Increased long-distance and homo-trans interactions related to H3K27me3 in Arabidopsis hybrids

Zhaoxu Gao, Yanning Su, Le Chang, Guanzhong Jiao, Yang Ou, Mei Yang, Chao Xu, Pengtao Liu, Zejia Wang, Zewen Qi, Wenwen Liu, Linhua Sun, Guangming He, Xing Wang Deng, Hang He

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (2) : 208-227. DOI: 10.1111/jipb.13620
Research Article

Increased long-distance and homo-trans interactions related to H3K27me3 in Arabidopsis hybrids

Author information +
History +

Abstract

In plants, the genome structure of hybrids changes compared with their parents, but the effects of these changes in hybrids remain elusive. Comparing reciprocal crosses between Col × C24 and C24 × Col in Arabidopsis using high-throughput chromosome conformation capture assay (Hi-C) analysis, we found that hybrid three-dimensional (3D) chromatin organization had more long-distance interactions relative to parents, and this was mainly located in promoter regions and enriched in genes with heterosis-related pathways. The interactions between euchromatin and heterochromatin were increased, and the compartment strength decreased in hybrids. In compartment domain (CD) boundaries, the distal interactions were more in hybrids than their parents. In the hybrids of CURLY LEAF (clf) mutants clfCol × clfC24 and clfC24 × clfCol, the heterosis phenotype was damaged, and the long-distance interactions in hybrids were fewer than in their parents with lower H3K27me3. ChIP-seq data revealed higher levels of H3K27me3 in the region adjacent to the CD boundary and the same interactional homo-trans sites in the wild-type (WT) hybrids, which may have led to more long-distance interactions. In addition, the differentially expressed genes (DEGs) located in the boundaries of CDs and loop regions changed obviously in WT, and the functional enrichment for DEGs was different between WT and clf in the long-distance interactions and loop regions. Our findings may therefore propose a new epigenetic explanation of heterosis in the Arabidopsis hybrids and provide new insights into crop breeding and yield increase.

Keywords

3D chromatin organization / H3K27me3 / homo-trans / hybrids / long-distance interactions

Cite this article

Download citation ▾
Zhaoxu Gao, Yanning Su, Le Chang, Guanzhong Jiao, Yang Ou, Mei Yang, Chao Xu, Pengtao Liu, Zejia Wang, Zewen Qi, Wenwen Liu, Linhua Sun, Guangming He, Xing Wang Deng, Hang He. Increased long-distance and homo-trans interactions related to H3K27me3 in Arabidopsis hybrids. Journal of Integrative Plant Biology, 2024, 66(2): 208‒227 https://doi.org/10.1111/jipb.13620

