IbNIEL-mediated degradation of IbNAC087 regulates jasmonic acid-dependent salt and drought tolerance in sweet potato

Xu Li, Zhen Wang, Sifan Sun, Zhuoru Dai, Jun Zhang, Wenbin Wang, Kui Peng, Wenhao Geng, Shuanghong Xia, Qingchang Liu, Hong Zhai, Shaopei Gao, Ning Zhao, Feng Tian, Huan Zhang, Shaozhen He

PDF
Journal of Integrative Plant Biology ›› 2024, Vol. 66 ›› Issue (2) : 176-195. DOI: 10.1111/jipb.13612
Research Article

IbNIEL-mediated degradation of IbNAC087 regulates jasmonic acid-dependent salt and drought tolerance in sweet potato

Author information +
History +

Abstract

Sweet potato (Ipomoea batatas [L.] Lam.) is a crucial staple and bioenergy crop. Its abiotic stress tolerance holds significant importance in fully utilizing marginal lands. Transcriptional processes regulate abiotic stress responses, yet the molecular regulatory mechanisms in sweet potato remain unclear. In this study, a NAC (NAM, ATAF1/2, and CUC2) transcription factor, IbNAC087, was identified, which is commonly upregulated in salt- and drought-tolerant germplasms. Overexpression of IbNAC087 increased salt and drought tolerance by increasing jasmonic acid (JA) accumulation and activating reactive oxygen species (ROS) scavenging, whereas silencing this gene resulted in opposite phenotypes. JA-rich IbNAC087-OE (overexpression) plants exhibited more stomatal closure than wild-type (WT) and IbNAC087-Ri plants under NaCl, polyethylene glycol, and methyl jasmonate treatments. IbNAC087 functions as a nuclear transcriptional activator and directly activates the expression of the key JA biosynthesis-related genes lipoxygenase (IbLOX) and allene oxide synthase (IbAOS). Moreover, IbNAC087 physically interacted with a RING-type E3 ubiquitin ligase NAC087-INTERACTING E3 LIGASE (IbNIEL), negatively regulating salt and drought tolerance in sweet potato. IbNIEL ubiquitinated IbNAC087 to promote 26S proteasome degradation, which weakened its activation on IbLOX and IbAOS. The findings provide insights into the mechanism underlying the IbNIEL-IbNAC087 module regulation of JA-dependent salt and drought response in sweet potato and provide candidate genes for improving abiotic stress tolerance in crops.

Keywords

abiotic tolerance / IbNAC087 / IbNIEL / JA / sweet potato

Cite this article

Download citation ▾
Xu Li, Zhen Wang, Sifan Sun, Zhuoru Dai, Jun Zhang, Wenbin Wang, Kui Peng, Wenhao Geng, Shuanghong Xia, Qingchang Liu, Hong Zhai, Shaopei Gao, Ning Zhao, Feng Tian, Huan Zhang, Shaozhen He. IbNIEL-mediated degradation of IbNAC087 regulates jasmonic acid-dependent salt and drought tolerance in sweet potato. Journal of Integrative Plant Biology, 2024, 66(2): 176‒195 https://doi.org/10.1111/jipb.13612

References

[1]
Abouelsaad, I., and Renault, S. (2018). Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress. J. Plant Physiol. 226: 136-144.
[2]
Ahmadi, F.I., Karimi, K., and Struik, P.C. (2018). Effect of exogenous application of methyl jasmonate on physiological and biochemical characteristics of Brassica napus L. cv. Talaye under salinity stress. S. Afr. J. Bot. 115: 5-11.
[3]
Ballas, N., Wong, L.M., and Theologis, A. (1993). Identification of the auxin-responsive element, AuxRE, in the primary indoleacetic acid-inducible gene, PS-IAA4/5, of pea (Pisum sativum). J. Mol. Biol. 233: 580-596.
[4]
Bao, G.G., Zhuo, C.L., Qian, C.M., Xiao, T., Guo, Z.F., and Lu, S.Y. (2016). Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants. Plant Biotechnol. J. 14: 206-214.
