Integrative regulatory mechanisms of stomatal movements under changing climate
Jingbo Zhang, Xuexue Chen, Yajing Song, Zhizhong Gong
Integrative regulatory mechanisms of stomatal movements under changing climate
Global climate change-caused drought stress, high temperatures and other extreme weather profoundly impact plant growth and development, restricting sustainable crop production. To cope with various environmental stimuli, plants can optimize the opening and closing of stomata to balance CO2 uptake for photosynthesis and water loss from leaves. Guard cells perceive and integrate various signals to adjust stomatal pores through turgor pressure regulation. Molecular mechanisms and signaling networks underlying the stomatal movements in response to environmental stresses have been extensively studied and elucidated. This review focuses on the molecular mechanisms of stomatal movements mediated by abscisic acid, light, CO2, reactive oxygen species, pathogens, temperature, and other phytohormones. We discussed the significance of elucidating the integrative mechanisms that regulate stomatal movements in helping design smart crops with enhanced water use efficiency and resilience in a climate-changing world.
environmental stress / guard cell / plant / regulatory mechanisms / stomatal movements
[1] |
Agurla,S., Gahir,S., Munemasa,S., Murata, Y., and Raghavendra,A.S. (2018). Mechanism of stomatal closure in plants exposed to drought and cold stress. Adv. Exp. Med. Biol. 1081: 215-232.
|
[2] |
Aldon,D., Mbengue, M., Mazars,C., and Galaud,J.P. (2018). Calcium signalling in plant biotic interactions. Int. J. Mol. Sci. 19: 665.
|
[3] |
Ali,A., Kim,J.K., Jan,M., Khan, H.A., Khan,I.U., Shen,M.Z., Park,J., Lim,C.J., Hussain, S., Baek,D., et al. (2019). Rheostatic control of ABA signaling through HOS15-mediated OST1 degradation. Mol. Plant 12: 1447-1462.
|
[4] |
Alvarez,C., Calo,L., Romero,L.C., García, I., and Gotor,C. (2010). An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol. 152: 656-669.
|
[5] |
Arif,Y., Hayat,S., Yusuf,M., and Bajguz, A. (2021). Hydrogen sulfide: A versatile gaseous molecule in plants. Plant Physiol. Biochem. 158: 372-384.
|
[6] |
Arnaud,D., and Hwang, I. (2015). A sophisticated network of signaling pathways regulates stomatal defenses to bacterial pathogens. Mol. Plant 8: 566-581.
|
[7] |
Arnaud,D., Lee,S., Takebayashi,Y., Choi,D., Choi,J., Sakakibara,H., and Hwang,I. (2017). Cytokinin-mediated regulation of reactive oxygen species homeostasis modulates stomatal immunity in Arabidopsis. Plant Cell 29: 543-5559.
|
[8] |
Aroca,A., Zhang,J., Xie,Y.J., Romero, L.C., and Gotor,C. (2021). Hydrogen sulfide signaling in plant adaptations to adverse conditions: Molecular mechanisms. J. Exp. Bot. 72: 5893-5904.
|
[9] |
Ault,T.R. (2020). On the essentials of drought in a changing climate. Science 368: 256-260.
|
[10] |
Azoulay-Shemer,T., Schulze, S., Nissan-Roda,D., Bosmans,K., Shapira, O., Weckwerth,P., Zamora,O., Yarmolinsky, D., Trainin,T., Kollist,H., et al. (2023). A role for ethylene signaling and biosynthesis in regulating and accelerating CO2- and abscisic acid-mediated stomatal movements in Arabidopsis. New Phytol. 238: 2460-2475.
|
[11] |
Bailey-Serres,J., Parker, J.E., Ainsworth,E.A., Oldroyd,G.E.D., and Schroeder, J.I. (2019). Genetic strategies for improving crop yields. Nature 575: 109-118.
|
[12] |
Bandurska,H., Stroinski, A., and Kubis,J. (2003). The effect of jasmonic acid on the accumulation of ABA, proline and spermidine and its influence on membrane injury under water deficit in two barley genotypes. Acta Physiol. Plant. 25: 279-285.
