How plants sense and respond to osmotic stress
Bo Yu, Dai-Yin Chao, Yang Zhao
How plants sense and respond to osmotic stress
Drought is one of the most serious abiotic stresses to land plants. Plants sense and respond to drought stress to survive under water deficiency. Scientists have studied how plants sense drought stress, or osmotic stress caused by drought, ever since Charles Darwin, and gradually obtained clues about osmotic stress sensing and signaling in plants. Osmotic stress is a physical stimulus that triggers many physiological changes at the cellular level, including changes in turgor, cell wall stiffness and integrity, membrane tension, and cell fluid volume, and plants may sense some of these stimuli and trigger downstream responses. In this review, we emphasized water potential and movements in organisms, compared putative signal inputs in cell wall-containing and cell wall-free organisms, prospected how plants sense changes in turgor, membrane tension, and cell fluid volume under osmotic stress according to advances in plants, animals, yeasts, and bacteria, summarized multilevel biochemical and physiological signal outputs, such as plasma membrane nanodomain formation, membrane water permeability, root hydrotropism, root halotropism, Casparian strip and suberin lamellae, and finally proposed a hypothesis that osmotic stress responses are likely to be a cocktail of signaling mediated by multiple osmosensors. We also discussed the core scientific questions, provided perspective about the future directions in this field, and highlighted the importance of robust and smart root systems and efficient source-sink allocations for generating future high-yield stress-resistant crops and plants.
cell volume / drought / membrane tension / osmotic stress / turgor
[1] |
Addicott,F.T., Lyon,J.L., Ohkuma,K., Thiessen, W.E., Carns,H.R., Smith,O.E., Cornforth, J.W., Milborrow,B.V., Ryback,G., and Wareing, P.F. (1968). Abscisic acid: A new name for abscisin II (dormin). Science 159: 1493.
|
[2] |
Alberti,S., Gladfelter, A., and Mittag,T. (2019). Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176: 419-434.
|
[3] |
Allen,J.R., and Strader, L.C. (2022). Beating the heat: Phase separation in plant stress granules. Dev. Cell 57: 563-565.
|
[4] |
Antoni,R., Gonzalez-Guzman, M., Rodriguez,L., Peirats-Llobet,M., Pizzio, G.A., Fernandez,M.A., De Winne,N., De Jaeger, G., Dietrich,D., Bennett,M.J., et al. (2013). PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol. 161: 931-941.
|
[5] |
Bacete,L., Schulz, J., Engelsdorf,T., Bartosova,Z., Vaahtera, L., Yan,G., Gerhold,J.M., Tichá, T., Øvstebø,C., Gigli-Bisceglia,N., et al. (2022). THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 119: e2119258119.
|
[6] |
Barberon,M., Vermeer, J.E., De Bellis,D., Wang,P., Naseer, S., Andersen,T.G., Humbel,B.M., Nawrath, C., Takano,J., Salt,D.E., et al. (2016). Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164: 447-459.
|
[7] |
Bardgett,R.D., Mommer, L., and De Vries,F.T. (2014). Going underground: Root traits as drivers of ecosystem processes. Trends. Ecol. Evol. 29: 692-699.
|
[8] |
Bass,R.B., Strop,P., Barclay,M., and Rees, D.C. (2002). Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298: 1582-1587.
|
[9] |
Basu,D., and Haswell, E.S. (2020). The mechanosensitive ion channel MSL10 potentiates responses to cell swelling in Arabidopsis seedlings. Curr. Biol. 30: 2716-2728.
|
[10] |
Begg,J.E., and Turner, N.C. (1970). Water potential gradients in field tobacco. Plant Physiol. 46: 343-346.
|
[11] |
Bhaskara,G.B., Nguyen, T.T., and Verslues,P. (2012). Unique drought resistance functions of the Highly ABA-Induced clade A protein phosphatase 2Cs. Plant Physiol. 160: 379-395.
|
[12] |
Blizzard,W.E. (1980). Comparative resistance of the soil and the plant to water transport. Plant Physiol. 66: 809-814.
|
[13] |
Boisson-Dernier,A., Roy, S., Kritsas,K., Grobei,M.A., Jaciubek, M., Schroeder,J.I., and Grossniklaus,U. (2009). Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136: 3279-3288.
|
[14] |
Boudsocq,M., Barbier-Brygoo, H., and Lauriere,C. (2004). Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J. Biol. Chem. 279: 41758-41766.
|
[15] |
Boursiac,Y., Boudet, J., Postaire,O., Luu,D.T., Tournaire-Roux, C., and Maurel,C. (2008). Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant J. 56: 207-218.
|
[16] |
Boyd-Shiwarski,C.R., Shiwarski, D.J., Griffiths,S.E., Beacham,R.T., Norrell, L., Morrison,D.E., Wang,J., Mann,J., Tennant,W., Anderson, E.N., et al. (2022). WNK kinases sense molecular crowding and rescue cell volume via phase separation. Cell 185: 4488-4506.
|
[17] |
Brangwynne,C.P., Eckmann, C.R., Courson,D.S., Rybarska,A., Hoege,C., Gharakhani,J., Jülicher,F., and Hyman, A.A. (2009). Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324: 1729-1732.
|
[18] |
Brewster,J.L., and Gustin, M.C. (2014). Hog1: 20 years of discovery and impact. Sci. Signal. 7: 343.
|
[19] |
Buda,R., Liu,Y.X., Yang,J., Hegde, S., Stevenson,K., Bai,F., and Pilizota, T. (2016). Dynamics of Escherichia coli's passive response to a sudden decrease in external osmolarity. Proc. Natl. Acad. Sci. U.S.A. 113: E5838-E5846.
|
[20] |
Calvo-Polanco,M., Ribeyre, Z., Dauzat,M., Reyt,G., Hidalgo-Shrestha, C., Diehl,P., Frenger,M., Simonneau, T., Muller,B., Salt,D.E., et al. (2021). Physiological roles of Casparian strips and suberin in the transport of water and solutes. New Phytol. 232: 2295-2307.
|
[21] |
Chang,G., Spencer, R.H., Lee,A.T., Barclay,M.T., and Rees, D.C. (1998). Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 282: 2220-2226.
|
[22] |
Chang,J., Li,X., Fu,W., Wang, J., Yong,Y., Shi,H., Ding,Z., Kui,H., Gou, X., He,K., et al. (2019). Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Res. 29: 984-993.
|
[23] |
Chang,Y.N., Wang,Z.J., Ren,Z.Y., Wang, C.H., Wang,P.C., Zhu,J.K., Li,X., and Duan,C.G. (2022). NUCLEAR PORE ANCHOR and EARLY IN SHORT DAYS 4 negatively regulate abscisic acid signaling by inhibiting Snf1-related protein kinase2 activity and stability in Arabidopsis. J. Integr. Plant Biol. 64: 2060-2074.
|
[24] |
Charman,M., Grams,N., Kumar,N., Halko, E., Dybas,J.M., Abbott,A., Lum,K.K., Blumenthal,D., Tsopurashvili,E., and Weitzman, M.D. (2023). A viral biomolecular condensate coordinates assembly of progeny particles. Nature 616: 332-338.
|
[25] |
Chen,G.-L., Li,J.-Y., Chen,X., Liu, J.-W., Zhang,Q., Liu,J.-Y., Wen,J., Wang,N., Lei, M., Wei,J.-P., et al. (2024). Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. J. Clin. Invest. 134: e174508.
|
[26] |
Chen,J., Yu,F., Liu,Y., Du, C., Li,X., Zhu,S., Wang,X., Lan,W., Rodriguez, P.L., Liu,X., et al. (2016). FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 113: E5519-E5527.
|
[27] |
Chen,K., Li,G.J., Bressan,R.A., Song,C.P., Zhu,J.K., and Zhao,Y. (2020a). Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 62: 25-54.
|
[28] |
Chen,K., Gao,J., Sun,S., Zhang, Z., Yu,B., Li,J., Xie,C., Li,G., Wang, P., Song,C.P., et al. (2020b). BONZAI proteins control global osmotic stress responses in plants. Curr. Biol. 30: 4815-4825.
|
[29] |
Chen,Q., Hu,T., Li,X., Song, C.-P., Zhu,J.-K., Chen,L., and Zhao, Y. (2022). Phosphorylation of SWEET sucrose transporters regulates plant root: Shoot ratio under drought. Nat. Plants 8: 68-77.
|
[30] |
Chen,X., Ding,Y., Yang,Y., Song, C., Wang,B., Yang,S., Guo,Y., and Gong,Z. (2021a). Protein kinases in plant responses to drought, salt, and cold stress. J. Integr. Plant Biol. 63: 53-78.
|
[31] |
Chen,X., Wang,T., Rehman,A.U., Wang, Y., Qi,J., Li,Z., Song,C., Wang,B., Yang, S., and Gong,Z. (2021b). Arabidopsis U-box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptor-like protein kinases LRR1 and KIN7. J. Integr. Plant Biol. 63: 494-509.
|
[32] |
Cheng,S., Xian,W., Fu,Y., Marin, B., Keller,J., Wu,T., Sun,W., Li,X., Xu, Y., Zhang,Y., et al. (2019). Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell 179: 1057-1067.
|
[33] |
Choudhary,M.K., Nomura, Y., Wang,L., Nakagami,H., and Somers, D.E. (2015). Quantitative circadian phosphoproteomic analysis of Arabidopsis reveals extensive clock control of key components in physiological, metabolic, and signaling pathways. Mol. Cell. Proteomics 14: 2243-2260.
|
[34] |
Claeys,H., and Inzé, D. (2013). The agony of choice: How plants balance growth and survival under water-limiting conditions. Plant Physiol. 162: 1768-1779.
|
[35] |
Codjoe,J.M., Miller, K., and Haswell,E.S. (2021). Plant cell mechanobiology: Greater than the sum of its parts. Plant Cell 34: 129-145.
|
[36] |
Codjoe,J.M., Richardson, R.A., McLoughlin,F., Vierstra,R.D., and Haswell, E.S. (2022). Unbiased proteomic and forward genetic screens reveal that mechanosensitive ion channel MSL10 functions at ER-plasma membrane contact sites in Arabidopsis thaliana. eLife 11: e80501.
|
[37] |
Colin,L., Ruhnow, F., Zhu,J.K., Zhao,C.Z., Zhao,Y., and Persson,S. (2023). The cell biology of primary cell walls during salt stress. Plant Cell 35: 201-217.
|
[38] |
Comas,L.H., Becker, S.R., Cruz,V.V., Byrne,P.F., and Dierig, D.A. (2013). Root traits contributing to plant productivity under drought. Front. Plant Sci. 4: 442.
|
[39] |
Cornforth,J.W., Milborrow, B.V., Ryback,G., and Wareing,P.F. (1965). Chemistry and physiology of ‘dormins’ in sycamore: Identity of sycamore ‘dormin’ with abscisin II. Nature 205: 1269-1270.
|
[40] |
Coste,B., Mathur, J., Schmidt,M., Earley,T.J., Ranade, S., Petrus,M.J., Dubin,A.E., and Patapoutian, A. (2010). Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330: 55-60.