[5]
Bartels, D., and Sunkar, R. (2005). Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24: 23-58.
[6]
Batoko, H., Zheng, H.Q., Hawes, C., and Moore, I. (2000). A rab1 GTPase is required for transport between the endoplasmic reticulum and golgi apparatus and for normal golgi movement in plants. Plant Cell 12: 2201-2218.
[7]
Bi, Y., Wang, H., Yuan, X., Yan, Y.Q., Li, D.Y., and Song, F.M. (2023). The NAC transcription factor ONAC083 negatively regulates rice immunity against Magnaporthe oryzae by directly activating transcription of the RING-H2 gene OsRFPH2-6. J. Integr. Plant Biol. 65: 854-875.
[8]
Bobb, A.J., Eiben, H.G., and Bustos, M.M. (1995). PvAlf, an embryo-specific acidic transcriptional activator enhances gene expression from phaseolin and phytohemagglutinin promoters. Plant J. 8: 331-343.
[9]
Busk, P.K., and Pages, M. (1997). Protein binding to the abscisic acid-responsive elements is independent of VIVIPROUS1 in vivo. Plant Cell 9: 2261-2270.
[10]
Cao, X., Xie, H., Song, M., Lu, J., Ma, P., Huang, B., Wang, M., Tian, Y., Chen, F., Peng, J., et al. (2022). Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. Innovation 4: 100345.
[11]
Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., and Xia, R. (2020). TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13: 1194-1202.
[12]
Chen, F.H., Zhang, H.M., Li, H., Lian, L., Wei, Y.D., Lin, Y.L., Wang, L.N., He, W., Cai, Q.H., Xie, H.G., et al. (2023). IPA1 improves drought tolerance by activating SNAC1 in rice. BMC Plant Biol. 23: 55-66.
[13]
Chen, S.J., Xu, K., Kong, D.Y., Wu, L.Y., Chen, Q., Ma, X.S., Ma, S.Q., Li, T.F., Xie, Q., Liu, H.Y., et al. (2022). Ubiquitin ligase OsRINGzf1 regulates drought resistance by controlling the turnover of OsPIP2;1. Plant Biotechnol. J. 20: 1743-1755.
[14]
Chen, X.X., Wang, T.T., Rehman, A.U., Wang, Y., Qi, J.S., Li, Z., Song, C.P., Wang, B.S., Yang, S.H., and Gong, Z.Z. (2021). Arabidopsis U-box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptor-like protein kinases LRR1 and KIN7. J. Integr. Plant Biol. 63: 494-509.
[15]
Clarke, S.M., Cristescu, S.M., Miersch, O., Harren, F.J., Wasternack, C., and Mur, L.A. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol. 182: 175-187.
[16]
Dong, Y.F., Tang, M.J., Huang, Z.L., Song, J.N., Xu, J., Ahammed, G.J., Yu, J.Q., and Zhou, Y.H. (2022). The miR164a-NAM3 module confers cold tolerance by inducing ethylene production in tomato. Plant J. 111: 440-456.
[17]
Duroux, L., and Welinder, K.G. (2003). The peroxidase gene family in plants: A phylogenetic overview. J. Mol. Evol. 57: 397-407.
[18]
Ernst, H.A., Olsen, A.N., Larsen, S., and Leggio, L.L. (2004). Structure of the conserved domain of ANAC, a member of the nac family of transcription factors. EMBO Rep. 5: 297-303.
[19]
Esmaielzadeh, S., Fallah, H., Niknejad, Y., Mahmoudi, M., and Tari, D.B. (2022). Methyl jasmonate increases aluminum tolerance in rice by augmenting the antioxidant defense system, maintaining ion homeostasis, and increasing nonprotein thiol compounds. Environ. Sci. Pollut. Res. Int. 29: 46708-46720.
[20]
Evans, N.H. (2003). Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiol. 131: 8-11.
[21]
Fang, J.L., Chai, Z., Yao, W., Chen, B.S., and Zhang, M.Q. (2020). Interactions between ScNAC23 and ScGAI regulate GA-mediated flowering and senescence in sugarcane. Plant Sci. 304: 110806-110817.