|
[13] |
Belda-Palazon,B., Julian, J., Coego,A., Wu,Q., Zhang,X., Batistic,O., Alquraishi, S.A., Kudla,J., An,C.C., and Rodriguez, P.L. (2019). ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA. Plant J. 98: 813-825.
|
[14] |
Boudsocq,M., Barbier-Brygoo, H., and Laurière,C. (2004). Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J. Biol. Chem. 279: 41758-41766.
|
[15] |
Boudsocq,M., Droillard, M.J., Barbier-Brygoo,H., and Laurière,C. (2007). Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid. Plant Mol. Biol. 63: 491-503.
|
[16] |
Boyer,J.S. (2015). Turgor and the transport of CO2 and water across the cuticle (epidermis) of leaves. J. Exp. Bot. 66: 2625-2633.
|
[17] |
Brandt,B., Brodsky, D.E., Xue,S.W., Negi,J., Iba,K., Kangasjärvi,J., Ghassemian,M., Stephan, A.B., Hu,H.H., and Schroeder,J.I. (2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc. Natl. Acad. Sci. U.S.A. 109: 10593-10598.
|
[18] |
Brandt,B., Munemasa, S., Wang,C., Nguyen,D., Yong,T.M., Yang,P.G., Poretsky, E., Belknap,T.F., Waadt,R., Alemán, F., et al. (2015). Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. eLife 4: e03599.
|
[19] |
Bueso,E., Rodriguez, L., Lorenzo-Orts,L., Gonzalez-Guzman,M., Sayas, E., Muñoz-Bertomeu,J., Ibañez,C., Serrano,R., and Rodriguez, P.L. (2014). The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. Plant J. 80: 1057-1071.
|
[20] |
Burnette,R.N., Gunesekera, B.M., and Gillaspy,G.E. (2003). An Arabidopsis inositol 5-phosphatase gain-of-function alters abscisic acid signaling. Plant Physiol. 132: 1011-1019.
|
[21] |
Cai,Z.Y., Liu,J.J., Wang,H.J., Yang, C.J., Chen,Y.X., Li,Y.C., Pan,S.J., Dong,R., Tang, G.L., Barajas-Lopez,J.D., et al. (2014). GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 111: 9651-9656.
|
[22] |
Cao,M.J., Liu,X., Zhang,Y., Xue, X.Q., Zhou,X.E., Melcher,K., Gao,P., Wang,F.X., Zeng, L., Zhao,Y., et al. (2013). An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res. 23: 1043-1054.
|
[23] |
Cao,M.J., Zhang,Y.L., Liu,X., Huang, H., Zhou,X.E., Wang,W.L., Zeng,A., Zhao,C.Z., Si, T., Du,J.M., et al. (2017). Combining chemical and genetic approaches to increase drought resistance in plants. Nat. Commun. 8: 1183.
|
[24] |
Cardi,T., Murovec, J., Bakhsh,A., Boniecka,J., Bruegmann, T., Bull,S.E., Eeckhaut,T., Fladung, M., Galovic,V., Linkiewicz,A., et al. (2023). CRISPR/Cas-mediated plant genome editing: Outstanding challenges a decade after implementation. Trends Plant Sci. 28: 1144-1165.
|
[25] |
Chan,C., Panzeri, D., Okuma,E., Tõldsepp,K., Wang, Y.Y., Louh,G.Y., Chin,T.C., Yeh,Y.H., Yeh,H.L., Yekondi, S., et al. (2020). STRESS INDUCED FACTOR 2 regulates Arabidopsis stomatal immunity through phosphorylation of the anion channel SLAC1. Plant Cell 32: 2216-2236.
|
[26] |
Chandrashekar,J., Yarmolinsky, D., von Buchholtz,L., Oka,Y., Sly,W., Ryba,N.J.P., and Zuker, C.S. (2009). The taste of carbonation. Science 326: 443-445.
|
[27] |
Chater,C., Gray,J.E., and Beerling,D.J. (2013). Early evolutionary acquisition of stomatal control and development gene signalling networks. Curr. Opin. Plant Biol. 16: 638-646.
|
[28] |
Chen,J., Zhou,H., and Xie,Y.J. (2021a). SnRK2.6 phosphorylation/persulfidation: Where ABA and H2S signaling meet. Trends Plant Sci. 26: 1207-1209.