References

[1]
AlHaj Abed, J., Erceg, J., Goloborodko, A., Nguyen, S.C., McCole, R.B., Saylor, W., Fudenberg, G., Lajoie, B.R., Dekker, J., Mirny, L.A., et al. (2019). Highly structured homolog pairing reflects functional organization of the Drosophila genome. Nat. Commun. 10: 4485.
[2]
Baldauf, J.A., Marcon, C., Lithio, A., Vedder, L., Altrogge, L., Piepho, H.P., Schoof, H., Nettleton, D., and Hochholdinger, F. (2018). Single-parent expression is a general mechanism driving extensive complementation of non-syntenic genes in maize hybrids. Curr. Biol. 28: 431-437.
[3]
Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res. 21: 381-395.
[4]
Birchler, J.A., Auger, D.L., and Riddle, N.C. (2003). In search of the molecular basis of heterosis. Plant Cell 15: 2236-2239.
[5]
Castel, S.E., Mohammadi, P., Chung, W.K., Shen, Y., and Lappalainen, T. (2016). Rare variant phasing and haplotypic expression from RNA sequencing with phASER. Nat. Commun. 7: 12817.
[6]
Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884-i890.
[7]
Chen, Z.J. (2010). Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci. 15: 57-71.
[8]
Chen, Z.J. (2013). Genomic and epigenetic insights into the molecular bases of heterosis. Nat. Rev. Genet. 14: 471-482.
[9]
Concia, L., Veluchamy, A., Ramirez-Prado, J.S., Martin-Ramirez, A., Huang, Y., Perez, M., Domenichini, S., Granados, N.R.Y., Kim, S., Blein, T., et al. (2020). Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biol. 21: 104.
[10]
Cresswell, K.G., and Dozmorov, M.G. (2020). TADCompare: An R package for differential and temporal analysis of topologically associated domains. Front. Genet. 11: 158.
[11]
Denholtz, M., Bonora, G., Chronis, C., Splinter, E., de Laat, W., Ernst, J., Pellegrini, M., and Plath, K. (2013). Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13: 602-616.
[12]
Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376-380.
[13]
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29: 15-21.
[14]
Dong, P., Tu, X., Chu, P.Y., Lu, P., Zhu, N., Grierson, D., Du, B., Li, P., and Zhong, S. (2017). 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant 10: 1497-1509.
[15]
Du, Z., Zheng, H., Huang, B., Ma, R., Wu, J., Zhang, X., He, J., Xiang, Y., Wang, Q., Li, Y., et al. (2017). Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547: 232-235.
[16]
Duttke, S.H., Chang, M.W., Heinz, S., and Benner, C. (2019). Identification and dynamic quantification of regulatory elements using total RNA. Genome Res. 29: 1836-1846.
[17]
Erceg, J., AlHaj Abed, J., Goloborodko, A., Lajoie, B.R., Fudenberg, G., Abdennur, N., Imakaev, M., McCole, R.B., Nguyen, S.C., Saylor, W., et al. (2019). The genome-wide multi-layered architecture of chromosome pairing in early Drosophila embryos. Nat. Commun. 10: 4486.
[18]
Feng, S., Cokus, S.J., Schubert, V., Zhai, J., Pellegrini, M., and Jacobsen, S.E. (2014). Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 55: 694-707.
[19]
Flyamer, I.M., Illingworth, R.S., and Bickmore, W.A. (2020). Coolpup.py: Versatile pile-up analysis of Hi-C data. Bioinformatics 36: 2980-2985.
[20]
Flyamer, I.M., Gassler, J., Imakaev, M., Brandão, H.B., Ulianov, S.V., Abdennur, N., Razin, S.V., Mirny, L.A., and Tachibana-Konwalski, K. (2017). Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544: 110-114.
[21]
Fujimoto, R., Uezono, K., Ishikura, S., Osabe, K., Peacock, W.J., and Dennis, E.S. (2018). Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. Breed. Sci. 68: 145-158.
[22]
Genomes Consortium. (2016). 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166, 481-491.
[23]
Grob, S., Schmid, M.W., and Grossniklaus, U. (2014). Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 55: 678-693.
[24]
Grossniklaus, U., and Paro, R. (2014). Transcriptional silencing by polycomb-group proteins. Cold Spring Harb. Perspect. Biol. 6: 019331.
[25]
Groszmann, M., Gonzalez-Bayon, R., Lyons, R.L., Greaves, I.K., Kazan, K., Peacock, W.J., and Dennis, E.S. (2015). Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids. Proc. Natl. Acad. Sci. U.S.A. 112: 6397-6406.
[26]
Gu, Z., Eils, R., and Schlesner, M. (2016). gtrellis: An R/Bioconductor package for making genome-level Trellis graphics. BMC Bioinform. 17: 169.
[27]
Han, Z., Cui, K., Placek, K., Hong, N., Lin, C., Chen, W., Zhao, K., and Jin, W. (2020). Diploid genome architecture revealed by multi-omic data of hybrid mice. Genome Res. 30: 1097-1106.