[22]
Fang, L.C., Su, L.Y., Sun, X.M., Li, X.B., Sun, M.X., Karungo, S.K., Fang, S., Chu, J.F., Li, S.H., and Xin, H.P. (2016). Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J. Exp. Bot. 67: 2829-2845.
[23]
Fang, Y.J., You, J., Xie, K.B., Xie, W.B., and Xiong, L.Z. (2008). Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol. Genet. Genomics 280: 535-546.
[24]
FAO. (2022). Crops and livestock products. Available from: https://www.fao.org/faostat/en/#data/QCL
[25]
Gao, L.T., Jia, S.Z., Cao, L., Ma, Y.J., Wang, J.L., Lan, D., Guo, G.Y., Chai, J.F., and Bi, C.L. (2022). An F-box protein from wheat, TaFBA-2A, negatively regulates JA biosynthesis and confers improved salt tolerance and increased JA responsiveness to transgenic rice plants. Plant Physiol. Biochem. 182: 227-239.
[26]
Gao, X.R., Zhang, H., Li, X., Bai, Y.W., Peng, K., Wang, Z., Dai, Z.R., Bian, X.F., Zhang, Q., Jia, L.C., et al. (2023). The B-box transcription factor IbBBX29 regulates leaf development and flavonoid biosynthesis in sweet potato. Plant Physiol. 191: 496-514.
[27]
Grebner, W., Stingl, N.E., Oenel, A., Mueller, M.J., and Berger, S. (2013). Lipoxygenase6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabidopsis. Plant Physiol. 161: 2159-2170.
[28]
Hu, H.H., Dai, M.Q., Yao, J.L., Xiao, B.Z., Li, X.H., Zhang, Q.F., and Xiong, L.Z. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought tolerance and salt tolerance in rice. Proc. Natl. Acad. Sci. U.S.A. 103: 12987-12992.
[29]
Hu, P., Zhang, K.M., and Yang, C.P. (2019). BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis. Plant Physiol. 179: 700-717.
[30]
Karkute, S.G., Gujjar, R.S., Rai, A., Akhtar, M., Singh, M., and Singh, B. (2018). Genome wide expression analysis of WRKY genes in tomato (Solanum lycopersicum) under drought stress. Plant Gene 13: 8-17.
[31]
Kazan, K., and Manners, J.M. (2013). MYC2: The master in action. Mol. Plant 6: 686-703.
[32]
Kim, S.E., Bian, X., Lee, C.J., Park, S.U., Lim, Y.H., Kim, B.H., Park, W.S., Ahn, M.J., Ji, C.Y., Yu, Y., et al. (2021). Overexpression of 4-hydroxyphenylpyruvate dioxygenase (IbHPPD) increases abiotic stress tolerance in transgenic sweetpotato plants. Plant Physiol. Biochem. 167: 420-429.
[33]
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.
[34]
Kuo, H.Y., Kang, F.C., and Wang, Y.Y. (2020). Glucosinolate Transporter1 involves in salt-induced jasmonate signaling and alleviates the repression of lateral root growth by salt in Arabidopsis. Plant Sci. 297: 110487.
[35]
Künzler, M., Braus, G.H., Georgiev, O., Seipel, K., and Schaffner, W. (1994). Functional differences between mammalian transcription activation domains at the yeast GAL1 promoter. EMBO J. 13: 641-645.
[36]
Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P., and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30: 325-327.
[37]
Li, T.M., Cheng, X., Wang, X.W., Li, G.G., Wang, B.B., Wang, W.Y., Zhang, N., Han, Y.L., Jiao, B.L., Wang, Y.J., et al. (2021). Glyoxalase I-4 functions downstream of NAC72 to modulate downy mildew resistance in grapevine. Plant J. 108: 394-410.
[38]
Lin, Q.F., Wang, S., Dao, Y.H., Wang, J.Y., and Wang, K. (2020). Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures. J. Exp. Bot. 71: 4285-4297.
[39]
Liu, G.Z., Li, X.L., Jin, S.X., Liu, X.Y., Zhu, L.F., Nie, Y.C., and Zhang, X.L. (2014). Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE 9: e86895.