|
[29] |
Chen,K., Li,G.J., Bressan,R.A., Song,C.P., Zhu,J.K., and Zhao,Y. (2020a). Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 62: 25-54.
|
[30] |
Chen,L., Dodd,I.C., Davies,W.J., and Wilkinson, S. (2013). Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves. Plant Cell Environ. 36: 1850-1859.
|
[31] |
Chen,L., and Torii, K.U. (2023). Signaling in plant development and immunity through the lens of the stomata. Curr. Biol. 33: R733-R742.
|
[32] |
Chen,Q.B., Bai,L., Wang,W.J., Shi, H.Z., Botella,J.R., Zhan,Q.D., Liu,K., Yang,H.Q., and Song, C.P. (2021b). COP1 promotes ABA-induced stomatal closure by modulating the abundance of ABI/HAB and AHG3 phosphatases. New Phytol. 229: 2035-2049.
|
[33] |
Chen,S.S., Jia,H.L., Wang,X.F., Shi, C., Wang,X., Ma,P.Y., Wang,J., Ren,M.J., and Li, J.S. (2020b). Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells. Mol. Plant 13: 732-744.
|
[34] |
Chen,S.S., Wang,X.F., Jia,H.L., Li, F.L., Ma,Y., Liesche,J., Liao,M.Z., Ding,X.T., Liu, C.X., Chen,Y., et al. (2021c). Persulfidation-induced structural change in SnRK2.6 establishes intramolecular interaction between phosphorylation and persulfidation. Mol. Plant 14: 1814-1830.
|
[35] |
Chen,T.Y., Wu,H., Wu,J.M., Fan, X.L., Li,X.H., and Lin,Y.J. (2017). Absence of OsβCA1 causes a CO2 deficit and affects leaf photosynthesis and the stomatal response to CO2 in rice. Plant J. 90: 344-357.
|
[36] |
Chen,X.X., Ding,Y.L., Yang,Y.Q., Song, C.P., Wang,B.S., Yang,S.H., Guo,Y., and Gong,Z.Z. (2021d). Protein kinases in plant responses to drought, salt, and cold stress. J. Integr. Plant Biol. 63: 53-78.
|
[37] |
Chen,X.X., Wang,T.T., Rehman,A.U., Wang, Y., Qi,J.S., Li,Z., Song,C.P., Wang,B.S., Yang, S.H., and Gong,Z.Z. (2021e). Arabidopsis U-box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptor-like protein kinases LRR1 and KIN7. J. Integr. Plant Biol. 63: 494-509.
|
[38] |
Chen,Z.H., Hills,A., Lim,C.K., and Blatt, M.R. (2010). Dynamic regulation of guard cell anion channels by cytosolic free Ca2+ concentration and protein phosphorylation. Plant J. 61: 816-825.
|
[39] |
Cheng,C.H., Wang,Z.J., Ren,Z.Y., Zhi, L.Y., Yao,B., Su,C., Liu,L., and Li,X. (2017). SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLoS Genet. 13: e1006947.
|
[40] |
Cheong,Y.H., Pandey, G.K., Grant,J.J., Batistic,O., Li,L., Kim,B.G., Lee, S.C., Kudla,J., and Luan,S. (2007). Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J. 52: 223-239.
|
[41] |
Coego,A., Julian, J., Lozano-Juste,J., Pizzio,G.A., Alrefaei, A.F., and Rodriguez,P.L. (2021). Ubiquitylation of ABA receptors and protein phosphatase 2C coreceptors to modulate ABA signaling and stress response. Int. J. Mol. Sci. 22: 7103.
|
[42] |
Corpas,F.J., González-Gordo, S., Cañas,A., and Palma,J.M. (2019). Nitric oxide and hydrogen sulfide in plants: Which comes first? J. Exp. Bot. 70: 4391-4404.
|
[43] |
Daszkowska-Golec,A., and Szarejko, I. (2013). Open or close the gate—Stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci. 4: 138.
|
[44] |
de Bont,L., Mu,X.J., Wei,B., and Han, Y. (2022). Abiotic stress-triggered oxidative challenges: Where does H2S act? J. Genet. Genomics 49: 748-755.