|
[41] |
Creutz,C.E., Tomsig, J.L., Snyder,S.L., Gautier,M.C., Skouri, F., Beisson,J., and Cohen,J. (1998). The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from Paramecium to humans. J. Biol. Chem. 273: 1393-1402.
|
[42] |
Cuevas-Velazquez,C.L., and Dinneny, J.R. (2018). Organization out of disorder: Liquid-liquid phase separation in plants. Curr. Opin. Plant Biol. 45: 68-74.
|
[43] |
Cuevas-Velazquez,C.L., Saab-Rincón, G., Reyes,J.L., and Covarrubias,A.A. (2016). The unstructured N-terminal region of Arabidopsis group 4 late embryogenesis abundant (LEA) proteins is required for folding and for chaperone-like activity under water deficit. J. Biol. Chem. 291: 10893-10903.
|
[44] |
Cuevas-Velazquez,C.L., Vellosillo, T., Guadalupe,K., Schmidt,H.B., Yu,F., Moses,D., Brophy, J.A., Cosio-Acosta,D., Das,A., Wang,L.X., et al. (2021). Intrinsically disordered protein biosensor tracks the physical-chemical effects of osmotic stress on cells. Nat. Commun. 12: 5438.
|
[45] |
Cutler,S.R., Rodriguez, P.L., Finkelstein,R.R., and Abrams,S.R. (2010). Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 61: 651-679.
|
[46] |
De Smet,I., Voss,U., Jürgens,G., and Beeckman,T. (2009). Receptor-like kinases shape the plant. Nat. Cell Biol. 11: 1166-1173.
|
[47] |
de Vries,J., Curtis, B.A., Gould,S.B., and Archibald,J.M. (2018). Embryophyte stress signaling evolved in the algal progenitors of land plants. Proc. Natl. Acad. Sci. U.S.A. 115: E3471-E3480.
|
[48] |
DeFalco,T.A., Anne,P., James,S.R., Willoughby, A.C., Schwanke,F., Johanndrees,O., Genolet, Y., Derbyshire,P., Wang,Q., Rana,S., et al. (2022). A conserved module regulates receptor kinase signalling in immunity and development. Nat. Plants 8: 356-365.
|
[49] |
Deng,J.P., Kong,L.Y., Zhu,Y.H., Pei, D., Chen,X.X., Wang,Y., Qi,J.S., Song,C.P., Yang, S.H., and Gong,Z.Z. (2022). BAK1 plays contrasting roles in regulating abscisic acid-induced stomatal closure and abscisic acid-inhibited primary root growth in Arabidopsis. J. Integr. Plant Biol. 64: 1264-1280.
|
[50] |
Di Giorgio,J.A.P., Bienert, G.P., Ayub,N.D., Yaneff,A., Barberini, M.L., Mecchia,M.A., Amodeo,G., Soto,G.C., and Muschietti,J.P. (2016). Pollen-specific aquaporins NIP4;1 and NIP4;2 are required for pollen development and pollination in Arabidopsis thaliana. Plant Cell 28: 1053-1077.
|
[51] |
di Pietro,M., Vialaret, J., Li,G.W., Hem,S., Prado,K., Rossignol,M., Maurel,C., and Santoni, V. (2013). Coordinated post-translational responses of aquaporins to abiotic and nutritional stimuli in Arabidopsis roots. Mol. Cell. Proteomics 12: 3886-3897.
|
[52] |
Dietrich,D. (2018). Hydrotropism: How roots search for water. J. Exp. Bot. 69: 2759-2771.
|
[53] |
Dietrich,D., Pang,L., Kobayashi,A., Fozard,J.A., Boudolf, V., Bhosale,R., Antoni,R., Nguyen, T., Hiratsuka,S., Fujii,N., et al. (2017). Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat. Plants 3: 17057.
|
[54] |
Ding,Y.T., Zhang,Y.X., Zheng,Q.S., and Tyree, M.T. (2014). Pressure-volume curves: Revisiting the impact of negative turgor during cell collapse by literature review and simulations of cell micromechanics. New Phytol. 203: 378-387.
|
[55] |
Dinneny,J.R. (2020). Mechanobiology: Plant cells face pressure from neighbors. Curr. Biol. 30: R344-R346.
|
[56] |
Dorone,Y., Boeynaems, S., Flores,E., Jin,B., Hateley, S., Bossi,F., Lazarus,E., Pennington, J.G., Michiels,E., De Decker,M., et al. (2021). A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell 184: 1-15.
|
[57] |
Du,H., Ye,C., Wu,D., Zang, Y.Y., Zhang,L.Q., Chen,C., He,X.Y., Yang,J.J., Hu, P., Xu,Z.F., et al. (2020). The cation channel TMEM63B is an osmosensor required for hearing. Cell Rep. 31: 107596.
|
[58] |
Duan,Q., Kita,D., Li,C., Cheung, A.Y., and Wu,H.M. (2010). FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc. Natl. Acad. Sci. U.S.A. 107: 17821-17826.
|
[59] |
Dunser,K., Gupta,S., Herger,A., Feraru, M.I., Ringli,C., and Kleine-Vehn,J. (2019). Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J. 38: e100353.
|
[60] |
Emenecker,R.J., Holehouse, A.S., and Strader,L.C. (2020). Emerging roles for phase separation in plants. Dev. Cell 55: 69-83.
|
[61] |
Emenecker,R.J., Holehouse, A.S., and Strader,L.C. (2021). Biological phase separation and biomolecular condensates in plants. Annu. Rev. Plant Biol. 72: 17-46.
|
[62] |
Engelsdorf,T., Gigli-Bisceglia, N., Veerabagu,M., McKenna,J.F., Vaahtera, L., Augstein,F., Van der Does,D., Zipfel, C., and Hamann,T. (2018). The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci. Signal. 11: eaao3070.
|
[63] |
Fabregas,N., Lozano-Elena, F., Blasco-Escamez,D., Tohge,T., Martinez-Andujar, C., Albacete,A., Osorio,S., Bustamante, M., Riechmann,J.L., Nomura,T., et al. (2018). Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat. Commun. 9: 4680.
|
[64] |
Fan,Y., Burkart, G.M., and Dixit,R. (2018). The Arabidopsis SPIRAL2 protein targets and stabilizes microtubule minus ends. Curr. Biol. 28: 987-994.
|
[65] |
Feiguelman,G., Fu,Y., and Yalovsky,S. (2018). ROP GTPases structure-function and signaling pathways. Plant Physiol. 176: 57-79.
|
[66] |
Feng,L., Gao,Z.R., Xiao,G.Q., Huang, R.F., and Zhang,H.W. (2014). Leucine-rich repeat receptor-like kinase FON1 regulates drought stress and seed germination by activating the expression of ABA-responsive genes in rice. Plant Mol. Biol. Rep. 32: 1158-1168.
|
[67] |
Feng,T., Wu,P., Gao,H.N., Kosma, D.K., Jenks,M.A., and Lü,S.Y. (2022a). Natural variation in root suberization is associated with local environment in Arabidopsis thaliana. New Phytol. 236: 385-398.
|
[68] |
Feng,W., Lindner, H., Robbins, 2nd,N.E., and Dinneny,J.R. (2016). Growing out of stress: The role of cell- and organ-scale growth control in plant water-stress responses. Plant Cell 28: 1769-1782.
|
[69] |
Feng,W., Kita,D., Peaucelle,A., Cartwright,H.N., Doan,V., Duan,Q., Liu, M.C., Maman,J., Steinhorst,L., Schmitz-Thom, I., et al. (2018). The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr. Biol. 28: 666-675.
|
[70] |
Feng,X.J., Jia,L., Cai,Y.T., Guan, H.R., Zheng,D., Zhang,W.X., Xiong,H., Zhou,H.M., Wen, Y., Hu,Y., et al. (2022b). ABA-inducible DEEPER ROOTING 1 improves adaptation of maize to water deficiency. Plant Biotechnol. J. 20: 2077-2088.
|
[71] |
Fiol,D.F., and Kultz, D. (2007). Osmotic stress sensing and signaling in fishes. FEBS J. 274: 5790-5798.
|
[72] |
Frensch,J., and Hsiao, T.C. (1994). Transient responses of cell turgor and growth of maize roots as affected by changes in water potential. Plant Physiol. 104: 247-254.
|
[73] |
Fujii,H., and Zhu, J.K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl. Acad. Sci. U.S.A. 106: 8380-8385.
|
[74] |
Fujii,H., Verslues, P.E., and Zhu,J.K. (2011). Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc. Natl. Acad. Sci. U.S.A. 108: 1717-1722.
|
[75] |
Fujii,H., Chinnusamy, V., Rodrigues,A., Rubio,S., Antoni, R., Park,S.Y., Cutler,S.R., Sheen,J., Rodriguez,P.L., and Zhu,J.K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature 462: 660-664.
|
[76] |
Fujii,N., Miyabayashi, S., Sugita,T., Kobayashi,A., Yamazaki, C., Miyazawa,Y., Kamada,M., Kasahara, H., Osada,I., Shimazu,T., et al. (2018). Root-tip-mediated inhibition of hydrotropism is accompanied with the suppression of asymmetric expression of auxin-inducible genes in response to moisture gradients in cucumber roots. PLoS ONE 13: e0189827.
|
[77] |
Fusi,R., Rosignoli, S., Lou,H.Y., Sangiorgi,G., Bovina, R., Pattem,J.K., Borkar,A.N., Lombardi, M., Forestan,C., Milner,S.G., et al. (2022). Root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism. Proc. Natl. Acad. Sci. U.S.A. 119:e2201350119.
|
[78] |
Gabay,G., Wang,H.C., Zhang,J.L., Moriconi, J.I., Burguener,G.F., Gualano,L.D., Howell, T., Lukaszewski,A., Staskawicz,B., Cho,M.J., et al. (2023). Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nat. Commun. 14: 539.
|
[79] |
Galvan-Ampudia,C.S., Julkowska, M.M., Darwish,E., Gandullo,J., Korver, R.A., Brunoud,G., Haring,M.A., Munnik, T., Vernoux,T., and Testerink,C. (2013). Halotropism is a response of plant roots to avoid a saline environment. Curr. Biol. 23: 2044-2050.
|
[80] |
Gao,Y.-Q., Huang,J.-Q., Reyt,G., Song, T., Love,A., Tiemessen,D., Xue,P.-Y., Wu,W.-K., George, M.W., Chen,X.-Y., et al. (2023). A dirigent protein complex directs lignin polymerization and assembly of the root diffusion barrier. Science 382: 464-471.
|
[81] |
Geldner,N. (2013). The endodermis. Annu. Rev. Plant Biol. 64: 531-558.
|
[82] |
Geldner,N., Anders, N., Wolters,H., Keicher,J., Kornberger, W., Muller,P., Delbarre,A., Ueda,T., Nakano,A., and Jürgens, G. (2003). The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112: 219-230.
|
[83] |
George,L., Romanowsky, S.M., Harper,J.F., and Sharrock,R.A. (2008). The ACA10 Ca2+-ATPase regulates adult vegetative development and inflorescence architecture in Arabidopsis. Plant Physiol. 146: 716-728.