[40]
Liu, H., Dong, S.Y., Li, M., Gu, F.W., Yang, G.L., Guo, T., Chen, Z.Q., and Wang, J.F. (2021). The class III peroxidase gene OsPRX30, transcriptionally modulated by the AT-hook protein OsATH1, mediates rice bacterial blight-induced ROS accumulation. J. Integr. Plant Biol. 63: 393-408.
[41]
Liu, X., Chi, H., Yue, M., Zhang, X., Li, W., and Jia, E. (2012). The regulation of exogenous jasmonic acid on UV-b stress tolerance in wheat. J. Plant Growth Regul. 31: 436-447.
[42]
Liu, Y.F., Liu, Y., Chen, Q.M., Yin, F.L., Song, M.B., Cai, W., and Shuai, L. (2023). Methyl jasmonate treatment alleviates chilling injury and improves antioxidant system of okra pod during cold storage. Food Sci. Nutr. 11: 2049-2060.
[43]
Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. 2. Genome Biol. 15: 550.
[44]
Lv, Q.D., Zhong, Y.J., Wang, Y.G., Wang, Z.Y., Zhang, L., Shi, J., Wu, Z.C., Liu, Y., Mao, C.Z., Yi, K.K., et al. (2014). SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. Plant Cell 26: 1586-1587.
[45]
Ma, B.J., Liu, X.F., Guo, S.Y., Xie, X.L., Zhang, J., Wang, J.Y., Zheng, L.L., and Wang, Y.C. (2021). RtNAC100 involved in the regulation of ROS, Na+ accumulation and induced salt-related PCD through MeJA signal pathways in recretohalophyte Reaumuria trigyna. Plant Sci. 310: 110976.
[46]
Mao, C.J., He, J.M., Liu, L.N., Deng, Q.M., Yao, X.F., Liu, C.M., Qiao, Y.L., Li, P., and Ming, F. (2020). OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development. Plant Biotechnol. J. 18: 429-442.
[47]
Mao, C.J., Lu, S.C., Lv, B., Zhang, B., Shen, J.B., He, J.M., Luo, L.Q., Xi, D.D., Chen, X., and Ming, F. (2017). A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol. 174: 1747-1763.
[48]
Meng, F.W., Zhao, Q.Q., Zhao, X., Yang, C., Liu, R., Pang, J.H., Zhao, W.S., Wang, Q., Liu, M.X., Zhang, Z.G., et al. (2022). A rice protein modulates endoplasmic reticulum homeostasis and coordinates with a transcription factor to initiate blast disease resistance. Cell Rep. 39: 110941.
[49]
Meng, X.Q., Liu, S.Y., Dong, T.T., Xu, T., Ma, D.F., Pan, S.Y., Li, Z.Y., and Zhu, M.K. (2020). Comparative transcriptome and proteome analysis of salt-tolerant and salt-sensitive sweet potato and overexpression of IbNAC7 confers salt tolerance in Arabidopsis. Front. Plant Sci. 11: 572540.
[50]
Meng, X.Q., Liu, S.Y., Zhang, C.B., He, J.N., Ma, D.F., Wang, X., Dong, T.T., Guo, F., Cai, J., Long, T.D., et al. (2023). The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses. Plant Physiol. 191: 747-771.
[51]
Michel, E., Salamini, R., Barels, E., Dale, P., Baga, M., and Szalay, A. (1993). Analysis of a desiccation and ABA-responsive promoter isolated from the resurrection plant Craterostigma plantagineum. Plant J. 4: 29-40.
[52]
Michiels, C., Raes, M., Toussaint, O., and Remacle, J. (1994). Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic. Biol. Med. 17: 235-248.
[53]
Ming, R.H., Zhang, Y., Wang, Y., Khan, M., Dahro, B., and Liu, J.H. (2021). The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. New Phytol. 229: 2730-2750.
[54]
Morreale, F.E., and Waldenand, H. (2016). Snapshot: Types of ubiquitin ligases. Cell 165: 248.
[55]
Munemasa, S., Oda, K., Watanabe-Sugimoto, M., Nakamura, Y., Shimoishi, Y., and Murata, Y. (2007). The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 143: 1398-1407.