|
[45] |
Demidchik,V., Shabala, S., Isayenkov,S., Cuin,T.A., and Pottosin, I. (2018). Calcium transport across plant membranes: Mechanisms and functions. New Phytol. 220: 49-69.
|
[46] |
Demir,F., Horntrich, C., Blachutzik,J.O., Scherzer,S., Reinders, Y., Kierszniowska,S., Schulze,W.X., Harms,G.S., Hedrich,R., Geiger, D., et al. (2013). Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc. Natl. Acad. Sci. U.S.A. 110: 8296-8301.
|
[47] |
Dempsey,D.A., Shah,J., and Klessig,D.F. (1999). Salicylic acid and disease resistance in plants. Crit. Rev. Plant Sci. 18: 547-575.
|
[48] |
Deng,J.P., Kong,L.Y., Zhu,Y.H., Pei, D., Chen,X.X., Wang,Y., Qi,J.S., Song,C.P., Yang, S.H., and Gong,Z.Z. (2022). BAK1 plays contrasting roles in regulating abscisic acid-induced stomatal closure and abscisic acid-inhibited primary root growth in Arabidopsis. J. Integr. Plant Biol. 64: 1264-1280.
|
[49] |
Desikan,R., Hancock, J.T., Bright,J., Harrison,J., Weir,L., Hooley,R., and Neill, S.J. (2005). A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol. 137: 831-834.
|
[50] |
Desikan,R., Last,K., Harrett-Williams,R., Tagliavia,C., Harter, K., Hooley,R., Hancock,J.T., and Neill, S.J. (2006). Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J. 47: 907-916.
|
[51] |
Ding,Y.L., Li,H., Zhang,X.Y., Xie, Q., Gong,Z.Z., and Yang,S.H. (2015). OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev. Cell 32: 278-289.
|
[52] |
Dodd,A.N., Kudla,J., and Sanders,D. (2010). The language of calcium signaling. Annu. Rev. Plant Biol. 61: 593-620.
|
[53] |
Drerup,M.M., Schlücking, K., Hashimoto,K., Manishankar,P., Steinhorst, L., Kuchitsu,K., and Kudla,J. (2013). The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the NADPH oxidase RBOHF. Mol. Plant 6: 559-569.
|
[54] |
Edwards,A., and Bowling, D.J.F. (1985). Evidence for a CO2 inhibited proton extrusion pump in the stomatal cells of Tradescantia Virginiana. J. Exp. Bot. 36: 91-98.
|
[55] |
Eisenach,C., and De Angeli, A. (2017). Ion transport at the vacuole during stomatal movements. Plant Physiol. 174: 520-530.
|
[56] |
Engineer,C.B., Ghassemian, M., Anderson,J.C., Peck,S.C., Hu,H.H., and Schroeder,J.I. (2014). Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development. Nature 513: 246-250.
|
[57] |
Evans,N.H. (2003). Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiol. 131: 8-11.
|
[58] |
Fàbregas,N., Yoshida, T., and Fernie,A.R. (2020). Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants. Nat. Commun. 11: 6184.
|
[59] |
Fitzsimons,P.J., and Weyers, J.D.B. (1983). Separation and purification of protoplast types from Commelina-Communis L leaf epidermis. J. Exp. Bot. 34: 55-66.
|
[60] |
Förster,S., Schmidt, L.K., Kopic,E., Anschütz,U., Huang, S., Schlücking,K., Köster,P., Waadt,R., Larrieu,A., Batistič, O., et al. (2019). Wounding-induced stomatal closure requires jasmonate-mediated activation of GORK K+ channels by a Ca2+ sensor-kinase CBL1-CIPK5 complex. Dev. Cell 48: 87-99 e86.
|
[61] |
Franz,S., Ehlert, B., Liese,A., Kurth,J., Cazalé, A.C., and Romeis,T. (2011). Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Mol. Plant 4: 83-96.
|
[62] |
Fraudentali,I., Pedalino, C., D'Incà,R., Tavladoraki,P., Angelini, R., and Cona,A. (2023). Distinct role of AtCuAObeta- and RBOHD-driven H2O2 production in wound-induced local and systemic leaf-to-leaf and root-to-leaf stomatal closure. Front. Plant Sci. 14: 1154431.