|
[84] |
Gigli-Bisceglia,N., van Zelm, E., Huo,W., Lamers,J., and Testerink, C. (2022). Arabidopsis root responses to salinity depend on pectin modification and cell wall sensing. Development 149: dev200363.
|
[85] |
Giménez,C., Gallardo, M., Thompson,R.B. (2013). Plant-water relations. In Reference Module in Earth Systems and Environmental Sciences. ScottElias ed, (Elsevier: Amsterdam, The Netherlands), pp. 1-8.
|
[86] |
Gong,Z.Z., and Yang, S.H. (2022). Drought meets SWEET. Nat. Plants 8: 25-26.
|
[87] |
Gorgues,L., Li,X., Maurel,C., Martinière, A., and Nacry,P. (2022). Root osmotic sensing from local perception to systemic responses. Stress Biol. 2: 36.
|
[88] |
Gosti,F., Beaudoin, N., Serizet,C., Webb,A.A., Vartanian, N., and Giraudat,J. (1999). ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11: 1897-1910.
|
[89] |
Gouget,A., Senchou, V., Govers,F., Sanson,A., Barre,A., Rouge,P., Pont-Lezica, R., and Canut,H. (2006). Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis. Plant Physiol. 140: 81-90.
|
[90] |
Granot,D., and Kelly, G. (2019). Evolution of guard-cell theories: The story of sugars. Trends Plant Sci. 24: 507-518.
|
[91] |
Grison,M.S., Kirk,P., Brault,M.L., Wu, X.N., Schulze,W.X., Benitez-Alfonso,Y., Immel, F., and Bayer,E.M. (2019). Plasma membrane-associated receptor-like kinases relocalize to plasmodesmata in response to osmotic stress. Plant Physiol. 181: 142-160.
|
[92] |
Grondin,A., Rodrigues, O., Verdoucq,L., Merlot,S., Leonhardt, N., and Maurel,C. (2015). Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell 27: 1945-1954.
|
[93] |
Gupta,A., Rico-Medina, A., and Cano-Delgado,A.I. (2020). The physiology of plant responses to drought. Science 368: 266-269.
|
[94] |
Hamann,T., Bennett, M., Mansfield,J., and Somerville,C. (2009). Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses. Plant J. 57: 1015-1026.
|
[95] |
Hamilton,E.S., and Haswell, E.S. (2017). The tension-sensitive ion transport activity of MSL8 is critical for its function in pollen hydration and germination. Plant Cell Physiol. 58: 1222-1237.
|
[96] |
Hamilton,E.S., Jensen, G.S., Maksaev,G., Katims,A., Sherp,A.M., and Haswell,E.S. (2015). Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350: 438-441.
|
[97] |
Haswell,E.S., and Meyerowitz, E.M. (2006). MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr. Biol. 16: 1-11.
|
[98] |
Hauser,F., Waadt,R., and Schroeder,J.I. (2011). Evolution of abscisic acid synthesis and signaling mechanisms. Curr. Biol. 21: R346-R355.
|
[99] |
He,R., Su,H.Q., Wang,X., Ren, Z.J., Zhang,K., Feng,T.Y., Zhang,M.C., Li,Z.H., Li, L.G., Zhuang,J.H., et al. (2023). Coronatine promotes maize water uptake by directly binding to the aquaporin ZmPIP2;5 and enhancing its activity. J. Integr. Plant Biol. 65: 703-720.
|
[100] |
Hecht,K. (1912). Studien über den vorgang der plasmolyse. Beitrage zur Biologie der Pflanzen 11: 133-192.
|
[101] |
Hellkvist,J., Richards, G.P., and Jarvis,P.G. (1974). Vertical gradients of water potential and tissue water relations in Sitka spruce trees measured with the pressure chamber. J. Appl. Ecol. 11: 637-667.
|
[102] |
Hematy,K., Sado,P.E., Van Tuinen,A., Rochange,S., Desnos, T., Balzergue,S., Pelletier,S., Renou,J.P., and Hofte,H. (2007). A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr. Biol. 17: 922-931.
|
[103] |
Hepler,P.K., and Winship, L.J. (2010). Calcium at the cell wall-cytoplast interface. J. Integr. Plant Biol. 52: 147-160.
|
[104] |
Hill,A.E., Shachar-Hill, B., and Shachar-Hill,Y. (2004). What are aquaporins for? J. Membrane Biol. 197: 1-32.
|
[105] |
Hirose,T., Ninomiya, K., Nakagawa,S., and Yamazaki,T. (2023). A guide to membraneless organelles and their various roles in gene regulation. Nat. Rev. Mol. Cell Biol. 24: 288-304.
|
[106] |
Hoang,X.L.T., Prerostova, S., Thu,N.B.A., Thao,N.P., Vankova, R., and Tran,L.S.P. (2021). Histidine kinases: Diverse functions in plant development and responses to environmental conditions. Annu. Rev. Plant Biol. 72: 297-323.
|
[107] |
Hoffmann,E.K., Lambert, I.H., and Pedersen,S.F. (2009). Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89: 193-277.
|
[108] |
Hou,C., Tian,W., Kleist,T., He, K., Garcia,V., Bai,F., Hao,Y., Luan,S., and Li, L. (2014). DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res. 24: 632-635.
|
[109] |
Hua,D., Wang,C., He,J., Liao, H., Duan,Y., Zhu,Z., Guo,Y., Chen,Z., and Gong, Z. (2012). A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24: 2546-2561.
|
[110] |
Hua,J., Grisafi, P., Cheng,S.H., and Fink,G.R. (2001). Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev. 15: 2263-2272.
|
[111] |
Huai,J.L., Zhang,X.Y., Li,J.L., Ma, T.T., Zha,P., Jing,Y.J., and Lin, R.C. (2018). SEUSS and PIF4 coordinately regulate light and temperature signaling pathways to control plant growth. Mol. Plant 11: 928-942.
|
[112] |
Huang,S., Zhu,S.W., Kumar,P., and MacMicking, J.D. (2021). A phase-separated nuclear GBPL circuit controls immunity in plants. Nature 594: 424-429.
|
[113] |
Invernizzi,M., Hanemian, M., Keller,J., Libourel,C., and Roby, D. (2022). PERKing up our understanding of the proline-rich extensin-like receptor kinases, a forgotten plant receptor kinase family. New Phytol. 235: 875-884.
|
[114] |
Isner,J.C., Begum,A., Nuehse,T., Hetherington, A.M., and Maathuis,F.J.M. (2018). KIN7 kinase regulates the vacuolar TPK1 K+ channel during stomatal closure. Curr. Biol. 28: 466-472.
|
[115] |
Jaffe,M.J., Takahashi, H., and Biro,R.L. (1985). A pea mutant for the study of hydrotropism in roots. Science 230: 445-447.
|
[116] |
Jaillais,Y., and Ott, T. (2019). The nanoscale organization of the plasma membrane and its importance in signaling: A proteolipid perspective. Plant Physiol. 182: 1682-1696.
|
[117] |
Jalihal,A.P., Pitchiaya, S., Xiao,L., Bawa,P., Jiang,X., Bedi,K., Parolia, A., Cieslik,M., Ljungman,M., Chinnaiyan, A.M., et al. (2020). Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change. Mol. Cell 79: 978-990 e975.
|
[118] |
Jambunathan,N., Siani,J.M., and McNellis,T.W. (2001). A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13: 2225-2240.
|
[119] |
Jiang,Z., Zhou,X., Tao,M., Yuan, F., Liu,L., Wu,F., Wu,X., Xiang,Y., Niu, Y., Liu,F., et al. (2019). Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature 572: 341-346.
|
[120] |
Jojoa-Cruz,S., Saotome, K., Murthy,S.E., Tsui,C.C.A., Sansom, M.S., Patapoutian,A., and Ward,A.B. (2018). Cryo-EM structure of the mechanically activated ion channel OSCA1.2. eLife 7: e41845.
|
[121] |
Julkowska,M.M., Koevoets, I.T., Mol,S., Hoefsloot,H., Feron,R., Tester,M.A., Keurentjes, J.J.B., Korte,A., Haring,M.A., de Boer, G.J., et al. (2017). Genetic components of root architecture remodeling in response to salt stress. Plant Cell 29: 3198-3213.
|
[122] |
Kenrick,P., and Crane, P.R. (1997). The origin and early evolution of plants on land. Nature 389: 33-39.
|
[123] |
Kim,G.E., and Sung, J. (2023). ABA-dependent suberization and aquaporin activity in rice (Oryza sativa L.) root under different water potentials. Front. Plant Sci. 14: 1219610.
|
[124] |
Kirschner,G.K., Xiao,T.T., and Blilou,I. (2021). Rooting in the desert: A developmental overview on desert plants. Genes 12: 709.
|
[125] |
Kitomi,Y., Hanzawa, E., Kuya,N., Inoue,H., Hara,N., Kawai,S., Kanno, N., Endo,M., Sugimoto,K., Yamazaki, T., et al. (2020). Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proc. Natl. Acad. Sci. U.S.A. 117: 21242-21250.
|
[126] |
Kobayashi,A., Takahashi, A., Kakimoto,Y., Miyazawa,Y., Fujii,N., Higashitani,A., and Takahashi,H. (2007). A gene essential for hydrotropism in roots. Proc. Natl. Acad. Sci. U.S.A. 104: 4724-4729.
|
[127] |
Kohorn,B.D. (2016). Cell wall-associated kinases and pectin perception. J. Exp. Bot. 67: 489-494.
|
[128] |
Kohorn,B.D., Kohorn, S.L., Saba,N.J., and Martinez,V.M. (2014). Requirement for pectin methyl esterase and preference for fragmented over native pectins for wall-associated kinase-activated, EDS1/PAD4-dependent stress response in Arabidopsis. J. Biol. Chem. 289: 18978-18986.
|
[129] |
Kohorn,B.D., Kohorn, S.L., Todorova,T., Baptiste,G., Stansky, K., and McCullough,M. (2012). A dominant allele of Arabidopsis pectin-binding wall-associated kinase induces a stress response suppressed by MPK6 but not MPK3 mutations. Mol. Plant 5: 841-851.
|
[130] |
Kohorn,B.D., Kobayashi, M., Johansen,S., Riese,J., Huang,L.F., Koch,K., Fu, S., Dotson,A., and Byers,N. (2006). An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J. 46: 307-316.
|
[131] |
Kreida,S., and Törnroth-Horsefield, S. (2015). Structural insights into aquaporin selectivity and regulation. Curr. Opin. Struct. Biol. 33: 126-134.
|
[132] |
Kreszies,T., Shellakkutti, N., Osthoff,A., Yu,P., Baldauf, J.A., Zeisler-Diehl,V.V., Ranathunge,K., Hochholdinger, F., and Schreiber,L. (2019). Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: Analysis of chemical, transcriptomic and physiological responses. New Phytol. 221: 180-194.
|
[133] |
Kultz,D. (2012). The combinatorial nature of osmosensing in fishes. Physiology. 27: 259-275.
|
[134] |
Kumamoto,C.A. (2008). Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat. Rev. Microbiol. 6: 667-673.