[56]
Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2012). NAC transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 1819: 97-103.
[57]
Olsen, A.N., Ernst, H.A., Leggio, L.L., and Skriver, K. (2005). NAC transcription factors: Structurally distinct, functionally diverse. Trends Plant Sci. 10: 79-87.
[58]
Pospíilová, J. (2003). Participation of phytohormones in the stomatal regulation of gas exchange during water stress. Biol. Plant. 46: 491-506.
[59]
Puranik, S., Sahu, P.P., Srivastava, P.S., and Prasad, M. (2012). NAC proteins: Regulation and role in stress tolerance. Trends Plant Sci. 17: 369-381.
[60]
Qiu, Z.B., Guo, J.L., Zhu, A.J., Zhang, L., and Zhang, M.M. (2014). Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol. Environ. Saf. 104: 202-208.
[61]
Raghavendra, A., and Reddy, K.B. (1987). Action of proline on stomata differs from that of abscisic acid, G-substances, or methyl jasmonate. Plant Physiol. 83: 732-734.
[62]
Rohwer, C.L., and Erwin, J.E. (2008). Horticultural applications of jasmonates. J. Hortic. Sci. Biotech. 83: 283-304.
[63]
Rouster, J., Leah, R., Mundy, J., and Cameron-Mills, V. (1997). Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J. 11: 513-523.
[64]
Schmidt, S.B., Brown, L.K., Booth, A., Wishart, J., Hedley, P.E., Martin, P., Husted, S., George, T.S., and Russell, J. (2023). Heritage genetics for adaptation to marginal soils in barley. Trends Plant Sci. 28: 544-551.
[65]
Schmittgen, T.D., and Livak, K.J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3: 1101-1108.
[66]
Seo, J.S., Joo, J.S., Kim, M.J., Kim, Y.K., Nahm, B.H., Song, S.I., Cheong, J.J., Lee, J.S., Kim, J.K., and Choi, Y.D. (2011). OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J. 65: 907-921.
[67]
Shang, X.G., Yu, Y.J., Zhu, L.J., Liu, H.Q., Chai, Q.C., and Guo, W.Z. (2020). A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis. Plant Sci. 296: 110498.
[68]
Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227.
[69]
Simpson, S.D., Nakashima, K., Narusaka, Y., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Two different novel cis-acting elements of ERD1, a clpa homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J. 33: 259-270.
[70]
Singh, A.P., Mani, B., and Giri, J. (2021). OsJAZ9 is involved in water-deficit stress tolerance by regulating leaf width and stomatal density in rice. Plant Physiol. Biochem. 162: 161-170.
[71]
Squires, V.R., and Glenn, E.P. (2004). Salination, desertification, and soil erosion. In The Role of Food, Agriculture, Forestry and Fisheries in Human Nutrition. (Oxford, UK: UNESCO, EOLSS Publishers). pp, 102-123.
[72]
Stone, S.L. (2014). The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front. Plant Sci. 5: 135.
[73]
Su, Y.N., Huang, Y.Z., Dong, X.T., Wang, R.J., Tang, M.Y., Cai, J.B., Chen, J.Y., Zhang, X.Q., and Nie, G. (2021). Exogenous methyl jasmonate improves heat tolerance of perennial ryegrass through alteration of osmotic adjustment, antioxidant defense, and expression of jasmonic acid-responsive genes. Front. Plant Sci. 12: 664519.
[74]
Tong, S.F., Chen, N.N., Wang, D.Y., Ai, F.D., Liu, B., Ren, L.W., Chen, Y., Zhang, J.L., Lou, S.L., Liu, H.H., et al. (2021). The U-box E3 ubiquitin ligase PalPUB79 positively regulates ABA-dependent drought tolerance via ubiquitination of PalWRKY77 in populus. Plant Biotechnol. J. 19: 2561-2575.
[75]
Tran, L.S.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought responsive cis-element in the EARLY RESPONSIVE TO DEHYDRATION STRESS 1 promoter. Plant Cell 16: 2481-2498.