[28]
He, G., Chen, B., Wang, X., Li, X., Li, J., He, H., Yang, M., Lu, L., Qi, Y., Wang, X., et al. (2013). Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome Biol. 14: R57.
[29]
He, G., Zhu, X., Elling, A., Chen, L., Wang, X., Guo, L., Liang, M., He, H., Zhang, H., Chen, F., et al. (2010). Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22: 17-33.
[30]
Heinz, S., Texari, L., Hayes, M.G.B., Urbanowski, M., Chang, M.W., Givarkes, N., Rialdi, A., White, K.M., Albrecht, R.A., Pache, L., et al. (2018). Transcription elongation can affect genome 3D structure. Cell 174: 1522-1536, e1522.
[31]
Hu, Y., Xiong, J., Shalby, N., Zhuo, C., Jia, Y., Yang, Q.-Y., and Tu, J. (2022). Comparison of dynamic 3D chromatin architecture uncovers heterosis for leaf size in Brassica napus. J. Adv. Res. 42: 289-301.
[32]
Huang, Y., Sicar, S., Ramirez-Prado, J.S., Manza-Mianza, D., Antunez-Sanchez, J., Brik-Chaouche, R., Rodriguez-Granados, N.Y., An, J., Bergounioux, C., Mahfouz, M.M., et al. (2021). Polycomb-dependent differential chromatin compartmentalization determines gene coregulation in Arabidopsis. Genome Res. 31: 1230-1244.
[33]
Jia, J., Xie, Y., Cheng, J., Kong, C., Wang, M., Gao, L., Zhao, F., Guo, J., Wang, K., Li, G., et al. (2021). Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression. Genome Biol. 22: 26.
[34]
Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128: 693-705.
[35]
Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359.
[36]
Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760.
[37]
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079.
[38]
Lippman, Z.B., and Zamir, D. (2007). Heterosis: Revisiting the magic. Trends Genet. 23: 60-66.
[39]
Liu, C., Wang, C., Wang, G., Becker, C., Zaidem, M., and Weigel, D. (2016). Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res. 26: 1057-1068.
[40]
Liu, W., He, G., and Deng, X.W. (2021). Biological pathway expression complementation contributes to biomass heterosis in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 118: 1-9.
[41]
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20: 1297-1303.
[42]
Mendes, M.A., Guerra, R.F., Berns, M.C., Manzo, C., Masiero, S., Finzi, L., Kater, M.M., and Colombo, L. (2013). MADS domain transcription factors mediate short-range DNA looping that is essential for target gene expression in Arabidopsis. Plant Cell 25: 2560-2572.
[43]
Miller, M., Song, Q., Shi, X., Juenger, T.E., and Chen, Z.J. (2015). Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis. Nat. Commun. 6: 7453.
[44]
Moghaddam, A.M., Roudier, F., Seifert, M., Berard, C., Magniette, M.L., Ashtiyani, R.K., Houben, A., Colot, V., and Mette, M.F. (2011). Additive inheritance of histone modifications in Arabidopsis thaliana intra-specific hybrids. Plant J. 67: 691-700.
[45]
Mukherjee, A., and Mukherjea, R.N. (1988). Kinetic regulation of hexokinase activity in a heterogeneous branched bienzyme system. Biochim. Biophys. Acta 954: 126-136.
[46]
Ouyang, W., Xiong, D., Li, G., and Li, X. (2020). Unraveling the 3D genome architecture in plants: Present and future. Mol. Plant 13: 1676-1693.
[47]
Padmarasu, S., Himmelbach, A., Mascher, M., and Stein, N. (2019). In situ Hi-C for plants: An improved method to detect long-range chromatin interactions. Methods Mol. Biol. 1933: 441-472.
[48]
Paschold, A., Jia, Y., Marcon, C., Lund, S., Larson, N.B., Yeh, C.T., Ossowski, S., Lanz, C., Nettleton, D., Schnable, P.S., et al. (2012). Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res. 22: 2445-2454.
[49]
Phillips, J.E., and Corces, V.G. (2009). CTCF: Master weaver of the genome. Cell 137: 1194-1211.
[50]
Phillips-Cremins, J.E., Sauria, M.E., Sanyal, A., Gerasimova, T.I., Lajoie, B.R., Bell, J.S., Ong, C.T., Hookway, T.A., Guo, C., Sun, Y., et al. (2013). Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153: 1281-1295.
[51]
Quinlan, A.R., and Hall, I.M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841-842.
[52]
Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dündar, F., and Manke, T. (2016). deepTools2: A next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44: W160-W165.
[53]
Rao, S.S., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159: 1665-1680.
[54]
Schmid, M.W., Grob, S., and Grossniklaus, U. (2015). HiCdat: A fast and easy-to-use Hi-C data analysis tool. BMC Bioinform. 16: 277.
[55]