|
[135] |
Kumar,M.N., Jane,W.-N., and Verslues,P. (2013). Role of the putative osmosensor Arabidopsis Histidine Kinase 1 (AHK1) in dehydration avoidance and low water potential response. Plant Physiol. 161: 942-953.
|
[136] |
Kutschera,U., and Niklas, K.J. (2018). Julius Sachs (1868): The father of plant physiology. Am. J. Bot. 105: 656-666.
|
[137] |
Lamers,J., van der Meer, T., and Testerink,C. (2020). How plants sense and respond to stressful environments. Plant Physiol. 182: 1624-1635.
|
[138] |
Lan,Z., Song,Z., Wang,Z., Li, L., Liu,Y., Zhi,S., Wang,R., Wang,J., Li, Q., Bleckmann,A., et al. (2023). Antagonistic RALF peptides control an intergeneric hybridization barrier on Brassicaceae stigmas. Cell 186: 4773-4787.
|
[139] |
Laohavisit,A., Wakatake, T., Ishihama,N., Mulvey,H., Takizawa, K., Suzuki,T., and Shirasu,K. (2020). Quinone perception in plants via leucine-rich-repeat receptor-like kinases. Nature 587: 92-97.
|
[140] |
Lee,S.C., and Martienssen, R.A. (2021). Phase separation in plant miRNA processing. Nat. Cell Biol. 23: 5-6.
|
[141] |
Lei,Z., Wang,L., Kim,E.Y., and Cho, J.N. (2021). Phase separation of chromatin and small RNA pathways in plants. Plant J. 108: 1256-1265.
|
[142] |
Levina,N., Tötemeyer, S., Stokes,N.R., Louis,P., Jones,M.A., and Booth,I.R. (1999). Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: Identification of genes required for MscS activity. EMBO J. 18: 1730-1737.
|
[143] |
Li,H.F., Duijts, K., Pasini,C., van Santen,J.E., Lamers, J., de Zeeuw,T., Verstappen,F., Wang,N., Zeeman,S.C., Santelia, D., et al. (2023a). Effective root responses to salinity stress include maintained cell expansion and carbon allocation. New Phytol. 238: 1942-1956.
|
[144] |
Li,Q., and Montell, C. (2021). Mechanism for food texture preference based on grittiness. Curr. Biol. 31: 1850-1861.
|
[145] |
Li,X., Kong,X., Huang,Q., Zhang, Q., Ge,H., Zhang,L., Li,G., Peng,L., Liu, Z., Wang,J., et al. (2019). CARK1 phosphorylates subfamily III members of ABA receptors. J. Exp. Bot. 70: 519-528.
|
[146] |
Li,X., Xie,Y., Zhang,Q., Hua, X., Peng,L., Li,K., Yu,Q., Chen,Y., Yao, H., He,J., et al. (2022). Monomerization of abscisic acid receptors through CARKs-mediated phosphorylation. New Phytol. 235: 533-549.
|
[147] |
Li,X.J., Wang,X.H., Yang,Y., Li, R.L., He,Q.H., Fang,X.H., Luu,D.T., Maurel,C., and Lin, J.X. (2011). Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23: 3780-3797.
|
[148] |
Li,Y., Pennington, B.O., and Hua,J. (2009). Multiple R-like genes are negatively regulated by BON1 and BON3 in Arabidopsis. Mol. Plant Microbe. Interact. 22: 840-848.
|
[149] |
Li,Y., Gou,M., Sun,Q., and Hua, J. (2010). Requirement of calcium binding, myristoylation, and protein-protein interaction for the copine BON1 function in Arabidopsis. J. Biol. Chem. 285: 29884-29891.
|
[150] |
Li,Y., Guo,J., Yang,Z., and Yang, D.L. (2018). Plasma membrane-localized calcium pumps and copines coordinately regulate pollen germination and fertility in Arabidopsis. Int. J. Mol. Sci. 19: 1774.
|
[151] |
Li,Y.X., Han,S.C., Sun,X.M., Khan, N.U., Zhong,Q., Zhang,Z.Y., Zhang,H.L., Ming,F., Li, Z.C., and Li,J.J. (2023b). Variations in OsSPL10 confer drought tolerance by directly regulating OsNAC2 expression and ROS production in rice. J. Integr. Plant Biol. 65: 918-933.
|
[152] |
Li,Z., and Liu, D. (2012). ROPGEF1 and ROPGEF4 are functional regulators of ROP11 GTPase in ABA-mediated stomatal closure in Arabidopsis. FEBS Lett. 586: 1253-1258.
|
[153] |
Li,Z., Gao,X., Chinnusamy,V., Bressan,R., Wang,Z.X., Zhu,J.K., Wu, J.W., and Liu,D. (2012). ROP11 GTPase negatively regulates ABA signaling by protecting ABI1 phosphatase activity from inhibition by the ABA receptor RCAR1/PYL9 in Arabidopsis. J. Integr. Plant Biol. 54: 180-188.
|
[154] |
Liang,F., and Sze, H. (1998). A high-affinity Ca2+ pump, ECA1, from the endoplasmic reticulum is inhibited by cyclopiazonic acid but not by thapsigargin. Plant Physiol. 118: 817-825.
|
[155] |
Lin,W., Tang,W., Pan,X., Huang, A., Gao,X., Anderson,C.T., and Yang, Z. (2022). Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr. Biol. 32: 497-507.
|
[156] |
Lin,Z., Li,Y., Wang,Y., Liu, X., Ma,L., Zhang,Z., Mu,C., Zhang,Y., Peng, L., Xie,S., et al. (2021). Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nat. Commun. 12: 2456.
|
[157] |
Lin,Z., Li,Y., Zhang,Z., Liu, X., Hsu,C.C., Du,Y., Sang,T., Zhu,C., Wang, Y., Satheesh,V., et al. (2020). A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. Nat. Commun. 11: 613.
|
[158] |
Lind,C., Dreyer, I., Lopez-Sanjurjo,E.J., von Meyer,K., Ishizaki, K., Kohchi,T., Lang,D., Zhao,Y., Kreuzer,I., Al-Rasheid, K.A., et al. (2015). Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure. Curr. Biol. 25: 928-935.
|
[159] |
Lingwood,D., and Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science 327: 46-50.
|
[160] |
Liu,C., Yu,H., Voxeur,A., Rao, X., and Dixon,R.A. (2023a). FERONIA and wall-associated kinases coordinate defense induced by lignin modification in plant cell walls. Sci. Adv. 9: eadf7714.
|
[161] |
Liu,M.-C.J., Yeh,F.-L.J., Yvon,R., Simpson,K., Jordan, S., Chambers,J., Wu,H.-M., and Cheung, A.Y. (2023b). Extracellular pectin-RALF phase separation mediates FERONIA global signaling function. Cell 187: 312-330.
|
[162] |
Liu,P.W., Hosokawa, T., and Hayashi,Y. (2021). Regulation of synaptic nanodomain by liquid-liquid phase separation: A novel mechanism of synaptic plasticity. Curr. Opin. Neurobiol. 69: 84-92.
|
[163] |
Liu,X., Wang,J., and Sun,L. (2018). Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2. Nat. Commun. 9: 5060.
|
[164] |
Liu,X., Wang,P., An,Y.P., Wang, C.M., Hao,Y.B., Zhou,Y., Zhou,Q.P., and Wang,P. (2022). Endodermal apoplastic barriers are linked to osmotic tolerance in meso-xerophytic grass Elymus sibiricus. Front. Plant Sci. 13: 1007494.
|
[165] |
Liu,Z., Jia,Y., Ding,Y., Shi, Y., Li,Z., Guo,Y., Gong,Z., and Yang,S. (2017). Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Mol. Cell 66: 117-128.
|
[166] |
Luo,Y., Na,Z.K., and Slavoff,S.A. (2018). P-bodies: Composition, properties, and functions. Biochemistry 57: 2424-2431.
|
[167] |
Luu,D.T., Martinière, A., Sorieul,M., Runions,J., and Maurel, C. (2012). Fluorescence recovery after photobleaching reveals high cycling dynamics of plasma membrane aquaporins in Arabidopsis roots under salt stress. Plant J. 69: 894-905.
|
[168] |
Lv,A., Su,L., Fan,N., Wen, W., Gao,L., Mo,X., You,X., Zhou,P., and An, Y. (2023). The MsDHN1-MsPIP2;1-MsmMYB module orchestrates the trade-off between growth and survival of alfalfa in response to drought stress. Plant Biotechnol. J.
CrossRef
Google scholar
|
[169] |
Ma,Y., Szostkiewicz, I., Korte,A., Moes,D., Yang,Y., Christmann,A., and Grill,E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324: 1064-1068.
|
[170] |
Maity,K., Heumann, J.M., McGrath,A.P., Kopcho,N.J., Hsu,P.K., Lee,C.W., Mapes, J.H., Garza,D., Krishnan,S., Morgan, G.P., et al. (2019). Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proc. Natl. Acad. Sci. U.S.A. 116: 14309-14318.
|
[171] |
Majumder,S., and Jain, A. (2020). Osmotic stress triggers phase separation. Mol. Cell 79: 876-877.
|
[172] |
Maksaev,G., and Haswell, E.S. (2012). MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions. Proc. Natl. Acad. Sci. U.S.A. 109: 19015-19020.
|
[173] |
Malivert,A., and Hamant, O. (2023). Why is FERONIA pleiotropic? Nat. Plants 9: 1018-1025.
|
[174] |
Malivert,A., Erguvan, O., Chevallier,A., Dehem,A., Friaud, R., Liu,M.Y., Martin,M., Peyraud, T., Hamant,O., and Verger,S. (2021). FERONIA and microtubules independently contribute to mechanical integrity in the Arabidopsis shoot. PLoS Biol. 19: e3001454.
|
[175] |
Mammoto,T., Mammoto, A., and Ingber,D.E. (2013). Mechanobiology and developmental control. Annu. Rev. Cell Dev. Biol. 29: 27-61.
|
[176] |
Maqbool,S., Hassan, M.A., Xia,X.C., York,L.M., Rasheed, A., and He,Z.H. (2022). Root system architecture in cereals: progress, challenges and perspective. Plant J. 110: 23-42.
|
[177] |
Markhart,A.H. (1985). Comparative water relations of Phaseolus vulgaris L. and Phaseolus acutifolius Gray. Plant Physiol. 77: 113-117.
|
[178] |
Martiniere,A., Fiche,J.B., Smokvarska,M., Mari,S., Alcon,C., Dumont,X., Hematy, K., Jaillais,Y., Nollmann,M., and Maurel, C. (2019). Osmotic stress activates two reactive oxygen species pathways with distinct effects on protein nanodomains and diffusion. Plant Physiol. 179: 1581-1593.
|
[179] |
Martins,S., Dohmann, E.M.N., Cayrel,A., Johnson,A., Fischer, W., Pojer,F., Satiat-Jeunemaître,B., Jaillais,Y., Chory,J., Geldner,N., et al. (2015). Internalization and vacuolar targeting of the brassinosteroid hormone receptor BRI1 are regulated by ubiquitination. Nat. Commun. 6: 6151.