[76]
Trujillo, M., and Shirasu, K. (2010). Ubiquitination in plant immunity. Curr. Opin. Plant Biol. 13: 402-408.
[77]
Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future. Curr. Opin. Biotechnol 17: 113-122.
[78]
Vierstra, R.D. (2009). The ubiquitin-26s proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell Biol. 10: 385-397.
[79]
Walter, M., Chaban, C., Schütze, K., Batistic, O., Weckermann, K., Näke, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., et al. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40: 428-438.
[80]
Wang, B., Zhai, H., He, S.Z., Zhang, H., Ren, Z.T., Zhang, D.D., and Liu, Q.C. (2016). A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Sci. Hortic-Amsterdam 201: 153-166.
[81]
Wang, D.R., Zhang, X.W., Xu, R.R., Wang, G.L., You, C.X., and An, J.P. (2022). Apple U-box-type E3 ubiquitin ligase MdPUB23 reduces cold-stress tolerance by degrading the cold-stress regulatory protein MdICE1. Hortic. Res. 9: uhac171.
[82]
Wang, Q., Yuan, F., Pan, Q.F., Li, M.Y., Wang, G.F., Zhao, J.Y., and Tang, K.X. (2010). Isolation and functional analysis of the Catharanthus roseus deacetylvindoline-4-O-acetyltransferase gene promoter. Plant Cell Rep. 29: 185-192.
[83]
Wang, Y.C., Xu, H.F., Liu, W.J., Wang, N., Qu, C.Z., Jiang, S.H., Fang, H.C., Zhang, Z.Y., and Chen, X.S. (2019). Methyl jasmonate enhances apple'cold tolerance through the JAZ-MYC2 pathway. Plant Cell Tissue Organ Cult. 136: 75-84.
[84]
Wasternack, C., and Song, S. (2017). Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 68: 1303-1321.
[85]
Wu, H., Ye, H.Y., Yao, R.F., Zhang, T., and Xiong, L.Z. (2015). OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Sci. 232: 1-12.
[86]
Xiang, Y., Bian, X.L., Wei, T.H., Yan, J.W., Sun, X.J., Han, T., Dong, B.C., Zhang, G.F., Li, J., and Zhang, A.Y. (2021b). ZmMPK5 phosphorylates ZmNAC49 to enhance oxidative stress tolerance in maize. New Phytol. 232: 2400-2417.
[87]
Xiang, Y., Sun, X.J., Bian, X.L., Wei, T.H., Han, T., Yan, J.W., and Zhang, A.Y. (2021a). The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize. J. Exp. Bot. 72: 1399-1410.
[88]
Xiao, L.Y., Shi, Y.Y., Wang, R., Feng, Y., Wang, L.S., Zhang, H.S., Shi, X.Y., Jing, G.Q., Deng, P., Song, T.Z., et al. (2022). The transcription factor OsMYBc and an E3 ligase regulate expression of a K+ transporter during salt stress. Plant Physiol. 190: 843-859.
[89]
Xing, Q.J., Liao, J.J., Cao, S.X., Li, M., Lv, T.H., and Qi, H.Y. (2020). CmLOX10 positively regulates drought tolerance through jasmonic acid -mediated stomatal closure in oriental melon (Cucumis melo var. makuwa Makino). Sci. Rep. 10: 17452-17465.
[90]
Xu, B.Q., Wang, J.J., Peng, Y., Huang, H., Sun, L.L., Yang, R., Suo, L.N., Wang, S.H., and Zhao, W.C. (2022). SlMYC2 mediates stomatal movement in response to drought stress by repressing SlCHS1 expression. Front. Plant Sci. 13: 952758.
[91]
Xu Z.Y., Gongbuzhaxi , Wang C.Y., Xue F., Zhang H., Ji W.Q. (2015) Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Plant Physiol. Biochem. 96: 356-363.
[92]
Yamaguchi, M., Ohtani, M., Mitsuda, N., Kubo, M., Ohme-Takagi, M., Fukuda, H., and Demura, D. (2010). VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22: 1249-1263.
[93]
Yamasato, A., Nagata, N., Tanaka, R., and Tanaka, A. (2005). The N-terminal domain of chlorophyllide an oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell 17: 1585-1597.
