |
Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.M., Bailey-Serres, J., Ronald, P.C., and Mackill, D.J. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442: 705-708.
|
[121] |
Xu, S.H., He, Z.W., Guo, Z.X., Zhang, Z., Wyckoff, G.J., Greenberg, A., Wu, C.I., and Shi, S.H. (2017a). Genome-wide convergence during evolution of mangroves from woody plants. Mol. Biol. Evol. 34: 1008-1015.
|
[122] |
Xu, S.H., He, Z.W., Zhang, Z., Guo, Z.X., Guo, W.X., Lyu, H.M., Li, J.F., Yang, M., Du, Z.L., Huang, Y.L., et al. (2017b). The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl. Sci. Rev. 4: 721-734.
|
[123] |
Xu, Y.C., and Guo, Y.L. (2020). Less is more, natural loss-of-function mutation is a strategy for adaptation. Plant Commun 1: 100103.
|
[124] |
Yang, Z.H. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24: 1586-1591.
|
[125] |
Yang, Z.H., and Nielsen, R. (2002). Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19: 908-917.
|
[126] |
Yao, G., Zhang, Y.Q., Barrett, C., Xue, B., Bellot, S., Baker, W.J., and Ge, X.J. (2023). A plastid phylogenomic framework for the palm family (Arecaceae). BMC Biol. 21: 50.
|
[127] |
Yoon, J., Choi, H., and An, G. (2015). Roles of lignin biosynthesis and regulatory genes in plant development. J. Integr. Plant Biol. 57: 902-912.
|
[128] |
Zhang, G.Q., Liu, K.W., Li, Z., Lohaus, R., Hsiao, Y.Y., Niu, S.C., Wang, J.Y., Lin, Y.C., Xu, Q., Chen, L.J., et al. (2017). The Apostasia genome and the evolution of orchids. Nature 549: 379-383.
|
[129] |
Zhang, X.X., Li, X.X., Zhao, R., Zhou, Y., and Jiao, Y.N. (2020). Evolutionary strategies drive a balance of the interacting gene products for the CBL and CIPK gene families. New Phytol. 226: 1506-1516.
|
[130] |
Zhao, H.S., Wang, S.B., Wang, J.L., Chen, C.H., Hao, S.J., Chen, L.F., Fei, B.H., Han, K., Li, R.S., Shi, C.C., et al. (2018). The chromosome-level genome assemblies of two rattans (Calamus simplicifolius and Daemonorops jenkinsiana). Gigascience 7: giy097.
|
[131] |
Zheng, Y., Jiao, C., Sun, H.H., Rosli, H.G., Pombo, M.A., Zhang, P.F., Banf, M., Dai, X.B., Martin, G.B., Giovannoni, J.J., et al. (2016). iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol. Plant 9: 1667-1670.
|
[132] |
Zhu, R.R., Shao, S., Xie, W., Guo, Z.X., He, Z.W., Li, Y.L., Wang, W.Q., Zhong, C.R., Shi, S.H., and Xu, S.H. (2023). High-quality genome of a pioneer mangrove Laguncularia racemosa explains its advantages for intertidal zone reforestation. Mol Ecol Resour. In press.
CrossRef
Google scholar
|
[133] |
Zwaenepoel, A., and Van de Peer, Y. (2019). Wgd-simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35: 2153-2155.
|
/
〈 | 〉 |