|
[180] |
Mecchia,M.A., Rovekamp, M., Giraldo-Fonseca,A., Meier,D., Gadient, P., Vogler,H., Limacher,D., Bowman, J.L., and Grossniklaus,U. (2022). The single Marchantia polymorpha FERONIA homolog reveals an ancestral role in regulating cellular expansion and integrity. Development 149: dev200580.
|
[181] |
Mehra,P., Fairburn, R., Leftley,N., Banda,J., and Bennett, M.J. (2023). Turning up the volume: How root branching adaptive responses aid water foraging. Curr. Opin. Plant Biol. 75: 102405.
|
[182] |
Mehra,P., Pandey, B.K., Melebari,D., Banda,J., Leftley, N., Couvreur,V., Rowe,J., Anfang, M., De Gernier,H., Morris,E., et al. (2022). Hydraulic flux-responsive hormone redistribution determines root branching. Science 378: 762-768.
|
[183] |
Miao,R., Wang,M., Yuan,W., Ren, Y., Li,Y., Zhang,N., Zhang,J., Kronzucker,H.J., and Xu,W. (2018). Comparative analysis of Arabidopsis ecotypes reveals a role for brassinosteroids in root hydrotropism. Plant Physiol. 176: 2720-2736.
|
[184] |
Miao,R., Yuan,W., Wang,Y., Garcia-Maquilon, I., Dang,X., Li,Y., Zhang,J., Zhu,Y., Rodriguez, P.L., and Xu,W. (2021). Low ABA concentration promotes root growth and hydrotropism through relief of ABA INSENSITIVE 1-mediated inhibition of plasma membrane H+-ATPase 2. Sci. Adv. 7: eabd4113.
|
[185] |
Minton,A.P., Colclasure, G.C., and Parker,J.C. (1992). Model for the role of macromolecular crowding in regulation of cellular volume. Proc. Natl. Acad. Sci. U.S.A. 89: 10504-10506.
|
[186] |
Miyazawa,Y., and Takahashi, H. (2020). Molecular mechanisms mediating root hydrotropism: What we have observed since the rediscovery of hydrotropism. J. Plant Res. 133: 3-14.
|
[187] |
Miyazawa,Y., Takahashi, A., Kobayashi,A., Kaneyasu,T., Fujii,N., and Takahashi,H. (2009a). GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of Arabidopsis roots. Plant Physiol. 149: 835-840.
|
[188] |
Miyazawa,Y., Ito,Y., Moriwaki,T., Kobayashi, A., Fujii,N., and Takahashi,H. (2009b). A molecular mechanism unique to hydrotropism in roots. Plant Sci. 177: 297-301.
|
[189] |
Moriwaki,T., Miyazawa, Y., Fujii,N., and Takahashi,H. (2014). GNOM regulates root hydrotropism and phototropism independently of PIN-mediated auxin transport. Plant Sci. 215: 141-149.
|
[190] |
Moriwaki,T., Miyazawa, Y., Kobayashi,A., Uchida,M., Watanabe, C., Fujii,N., and Takahashi,H. (2011). Hormonal regulation of lateral root development in Arabidopsis modulated by MIZ1 and requirement of GNOM activity for MIZ1 function. Plant Physiol. 157: 1209-1220.
|
[191] |
Morohashi,K., Okamoto, M., Yamazaki,C., Fujii,N., Miyazawa, Y., Kamada,M., Kasahara,H., Osada,I., Shimazu,T., Fusejima, Y., et al. (2017). Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments. New Phytol. 215: 1476-1489.
|
[192] |
Moussu,S., Lee,H.K., Haas,K.T., Broyart, C., Rathgeb,U., De Bellis,D., Levasseur, T., Schoenaers,S., Fernandez,G.S., Grossniklaus, U., et al. (2023). Plant cell wall patterning and expansion mediated by protein-peptide-polysaccharide interaction. Science 382: 719-725.
|
[193] |
Munné-Bosch,S., and Alegre, L. (2004). Die and let live: Leaf senescence contributes to plant survival under drought stress. Funct. Plant Biol. 31: 203-216.
|
[194] |
Murthy,S.E., Dubin,A.E., Whitwam,T., Jojoa-Cruz, S., Cahalan,S.M., Mousavi,S.A.R., Ward,A.B., and Patapoutian,A. (2018). OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. eLife 7: e41844.
|
[195] |
Mustilli,A.C., Merlot, S., Vavasseur,A., Fenzi,F., and Giraudat, J. (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14: 3089-3099.
|
[196] |
Nakagawa,Y., Katagiri, T., Shinozaki,K., Qi,Z., Tatsumi, H., Furuichi,T., Kishigami,A., Sokabe, M., Kojima,I., Sato,S., et al. (2007). Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc. Natl. Acad. Sci. U.S.A. 104: 3639-3644.
|
[197] |
Nakajima,Y., Nara,Y., Kobayashi,A., Sugita,T., Miyazawa, Y., Fujii,N., and Takahashi,H. (2017). Auxin transport and response requirements for root hydrotropism differ between plant species. J. Exp. Bot. 68: 3441-3456.
|
[198] |
Nakamura,M., Lindeboom, J.J., Saltini,M., Mulder,B.M., and Ehrhardt, D.W. (2018). SPR2 protects minus ends to promote severing and reorientation of plant cortical microtubule arrays. J. Cell Biol. 217: 915-927.
|
[199] |
Nakashima,K., Fujita, Y., Kanamori,N., Katagiri,T., Umezawa, T., Kidokoro,S., Maruyama,K., Yoshida, T., Ishiyama,K., Kobayashi,M., et al. (2009). Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol. 50: 1345-1363.
|
[200] |
Naramoto,S., Otegui, M.S., Kutsuna,N., de Rycke,R., Dainobu, T., Karampelias,M., Fujimoto,M., Feraru, E., Miki,D., Fukuda,H., et al. (2014). Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the golgi apparatus in Arabidopsis. Plant Cell 26: 3062-3076.
|
[201] |
Naseer,S., Lee,Y., Lapierre,C., Franke, R., Nawrath,C., and Geldner,N. (2012). Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc. Natl. Acad. Sci. U.S.A 109: 10101-10106.
|
[202] |
Niittyla,T., Fuglsang, A.T., Palmgren,M.G., Frommer,W.B., and Schulze, W.X. (2007). Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol. Cell. Proteomics 6: 1711-1726.
|
[203] |
Nongpiur,R.C., Singla-Pareek, S.L., and Pareek,A. (2020). The quest for osmosensors in plants. J. Exp. Bot. 71: 595-607.
|
[204] |
Oertli,J.J. (1986). The effect of cell size on cell collapse under negative turgor pressure. J. Plant Physiol. 124: 365-370.
|
[205] |
Ogura,T., Goeschl, C., Filiault,D., Mirea,M., Slovak, R., Wolhrab,B., Satbhai,S.B., and Busch, W. (2019). Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell 178: 400-412.
|
[206] |
Ohkuma,K., Lyon,J.L., Addicott,F.T., and Smith,O.E. (1963). Abscisin II, an abscission-accelerating substance from young cotton fruit. Science 142: 1592-1593.
|
[207] |
Osakabe,Y., Maruyama, K., Seki,M., Satou,M., Shinozaki, K., and Yamaguchi-Shinozaki,K. (2005). Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17: 1105-1119.
|
[208] |
Osakabe,Y., Mizuno, S., Tanaka,H., Maruyama,K., Osakabe, K., Todaka,D., Fujita,Y., Kobayashi, M., Shinozaki,K., and Yamaguchi-Shinozaki,K. (2010). Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. J. Biol. Chem. 285: 9190-9201.
|
[209] |
Ostrander,D.B., and Gorman, J.A. (1999). The extracellular domain of the Saccharomyces cerevisiae Sln1p membrane osmolarity sensor is necessary for kinase activity. J. Bacteriol. 181: 2527-2534.
|
[210] |
Ouyang,S.Q., Liu,Y.F., Liu,P., Lei, G., He,S.J., Ma,B., Zhang,W.K., Zhang,J.S., and Chen, S.Y. (2010). Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J. 62: 316-329.
|
[211] |
Park,S.Y., Fung,P., Nishimura,N., Jensen,D.R., Fujii,H., Zhao,Y., Lumba, S., Santiago,J., Rodrigues,A., Chow,T.F., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324: 1068-1071.
|
[212] |
Pei,D., Hua,D.P., Deng,J.P., Wang, Z.F., Song,C.P., Wang,Y., Wang,Y., Qi,J.S., Kollist, H., Yang,S.H., et al. (2022). Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis. Plant Cell 34: 2708-2729.
|
[213] |
Peret,B., Li,G., Zhao,J., Band, L.R., Voss,U., Postaire,O., Luu,D.T., Da Ines,O., Casimiro, I., Lucas,M., et al. (2012). Auxin regulates aquaporin function to facilitate lateral root emergence. Nat. Cell Biol. 14: 991-998.
|
[214] |
Piala,A.T., Moon,T.M., Akella,R., He, H.X., Cobb,M.H., and Goldsmith,E.J. (2014). Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci. Signal. 7: ra41.
|
[215] |
Platre,M.P., Bayle,V., Armengot,L., Bareille, J., Marques-Bueno,M.D., Creff,A., Maneta-Peyret, L., Fiche,J.B., Nollmann,M., Miege,C., et al. (2019). Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science 364: 57-62.
|
[216] |
Pleinis,J.M., Norell, L., Akella,R., Humphreys,J.M., He,H.X., Sun,Q.F., Zhang, F., Pagan,J.S., Morrison,D.E., Schellinger, J.N., et al. (2021). WNKs are potassium-sensitive kinases. Am. J. Physiol. Cell 320: C703-C721.
|
[217] |
Posas,F., and Saito, H. (1997). Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: Scaffold role of Pbs2p MAPKK. Science 276: 1702-1705.
|
[218] |
Prado,K., Boursiac, Y., Tournaire-Roux,C., Monneuse,J.M., Postaire, O., Da Ines,O., Schäffner,A.R., Hem, S., Santoni,V., and Maurel,C. (2013). Regulation of Arabidopsis leaf hydraulics involves light-dependent phosphorylation of aquaporins in veins. Plant Cell 25: 1029-1039.
|
[219] |
Pu,C.X., Han,Y.F., Zhu,S., Song, F.Y., Zhao,Y., Wang,C.Y., Zhang,Y.C., Yang,Q., Wang, J., Bu,S.L., et al. (2017). The rice receptor-like kinases DWARF AND RUNTISH SPIKELET1 and 2 repress cell death and affect sugar utilization during reproductive development. Plant Cell 29: 70-89.
|
[220] |
QingD., YangZ., LiM., WongW.S., GuoG., Liu S., GuoH., LiN. (2016) Quantitative and functional phosphoproteomic analysis reveals that ethylene regulates water transport via the C-terminal phosphorylation of aquaporin PIP2;1 in Arabidopsis. Mol. Plant 9: 158-174.
|
[221] |
Qu,G.-P., Jiang,B., and Lin,C. (2023). The dual-action mechanism of Arabidopsis cryptochromes. J. Integr. Plant Biol.