[94]
Yan, Z., Zhang, W., Chen, J., and Li, X. (2015). Methyl jasmonate alleviates cadmium toxicity in solanum nigrum by regulating metal uptake and antioxidative capacity. Biol. Plant. 59: 373-381.
[95]
Yang, Y.F., Wang, Y.N., Jia, L.C., Yang, G.H., Xu, X.Z., Zhai, H., He, S.Z., Li, J.X., Dai, X.D., Qin, N., et al. (2018). Involvement of an ABI-like protein and a Ca2+- ATPase in drought tolerance as revealed by transcript profiling of a sweetpotato somatic hybrid and its parents Ipomoea batatas (L.) Lam. and I. triloba L. PLoS ONE 13: e0193193.
[96]
You, J., Zong, W., Li, X.K., Ning, J., Hu, H.H., Li, X.H., Xiao, J.H., and Xiong, L.Z. (2013). The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J. Exp. Bot. 64: 569-583.
[97]
Yu, F.F., Wu, Y.R., and Xie, Q. (2016). Ubiquitin-proteasome system in aba signaling: From perception to action. Mol. Plant 9: 21-33.
[98]
Yu, Y.C., Xu, T., Li, X., Tang, J., Ma, D.F., Li, Z.Y., and Sun, J. (2016). NaCl-induced changes of ion homeostasis and nitrogen metabolism in two sweet potato (Ipomoea batatas L.) cultivars exhibit different salt tolerance at adventitious root stage. Environ. Exp. Bot. 129: 23-36.
[99]
Zhai, H., Wang, F.B., Si, Z.Z., Huo, J.X., Xing, L., An, Y.Y., He, S.Z., and Liu, Q.C. (2016). A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. Plant Biotechnol. J. 14: 592-602.
[100]
Zhang, H., Gao, X.R., Zhi, Y.H., Li, X., Zhang, Q., Niu, J.B., Wang, J., Zhai, H., Zhao, N., Li, J.G., et al. (2019). A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytol. 223: 1918-1936.
[101]
Zhang, H., Wang, Z., Li, X., Gao, X.R., Dai, Z.R., Cui, Y.F., Zhi, Y.H., Liu, Q.C., Zhai, H., Gao, S.P., et al. (2022). The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato. New Phytol. 233: 1133-1152.
[102]
Zhang, H., Zhang, Q., Wang, Y.N., Li, Y., Zhai, H., Liu, Q.C., and He, S.Z. (2017a). Characterization of salt tolerance and fusarium wilt tolerance of a sweetpotato mutant. J. Integr. Agr. 16: 1946-1955.
[103]
Zhang, H., Zhang, Q., Zhai, H., Li, Y., Wang, X.F., Liu, Q.C., and He, S.Z. (2017b). Transcript profile analysis reveals important roles of jasmonic acid signalling pathway in the response of sweet potato to salt stress. Sci. Rep. 7: 40819.
[104]
Zheng, X.N., Chen, B., Lu, G.J., and Han, B. (2009). Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem. Biophys. Res. Commun. 379: 985-989.
[105]
Zheng, X.Y., Spivey, N.W., Zeng, W., Liu, P.P., Fu, Z.Q., Klessig, D.F., He, S.Y., and Dong, X. (2012). Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11: 587-596.
[106]
Zhou, Y., Li, X.H., Guo, Q.H., Liu, P., Li, Y., Wu, C.A., Yang, G.D., Huang, J.G., Zhang, S.Z., Zheng, C.C., et al. (2021). Salt responsive alternative splicing of a RING finger E3 ligase modulates the salt stress tolerance by fine-tuning the balance of COP9 signalosome subunit 5A. PLoS Genet. 17: e1009898.
[107]
Zhu, J.T., Wei, X.N., Yin, C.S., Zhou, H., Yan, J.H., He, W.X., Yan, J.B., and Li, H. (2023). ZmEREB57 regulates OPDA synthesis and enhances salt stress tolerance through two distinct signaling pathways in Zea mays. Plant Cell Environ. 46: 2867-2883.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/