Schnable, P.S., and Springer, N.M. (2013). Progress toward understanding heterosis in crop plants. Annu. Rev. Plant Biol. 64: 71-88.
[56]
Schoenfelder, S., Sugar, R., Dimond, A., Javierre, B.M., Armstrong, H., Mifsud, B., Dimitrova, E., Matheson, L., Tavares-Cadete, F., Furlan-Magaril, M., et al. (2015). Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat. Genet. 47: 1179-1186.
[57]
Servant, N., Varoquaux, N., Lajoie, B.R., Viara, E., Chen, C.-J., Vert, J.-P., Heard, E., Dekker, J., and Barillot, E. (2015). HiC-Pro: An optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16: 259.
[58]
Shen, H., He, H., Li, J., Chen, W., Wang, X., Guo, L., Peng, Z., He, G., Zhong, S., Qi, Y., et al. (2012). Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24: 875-892.
[59]
Shen, Y., Sun, S., Hua, S., Shen, E., Ye, C.Y., Cai, D., Timko, M.P., Zhu, Q.H., and Fan, L. (2017). Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs. Plant J. 91: 874-893.
[60]
Simon, J.A., and Kingston, R.E. (2013). Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol. Cell 49: 808-824.
[61]
Sinha, P., Singh, V.K., Saxena, R.K., Kale, S.M., Li, Y., Garg, V., Meifang, T., Khan, A.W., Kim, K.D., Chitikineni, A., et al. (2020). Genome-wide analysis of epigenetic and transcriptional changes associated with heterosis in pigeonpea. Plant Biotechnol. J. 18: 1697-1710.
[62]
Spitz, F., and Furlong, E.E. (2012). Transcription factors: From enhancer binding to developmental control. Nat. Rev. Genet. 13: 613-626.
[63]
Sun, L., Cao, Y., Li, Z., Liu, Y., Yin, X., Deng, X.W., He, H., and Qian, W. (2023). Conserved H3K27me3-associated chromatin looping mediates physical interactions of gene clusters in plants. J Integr. Plant Biol. 65: 1966-1982.
[64]
Sun, L., Jing, Y., Liu, X., Li, Q., Xue, Z., Cheng, Z., Wang, D., He, H., and Qian, W. (2020). Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nat. Commun. 11: 1886.
[65]
Trapnell, C., Hendrickson, D.G., Sauvageau, M., Goff, L., Rinn, J.L., and Pachter, L. (2012). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31: 46-53.
[66]
Vieux-Rochas, M., Fabre, P.J., Leleu, M., Duboule, D., and Noordermeer, D. (2015). Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc. Nat. Acad. Sci. U.S.A. 112: 4672-4677.
[67]
Wang, L., Jia, G., Jiang, X., Cao, S., Chen, Z.J., and Song, Q. (2021). Altered chromatin architecture and gene expression during polyploidization and domestication of soybean. Plant Cell 33: 1430-1446.
[68]
Wang, M., Wang, P., Lin, M., Ye, Z., Li, G., Tu, L., Shen, C., Li, J., Yang, Q., and Zhang, X. (2018). Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat. Plants 4: 90-97.
[69]
Wolff, J., Bhardwaj, V., Nothjunge, S., Richard, G., Renschler, G., Gilsbach, R., Manke, T., Backofen, R., Ramírez, F., and Grüning, B.A. (2018). Galaxy HiCExplorer: A web server for reproducible Hi-C data analysis, quality control and visualization. Nucleic Acids Res. 46: W11-W16.
[70]
Yang, L., Li, B., Zheng, X.-y, Li, J., Yang, M., Dong, X., He, G., An, C., and Deng, X.W. (2015). Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids. Nat. Commun. 6: 10283.
[71]
Yang, M., Wang, X., Huang, H., Ren, D., Su, Y., Zhu, P., Zhu, D., Fan, L., Chen, L., He, G., et al. (2016). Natural variation of H3K27me3 modification in two Arabidopsis accessions and their hybrid. J Integr. Plant Biol. 58: 466-474.
[72]
Yang, M., Wang, X., Ren, D., Huang, H., Xu, M., He, G., and Deng, X.W. (2017). Genomic architecture of biomass heterosis in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 114: 8101-8106.
[73]
Yang, T., Wang, D., Tian, G., Sun, L., Yang, M., Yin, X., Xiao, J., Sheng, Y., Zhu, D., He, H., et al. (2022). Chromatin remodeling complexes regulate genome architecture in Arabidopsis. Plant Cell 34: 2638-2651.
[74]
Zhang, H., Zheng, R., Wang, Y., Zhang, Y., Hong, P., Fang, Y., Li, G., and Fang, Y. (2019). The effects of Arabidopsis genome duplication on the chromatin organization and transcriptional regulation. Nucleic Acids Res. 47: 7857-7869.
[75]
Zhu, W., Hu, B., Becker, C., Dogan, E.S., Berendzen, K.W., Weigel, D., and Liu, C. (2017). Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biol. 18: 157.
[76]
Zuo, W., Chen, G., Gao, Z., Li, S., Chen, Y., Huang, C., Chen, J., Chen, Z.J., Lei, M., and Bian, Q. (2021). Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment. Nat. Commun. 12: 5827.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/