CrossRef
Google scholar
|
[222] |
Radin,I., Richardson, R.A., Coomey,J.H., Weiner,E.R., Bascom, C.S., Li,T., Bezanilla,M., and Haswell, E.S. (2021). Plant PIEZO homologs modulate vacuole morphology during tip growth. Science 373: 586-590.
|
[223] |
Raitt,D.C., Posas,F., and Saito,H. (2000). Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J. 19: 4623-4631.
|
[224] |
Ravindran,R., Bacellar, I.O.L., Castellanos-Girouard,X., Wahba,H.M., Zhang, Z.H., Omichinski,J.G., Kisley,L., and Michnick, S.W. (2023). Peroxisome biogenesis initiated by protein phase separation. Nature 617: 608-615.
|
[225] |
Reiser,V., Raitt,D.C., and Saito,H. (2003). Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J. Cell Biol. 161: 1035-1040.
|
[226] |
Ren,S.C., Song,X.F., Chen,W.Q., Lu, R., Lucas,W.J., and Liu,C.M. (2019). CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex. J. Integr. Plant Biol. 61: 1043-1061.
|
[227] |
Rodrigues,A., Adamo,M., Crozet,P., Margalha, L., Confraria,A., Martinho,C., Elias,A., Rabissi,A., Lumbreras, V., Gonzalez-Guzman,M., et al. (2013). ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. Plant Cell 25: 3871-3884.
|
[228] |
Rodriguez,P.L., Leube,M.P., and Grill,E. (1998). Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C (PP2C) with homology to ABI1 and ABI2. Plant Mol. Biol. 38: 879-883.
|
[229] |
Rosquete,M.R., and Kleine-Vehn, J. (2013). Halotropism: Turning down the salty date. Curr. Biol. 23: R927-R929.
|
[230] |
Rubio,S., Rodrigues, A., Saez,A., Dizon,M.B., Galle,A., Kim,T.H., Santiago, J., Flexas,J., Schroeder,J.I., and Rodriguez, P.L. (2009). Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol. 150: 1345-1355.
|
[231] |
Rui,Y., and Dinneny, J.R. (2020). A wall with integrity: Surveillance and maintenance of the plant cell wall under stress. New Phytol. 225: 1428-1439.
|
[232] |
Ryder,L.S., Dagdas, Y.F., Kershaw,M.J., Venkataraman,C., Madzvamuse, A., Yan,X., Cruz-Mireles,N., Soanes, D.M., Oses-Ruiz,M., Styles,V., et al. (2019). A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature 574: 423-427.
|
[233] |
Sachs,J. (1887). Lectures on the physiology of plants. The Clarendon Press, Oxford.
|
[234] |
SajevaM., and Elisabetta O. (2007). Water potential gradients between old and developing leaves in Lithops (Aizoaceae). Funct. Plant Sci. Biotechnol. 1: 366-368.
|
[235] |
Sánchez-Baracaldo,P., Bianchini,G., Wilson, J.D., and Knoll,A.H. (2022). Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 30: 143-157.
|
[236] |
Sano,N., Rajjou, L., North,H.M., Debeaujon,I., Marion-Poll, A., and Seo,M. (2016). Staying alive: Molecular aspects of seed longevity. Plant Cell Physiol. 57: 660-674.
|
[237] |
Saruhashi,M., Kumar Ghosh, T., Arai,K., Ishizaki,Y., Hagiwara, K., Komatsu,K., Shiwa,Y., Izumikawa, K., Yoshikawa,H., Umezawa,T., et al. (2015). Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proc. Natl. Acad. Sci. U.S.A. 112: E6388-E6396.
|
[238] |
Satbhai,S.B., Ristova, D., and Busch,W. (2015). Underground tuning: quantitative regulation of root growth. J. Exp. Bot. 66: 1099-1112.
|
[239] |
Schmidt,H.B., and Görlich, D. (2016). Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends Biochem. Sci. 41: 46-61.
|
[240] |
Serra,O., and Geldner, N. (2022). The making of suberin. New Phytol. 235: 848-866.
|
[241] |
Serraj,R., and Sinclair, T.R. (2002). Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant Cell Environ. 25: 333-341.
|
[242] |
Shankarnarayan,S., Malone, C.L., Deschenes,R.J., and Fassler,J.S. (2008). Modulation of yeast Sln1 kinase activity by the CCW12 cell wall protein. J. Biol. Chem. 283: 1962-1973.
|
[243] |
Shen,J., Xu,G.X., and Zheng,H.Q. (2015). Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses. Protoplasma 252: 173-180.
|
[244] |
Shetty,P., Gitau,M.M., and Maróti,G. (2019). Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 8: 1657.
|
[245] |
Shih,H.W., Miller, N.D., Dai,C., Spalding,E.P., and Monshausen, G.B. (2014). The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr. Biol. 24: 1887-1892.
|
[246] |
Shkolnik,D., and Fromm, H. (2016). The Cholodny-Went theory does not explain hydrotropism. Plant Sci. 252: 400-403.
|
[247] |
Shkolnik,D., Krieger, G., Nuriel,R., and Fromm,H. (2016). Hydrotropism: Root bending does not require auxin redistribution. Mol. Plant 9: 757-759.
|
[248] |
Shkolnik,D., Nuriel, R., Bonza,M.C., Costa,A., and Fromm, H. (2018). MIZ1 regulates ECA1 to generate a slow, long-distance phloem-transmitted Ca2+ signal essential for root water tracking in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 115: 8031-8036.
|
[249] |
Slovak,R., Ogura,T., Satbhai,S.B., Ristova,D., and Busch, W. (2016). Genetic control of root growth: From genes to networks. Ann. Bot. 117: 9-24.
|
[250] |
Smokvarska,M., Francis, C., Platre,M.P., Fiche,J.B., Alcon,C., Dumont,X., Nacry, P., Bayle,V., Nollmann,M., Maurel, C., et al. (2020). A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants. Curr. Biol. 30: 4654-4664.
|
[251] |
Smokvarska,M., Bayle,V., Maneta-Peyret,L., Fouillen,L., Poitout, A., Dongois,A., Fiche,J.-B., Gronnier, J., Garcia,J., Höfte,H., Nolmann, M., Zipfel,C., Maurel,C., Moreau, P., Jaillais,Y., and Martiniere,A. (2023). The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling. Sci. Adv. 9: eadd4791.
|
[252] |
Soma,F., Takahashi, F., Suzuki,T., Shinozaki,K., and Yamaguchi-Shinozaki, K. (2020). Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress. Nat. Commun. 11: 1373.
|
[253] |
Soma,F., Mogami, J., Yoshida,T., Abekura,M., Takahashi, F., Kidokoro,S., Mizoi,J., Shinozaki, K., and Yamaguchi-Shinozaki,K. (2017). ABA-unresponsive SnRK2 protein kinases regulate mRNA decay under osmotic stress in plants. Nat. Plants 3: 16204.
|
[254] |
Song,L., Shi,Q.M., Yang,X.H., Xu, Z.H., and Xue,H.W. (2009). Membrane steroid-binding protein 1 (MSBP1) negatively regulates brassinosteroid signaling by enhancing the endocytosis of BAK1. Cell Res. 19: 864-876.
|
[255] |
Song,L., Huang,S.C., Wise,A., Castanon, R., Nery,J.R., Chen,H., Watanabe, M., Thomas,J., Bar-Joseph,Z., and Ecker, J.R. (2016). A transcription factor hierarchy defines an environmental stress response network. Science 354: aag1550.
|
[256] |
Song,T., Tian,Y.-Q., Liu,C.-B., Gao, Y.-Q., Wang,Y.-L., Zhang,J., Su,Y., Xu,L.-N., Han, M.-L., Salt,D.E., et al. (2023). A new family of proteins is required for tethering of Casparian strip membrane domain and nutrient homoeostasis in rice. Nat. Plants 9: 1749-1759.
|
[257] |
Soon,F.F., Ng,L.M., Zhou,X.E., West, G.M., Kovach,A., Tan,M.H., Suino-Powell, K.M., He,Y., Xu,Y., Chalmers, M.J., et al. (2012). Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335: 85-88.
|
[258] |
Sorek,N., Gutman, O., Bar,E., Abu-Abied,M., Feng,X.H., Running,M.P., Lewinsohn,E., Ori,N., Sadot,E., Henis, Y.I., et al. (2011). Differential effects of prenylation and S-acylation on Type I and II ROPS membrane interaction and function. Plant Physiol. 155: 706-720.
|
[259] |
Srivastava,R., Kobayashi, Y., Koyama,H., and Sahoo,L. (2023). Cowpea NAC1/NAC2 transcription factors improve growth and tolerance to drought and heat in transgenic cowpea through combined activation of photosynthetic and antioxidant mechanisms. J. Integr. Plant Biol. 65: 25-44.
|
[260] |
Su,X.L., Ditlev, J.A., Hui,E.F., Xing,W.M., Banjade, S., Okrut,J., King,D.S., Taunton, J., Rosen,M.K., and Vale,R.D. (2016). Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352: 595-599.
|
[261] |
Su,Y., Feng,T., Liu,C.-B., Huang, H., Wang,Y.-L., Fu,X., Han,M.-L., Zhang,X., Huang, X., Wu,J.-C., et al. (2023). The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants. Nat Plants 9: 1968-1977.
|
[262] |
Sukharev,S.I., Blount, P., Martinac,B., Blattner,F.R., and Kung, C. (1994). A large-conductance mechanosensitive channel in E. coli encoded by mscl alone. Nature 368: 265-268.
|
[263] |
Sun,S., Zhang,X., Chen,K., Zhu, X., and Zhao,Y. (2021). Screening for Arabidopsis mutants with altered Ca2+ signal response using aequorin-based Ca2+ reporter system. STAR Protocols 2: 100558.
|
[264] |
Sun,Y., Pri-Tal, O., Michaeli,D., and Mosquna,A. (2020). Evolution of abscisic acid signaling module and its perception. Front. Plant Sci. 11: 934.
|
[265] |
Sun,Y., Harpazi, B., Wijerathna-Yapa,A., Merilo,E., de Vries, J., Michaeli,D., Gal,M., Cuming, A.C., Kollist,H., and Mosquna,A. (2019). A ligand-independent origin of abscisic acid perception. Proc. Natl. Acad. Sci. U.S.A. 116: 24892-24899.
|
[266] |
Sussmilch,F.C., Brodribb, T.J., and McAdam,S.A.M. (2017). Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. J. Exp. Bot. 68: 2913-2918.
|
[267] |
Sussmilch,F.C., Schultz, J., Hedrich,R., and Roelfsema,M.R.G. (2019). Acquiring control: The evolution of stomatal signalling pathways. Trends Plant Sci. 24: 342-351.
|
[268] |
Takahashi,F., Suzuki, T., Osakabe,Y., Betsuyaku,S., Kondo,Y., Dohmae,N., Fukuda, H., Yamaguchi-Shinozaki,K., and Shinozaki,K. (2018). A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556: 235-238.
|
[269] |
Takahashi,N., Goto,N., Okada,K., and Takahashi, H. (2002). Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216: 203-211.
|
[270] |
Takahashi,N., Yamazaki, Y., Kobayashi,A., Higashitani,A., and Takahashi, H. (2003). Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiol. 132: 805-810.
|
[271] |
Takahashi,Y., Zhang,J., Hsu,P.K., Ceciliato, P.H.O., Zhang,L., Dubeaux,G., Munemasa, S., Ge,C., Zhao,Y., Hauser, F., et al. (2020). MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nat. Commun. 11: 12.
|
[272] |
Tanaka-Takada,N., Kobayashi, A., Takahashi,H., Kamiya,T., Kinoshita, T., and Maeshima,M. (2019). Plasma membrane-associated Ca2+-binding protein PCaP1 is involved in root hydrotropism of Arabidopsis thaliana. Plant Cell Physiol. 60: 1331-1341.
|
[273] |
Tang,W., Lin,W., Zhou,X., Guo, J., Dang,X., Li,B., Lin,D., and Yang,Z. (2022). Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Curr. Biol. 32: 508-517 e503.
|
[274] |
Tanigawa,M., Kihara, A., Terashima,M., Takahara,T., and Maeda, T. (2012). Sphingolipids regulate the yeast high-osmolarity glycerol response pathway. Mol. Cell. Biol. 32: 2861-2870.
|
[275] |
Tatebayashi,K., Yamamoto, K., Tanaka,K., Tomida,T., Maruoka, T., Kasukawa,E., and Saito,H. (2006). Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBO J. 25: 3033-3044.
|
[276] |
Tatebayashi,K., Yamamoto, K., Nagoya,M., Takayama,T., Nishimura, A., Sakurai,M., Momma,T., and Saito, H. (2015). Osmosensing and scaffolding functions of the oligomeric four-transmembrane domain osmosensor Sho1. Nat. Commun. 6: 6975.
|
[277] |
Testerink,C., and Lamers, J. (2022). How plant roots go with the flow. Nature 612: 414-415.
|
[278] |
Toriyama,T., Shinozawa, A., Yasumura,Y., Saruhashi,M., Hiraide, M., Ito,S., Matsuura,H., Kuwata, K., Yoshida,M., Baba,T., et al. (2022). Sensor histidine kinases mediate ABA and osmostress signaling in the moss Physcomitrium patens. Curr. Biol. 32: 164-175.
|
[279] |
Tougane,K., Komatsu, K., Bhyan,S.B., Sakata,Y., Ishizaki, K., Yamato,K.T., Kohchi,T., and Takezawa, D. (2010). Evolutionarily conserved regulatory mechanisms of abscisic acid signaling in land plants: Characterization of ABSCISIC ACID INSENSITIVE1-Like type 2C protein phosphatase in the liverwort Marchantia polymorpha. Plant Physiol. 152: 1529-1543.
|
[280] |
Toulotte,J.M., Pantazopoulou, C.K., Sanclemente,M.A., Voesenek,L.A.C.J., and Sasidharan, R. (2022). Water stress resilient cereal crops: Lessons from wild relatives. J. Integr. Plant Biol. 64: 412-430.
|
[281] |
Tuller,M., and Or, D. (2005). Water retention and characteristic curve. In Encyclopedia of Soils in the Environment. D.Hillel, ed. (Oxford: Elsevier), pp. 278-289.
|
[282] |
Turner,N.C. (2018). Turgor maintenance by osmotic adjustment: 40 years of progress. J. Exp. Bot. 69: 3223-3233.
|
[283] |
Uga,Y., Sugimoto, K., Ogawa,S., Rane,J., Ishitani, M., Hara,N., Kitomi,Y., Inukai, Y., Ono,K., Kanno,N., et al. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 45: 1097-1102.
|
[284] |
Umezawa,T., Sugiyama, N., Mizoguchi,M., Hayashi,S., Myouga, F., Yamaguchi-Shinozaki,K., Ishihama,Y., Hirayama, T., and Shinozaki,K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 106: 17588-17593.
|
[285] |
Urao,T., Yakubov, B., Satoh,R., Yamaguchi-Shinozaki,K., Seki, M., Hirayama,T., and Shinozaki,K. (1999). A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11: 1743-1754.
|
[286] |
Vaahtera,L., Schulz, J., and Hamann,T. (2019). Cell wall integrity maintenance during plant development and interaction with the environment. Nat. Plants 5: 924-932.
|
[287] |
Van der Does,D., Boutrot, F., Engelsdorf,T., Rhodes,J., McKenna, J.F., Vernhettes,S., Koevoets,I., Tintor, N., Veerabagu,M., Miedes,E., et al. (2017). The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genet. 13: e1006832.
|
[288] |
Vlad,F., Rubio,S., Rodrigues,A., Sirichandra,C., Belin,C., Robert,N., Leung, J., Rodriguez,P.L., Lauriere,C., and Merlot, S. (2009). Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21: 3170-3184.
|
[289] |
Volaire,F., and Norton, M. (2006). Summer dormancy in perennial temperate grasses. Ann. Bot. 98: 927-933.
|
[290] |
Waadt,R., Seller, C.A., Hsu,P.K., Takahashi,Y., Munemasa, S., and Schroeder,J.I. (2022). Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 23: 680-694.
|
[291] |
Wachsman,G., Zhang,J., Moreno-Risueno,M.A., Anderson,C.T., and Benfey, P.N. (2020). Cell wall remodeling and vesicle trafficking mediate the root clock in Arabidopsis. Science 370: 819-823.
|
[292] |
Wang,B.Y., Zhang,H.H., Huai,J.L., Peng, F.Y., Wu,J., Lin,R.C., and Fang, X.F. (2022a). Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis. Nat. Chem. Biol. 18: 1361-1369.
|
[293] |
Wang,C., Liu,Y., Li,S.-S., and Han, G.-Z. (2015a). Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiol. 167: 872-886.
|
[294] |
Wang,J.Y., Li,C.A., Li,L., Gao, L.F., Hu,G., Zhang,Y.F., Reynolds, M.P., Zhang,X.Y., Jia,J.Z., Mao,X.G., et al. (2023a). DIW1 encoding a clade I PP2C phosphatase negatively regulates drought tolerance by de-phosphorylating TaSnRK1.1 in wheat. J. Integr. Plant Biol. 65: 1918-1936.
|
[295] |
Wang,L., Li,H., Lv,X.Q., Chen, T., Li,R.L., Xue,Y.Q., Jiang,J.J., Jin,B., Baluska, F., Samaj,J., et al. (2015b). Spatiotemporal dynamics of the BRI1 receptor and its regulation by membrane microdomains in living Arabidopsis cells. Mol. Plant 8: 1334-1349.
|
[296] |
Wang,P., Calvo-Polanco, M., Reyt,G., Barberon,M., Champeyroux, C., Santoni,V., Maurel,C., Franke, R.B., Ljung,K., Novak,O., Geldner, N., Boursiac,Y., and Salt,D.E. (2019). Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Sci. Rep. 9: 4227.
|
[297] |
Wang,Q., Jiang,M., Isupov,M.N., Chen, Y., Littlechild,J.A., Sun,L., Wu,X., Wang,Q., Yang, W., Chen,L., et al. (2020). The crystal structure of Arabidopsis BON1 provides insights into the copine protein family. Plant J. 103: 1215-1232.
|
[298] |
Wang,T.L., Wei,Q., Wang,Z.L., Liu, W.W., Zhao,X., Ma,C., Gao,J.P., Xu,Y.J., and Hong, B. (2022b). CmNF-YB8 affects drought resistance in chrysanthemum by altering stomatal status and leaf cuticle thickness. J. Integr. Plant Biol. 64: 741-755.
|
[299] |
Wang,X.L., Wang,H.W., Liu,S.X., Ferjani, A., Li,J.S., Yan,J.B., Yang,X.H., and Qin,F. (2016). Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 48: 1233-1241.
|
[300] |
Wang,Y.H., He,S.B., and Fang,X.F. (2023b). Emerging roles of phase separation in plant transcription and chromatin organization. Curr. Opin. Plant Biol. 75: 102387.
|
[301] |
Wang,Z., Meng,P., Zhang,X., Ren, D., and Yang,S. (2011). BON1 interacts with the protein kinases BIR1 and BAK1 in modulation of temperature-dependent plant growth and cell death in Arabidopsis. Plant J. 67: 1081-1093.
|
[302] |
Watson,J.L., Seinkmane, E., Styles,C.T., Mihut,A., Krüger, L.K., McNally,K.E., Planelles-Herrero,V.J., Dudek, M., McCall,P.M., Barbiero,S., et al. (2023). Macromolecular condensation buffers intracellular water potential. Nature 623: 842-852.
|
[303] |
Wegmann,K. (1986). Osmoregulation in eukaryotic algae. FEMS Microbiol. Lett. 39: 37-43.
|
[304] |
Wehner,F., Olsen,H., Tinel,H., Kinne-Saffran, E., and Kinne,R.K. (2003). Cell volume regulation: Osmolytes, osmolyte transport, and signal transduction. Rev. Physiol. Biochem. Pharmacol. 148: 1-80.
|
[305] |
Wei,W., Lu,L., Bian,X.H., Li, Q.T., Han,J.Q., Tao,J.J., Yin,C.C., Lai,Y.C., Li, W., Bi,Y.D., et al. (2023). Zinc-finger protein GmZF351 improves both salt and drought stress tolerance in soybean. J. Integr. Plant Biol. 65: 1636-1650.
|
[306] |
Whalley,W.R., Ober,E.S., and Jenkins,M. (2013). Measurement of the matric potential of soil water in the rhizosphere. J. Exp. Bot. 64: 3951-3963.
|
[307] |
Wormit,A., Butt,S.M., Chairam,I., McKenna, J.F., Nunes-Nesi,A., Kjaer,L., O'Donnelly, K., Fernie,A.R., Woscholski,R., Barter, M.C., et al. (2012). Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition. Plant Physiol. 159: 105-117.
|
[308] |
Wu,F., Sheng,P., Tan,J., Chen, X., Lu,G., Ma,W., Heng,Y., Lin,Q., Zhu, S., Wang,J., et al. (2015). Plasma membrane receptor-like kinase leaf panicle 2 acts downstream of the DROUGHT AND SALT TOLERANCE transcription factor to regulate drought sensitivity in rice. J. Exp. Bot. 66: 271-281.
|
[309] |
Wu,F., Chi,Y., Jiang,Z., Xu, Y., Xie,L., Huang,F., Wan,D., Ni,J., Yuan, F., Wu,X., et al. (2020). Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 578: 577-581.
|
[310] |
Xie,Q., Chen,W., Xu,F., Ouyang, S., Chen,J., Wang,X., Wang,Y., Mao,L., Zhou, W., and Yu,F. (2022). Wounding promotes root regeneration through a cell wall integrity sensor, the receptor kinase FERONIA. bioRxiv.
CrossRef
Google scholar
|
[311] |
Xu,T., Dai,N., Chen,J., Nagawa, S., Cao,M., Li,H., Zhou,Z., Chen,X., De Rycke, R., Rakusova,H., et al. (2014). Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343: 1025-1028.
|
[312] |
Xu,X.M., Zheng,C.H., Lu,D.D., Song, C.P., and Zhang,L.X. (2021). Phase separation in plants: New insights into cellular compartmentalization. J. Integr. Plant Biol. 63: 1835-1855.
|
[313] |
Xue,X., Wang,J., Shukla,D., Cheung, L.S., and Chen,L.-Q. (2022). When SWEETs turn tweens: Updates and perspectives. Annu. Rev. Plant Biol. 73: 379-403.
|
[314] |
Yamazaki,T., Miyazawa, Y., Kobayashi,A., Moriwaki,T., Fujii,N., and Takahashi,H. (2012). MIZ1, an essential protein for root hydrotropism, is associated with the cytoplasmic face of the endoplasmic reticulum membrane in Arabidopsis root cells. FEBS Lett. 586: 398-402.
|
[315] |
Yang,D.-L., Shi,Z., Bao,Y., Yan, J., Yang,Z., Yu,H., Li,Y., Gou,M., Wang, s., Zou,b., et al. (2017). Calcium pumps and interacting BON1 protein modulate calcium signature, stomatal closure, and plant immunity. Plant Physiol. 175: 424-437.
|
[316] |
Yang,G., Jia,M., Li,G., Zang, Y.-Y., Chen,Y.-Y., Wang,Y.-Y., Zhan,S.-Y., Peng,S.-X., Wan, G., Li,W., et al. (2024). TMEM63B channel is the osmosensor required for thirst drive of interoceptive neurons. Cell Discov. 10: 1.
|
[317] |
Yang,S., Yang,H., Grisafi,P., Sanchatjate, S., Fink,G.R., Sun,Q., and Hua, J. (2006). The BON/CPN gene family represses cell death and promotes cell growth in Arabidopsis. Plant J. 45: 166-179.
|
[318] |
Yang,X.Z., Lin,C., Chen,X.D., Li, S.Q., Li,X.M., and Xiao,B.L. (2022). Structure deformation and curvature sensing of PIEZO1 in lipid membranes. Nature 604: 377-383.
|
[319] |
Yang,Y., and Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 217: 523-539.
|
[320] |
Yang,Z.R., and Qin, F. (2023). The battle of crops against drought: Genetic dissection and improvement. J. Integr. Plant Biol. 65: 496-525.
|
[321] |
Yao,M., Wakamatsu, Y., Itoh,T.J., Shoji,T., and Hashimoto, T. (2008). Arabidopsis SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics. J. Cell Sci. 121: 2372-2381.
|
[322] |
Ye,C., Zhang,T.-Z., Zang,Y.-Y., Shi, Y.S., and Wan,G. (2023). TMEM63B regulates postnatal development of cochlear sensory epithelia via thyroid hormone signaling. J. Genet. Genomics.
CrossRef
Google scholar
|
[323] |
Yin,X., Zou,B., Hong,X., Gao, M., Yang,W., Zhong,X., He,Y., Kuai,P., Lou, Y., Huang,J., et al. (2018). Rice copine genes OsBON1 and OsBON3 function as suppressors of broad-spectrum disease resistance. Plant Biotechnol. J. 16: 1476-1487.
|
[324] |
Yoshimura,K., Iida,K., and Iida,H. (2021). MCAs in Arabidopsis are Ca2+-permeable mechanosensitive channels inherently sensitive to membrane tension. Nat. Commun. 12: 6074.
|
[325] |
Yu,B., Zheng,W., Persson,S., and Zhao, Y. (2023). Protocol for analyzing root halotropism using split-agar system in Arabidopsis thaliana. STAR Protocols 4: 102157.
|
[326] |
Yu,B., Zheng,W., Xing,L., Zhu, J.-K., Persson,S., and Zhao,Y. (2022). Root twisting drives halotropism via stress-induced microtubule reorientation. Dev. Cell 57: 2412-2425.
|
[327] |
Yu,F., Qian,L., Nibau,C., Duan, Q., Kita,D., Levasseur,K., Li,X., Lu,C., Li, H., Hou,C., et al. (2012). FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc. Natl. Acad. Sci. U.S.A. 109: 14693-14698.
|
[328] |
Yu,H., Yan,J., Du,X., and Hua, J. (2018). Overlapping and differential roles of plasma membrane calcium ATPase ACAs in Arabidopsis growth and environmental responses. J. Exp. Bot. 69: 2693-2703.
|
[329] |
Yuan,F., Yang,H., Xue,Y., Kong, D., Ye,R., Li,C., Zhang,J., Theprungsirikul,L., Shrift,T., Krichilsky, B., et al. (2014). OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514: 367-371.
|
[330] |
Yue,Z.L., Liu,N., Deng,Z.P., Zhang, Y., Wu,Z.M., Zhao,J.L., Sun,Y., Wang,Z.Y., and Zhang, S.W. (2022). The receptor kinase OsWAK11 monitors cell wall pectin changes to fine-tune brassinosteroid signaling and regulate cell elongation in rice. Curr. Biol. 32: 2454-2466.
|
[331] |
Zagorska,A., Pozo-Guisado, E., Boudeau,J., Vitari,A.C., Rafiqi, F.H., Thastrup,J., Deak,M., Campbell, D.G., Morrice,N.A., Prescott,A.R., et al. (2007). Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress. J. Cell Biol. 176: 89-100.
|
[332] |
Zhang,H., Zhao,Y., and Zhu,J.-K. (2020a). Thriving under stress: How plants balance growth and the stress response. Dev. Cell 55: 529-543.
|
[333] |
Zhang,H., Qin,W.H., Romero,H., Leonhardt, H., and Cardoso,M.C. (2023a). Heterochromatin organization and phase separation. Nucleus-Phila 14: 2159142.
|
[334] |
Zhang,H.H., Peng,F.Y., He,C., Liu, Y., Deng,H.T., and Fang,X.F. (2023b). Large-scale identification of potential phase-separation proteins from plants using a cell-free system. Mol. Plant 16: 310-313.
|
[335] |
Zhang,H.M., Zhu,J.H., Gong,Z.Z., and Zhu, J.K. (2022). Abiotic stress responses in plants. Nat. Rev. Genet. 23: 104-119.
|
[336] |
Zhang,L., Merlin, I., Pascal,S., Bert,P.F., Domergue, F., and Gambetta,G.A. (2020b). Drought activates MYB41 orthologs and induces suberization of grapevine fine roots. Plant Direct 4: e00278.
|
[337] |
Zhang,L., Li,X., Li,D., Sun, Y., Li,Y., Luo,Q., Liu,Z., Wang,J., Li, X., Zhang,H., et al. (2018a). CARK1 mediates ABA signaling by phosphorylation of ABA receptors. Cell Discov. 4: 30.
|
[338] |
Zhang,M., Shan,Y., Cox,C.D., and Pei, D. (2023c). A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity. Nat. Commun. 14: 3943.
|
[339] |
Zhang,M., Chen,Y.H., Xing,H.Y., Ke, W.S., Shi,Y.L., Sui,Z.P., Xu,R.B., Gao,L.L., Guo, G.G., Li,J.S., et al. (2023d). Positional cloning and characterization reveal the role of a miRNA precursor gene in the regulation of lateral root number and drought tolerance in maize. J. Integr. Plant Biol. 65: 772-790.
|
[340] |
Zhang,M.F., Wang,D.L., Kang,Y.L., Wu, J.X., Yao,F.Q., Pan,C.F., Yan,Z.Q., Song,C., and Chen, L. (2018b). Structure of the mechanosensitive OSCA channels. Nat. Struct. Mol. Biol. 25: 850-858.
|
[341] |
Zhang,S., Feng,M., Chen,W., Zhou, X.F., Lu,J.Y., Wang,Y.R., Li,Y.H., Jiang,C.Z., Gan, S.S., Ma,N., et al. (2019). In rose, transcription factor PTM balances growth and drought survival via PIP2;1 aquaporin. Nat. Plants 5: 290-299.
|
[342] |
Zhang,X.M., Mi,Y., Mao,H.D., Liu, S.X., Chen,L.M., and Qin,F. (2020c). Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnol. J. 18: 1271-1283.
|
[343] |
Zhao,C., Zayed,O., Yu,Z., Jiang, W., Zhu,P., Hsu,C.C., Zhang,L., Tao,W.A., Lozano-Duran, R., and Zhu,J.K. (2018a). Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 115: 13123-13128.
|
[344] |
Zhao,C., Jiang,W., Zayed,O., Liu, X., Tang,K., Nie,W., Li,Y., Xie,S., Li, Y., Long,T., et al. (2020a). The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. Natl. Sci. Rev. 8: nwaa149.
|
[345] |
Zhao,M., Zhang,Q., Liu,H., Tang, S., Shang,C., Zhang,W., Sui,Y., Zhang,Y., Zheng, C., Zhang,H., et al. (2023). The osmotic stress-activated receptor-like kinase DPY1 mediates SnRK2 kinase activation and drought tolerance in Setaria. Plant Cell 35: 3782-3808.
|
[346] |
Zhao,M.C., Tang,S., Zhang,H.S., He, M.M., Liu,J.H., Zhi,H., Sui,Y., Liu,X.T., Jia, G.Q., Zhao,Z.Y., et al. (2020b). DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proc. Natl. Acad. Sci. U.S.A. 117: 21766-21774.
|
[347] |
Zhao,Y., Gao,J., Im Kim,J., Chen, K., Bressan,R.A., and Zhu,J.-K. (2017). Control of plant water use by ABA induction of senescence and dormancy: an overlooked lesson from evolution. Plant Cell Physiol. 58: 1319-1327.
|
[348] |
Zhao,Y., Chan,Z., Gao,J., Xing, L., Cao,M., Yu,C., Hu,Y., You,J., Shi, H., Zhu,Y., et al. (2016). ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc. Natl. Acad. Sci. U.S.A. 113: 1949-1954.
|
[349] |
Zhao,Y., Zhang,Z., Gao,J., Wang, P., Hu,T., Wang,Z., Hou,Y.J., Wan,Y., Liu, W., Xie,S., et al. (2018b). Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 activity. Cell Rep. 23: 3340-3351.
|
[350] |
Zheng,W., Rawson, S., Shen,Z., Tamilselvan,E., Smith,H.E., Halford,J., Shen, C., Murthy,S.E., Ulbrich,M.H., Sotomayor, M., et al. (2023). TMEM63 proteins function as monomeric high-threshold mechanosensitive ion channels. Neuron 111: 3195-3210.
|
[351] |
Zhou,X., Lu,J., Zhang,Y., Guo, J., Lin,W., Van Norman,J.M., Qin,Y., Zhu,X., and Yang, Z. (2021). Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil. Dev. Cell 56: 1030-1042.
|
[352] |
Zhou,Y.B., Liu,C., Tang,D.Y., Yan, L., Wang,D., Yang,Y.Z., Gui,J.S., Zhao,X.Y., Li, L.G., Tang,X.D., et al. (2018). The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. Plant Cell 30: 1100-1118.
|
[353] |
Zhu,J.K. (2016). Abiotic stress signaling and responses in plants. Cell 167: 313-324.
|
[354] |
Zou,Y., Zhang,Y., and Testerink,C. (2022). Root dynamic growth strategies in response to salinity. Plant Cell Environ. 45: 695-704.
|
/
〈 | 〉 |