|
[63] |
Frommer,W.B. (2010). Biochemistry. CO2mmon sense. Science 327: 275-276.
|
[64] |
Fu,J., Wu,H., Ma,S.Q., Xiang, D.H., Liu,R.Y., and Xiong,L.Z. (2017). OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice. Front. Plant Sci. 8: 2108.
|
[65] |
Fujii,H., and Zhu, J.K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl. Acad. Sci. U.S.A. 106: 8380-8385.
|
[66] |
Gao,H.J., Cui,J.J., Liu,S.X., Wang, S.H., Lian,Y.Y., Bai,Y.T., Zhu,T.F., Wu,H.H., Wang, Y.J., Yang,S.P., et al. (2022). Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize. Mol. Plant 15: 1558-1574.
|
[67] |
Ge,X.M., Cai,H.L., Lei,X., Zhou, X., Yue,M., and He,J.M. (2015). Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis. Plant J. 82: 138-150.
|
[68] |
Geiger,D., Maierhofer, T., AL-Rasheid,K.A.S., Scherzer,S., Mumm,P., Liese,A., Ache, P., Wellmann,C., Marten,I., Grill,E., et al. (2011). Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci. Signal. 4: ra32.
|
[69] |
Geiger,D., Scherzer, S., Mumm,P., Marten,I., Ache,P., Matschi,S., Liese, A., Wellmann,C., Al-Rasheid,K.A.S., Grill, E., et al. (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc. Natl. Acad. Sci. U.S.A. 107: 8023-8028.
|
[70] |
Geiger,D., Scherzer, S., Mumm,P., Stange,A., Marten, I., Bauer,H., Ache,P., Matschi, S., Liese,A., Al-Rasheid,K.A.S., et al. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc. Natl. Acad. Sci. U.S.A. 106: 21425-21430.
|
[71] |
Geng,S., Misra,B.B., de Armas,E., Huhman, D.V., Alborn,H.T., Sumner,L.W., and Chen, S. (2016). Jasmonate-mediated stomatal closure under elevated CO(2) revealed by time-resolved metabolomics. Plant J. 88: 947-962.
|
[72] |
Gilroy,S., Read,N.D., and Trewavas,A.J. (1990). Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 346: 769-771.
|
[73] |
Gotor,C., García, I., Aroca,Á., Laureano-Marín,A.M., Arenas-Alfonseca,L., Jurado-Flores, A., Moreno,I., and Romero,L.C. (2019). Signaling by hydrogen sulfide and cyanide through post-translational modification. J. Exp. Bot. 70: 4251-4265.
|
[74] |
Grondin,A., Rodrigues, O., Verdoucq,L., Merlot,S., Leonhardt, N., and Maurel,C. (2015). Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell 27: 1945-1954.
|
[75] |
Guo,Y.Z., Shi,Y.B., Wang,Y.L., Liu, F., Li,Z., Qi,J.S., Wang,Y., Zhang,J.B., Yang, S.H., Wang,Y., et al. (2023). The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. New Phytol. 237: 1728-1744.
|
[76] |
Gupta,A., Bhardwaj, M., and Tran,L.P. (2021). JASMONATE ZIM-DOMAIN family proteins: Important nodes in jasmonic acid-abscisic acid crosstalk for regulating plant response to drought. Curr. Protein Pept. Sci. 22: 759-766.
|
[77] |
Guzel Deger,A., Scherzer, S., Nuhkat,M., Kedzierska,J., Kollist, H., Brosché,M., Unyayar,S., Boudsocq, M., Hedrich,R., and Roelfsema,M.R. (2015). Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure. New Phytol. 208: 162-173.
|
[78] |
Ha,Y.M., Shang,Y., Yang,D., and Nam, K.H. (2018). Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. Biochem. Bioph. Res. Commun. 504: 143-148.
|
[79] |
Han,J.P., Köster, P., Drerup,M.M., Scholz,M., Li,S.Z., Edel,K.H., Hashimoto, K., Kuchitsu,K., Hippler,M., and Kudla, J. (2019). Fine-tuning of RBOHF activity is achieved by differential phosphorylation and Ca2+ binding. New Phytol. 221: 1935-1949.
|
[80] |
Hara,M., Furukawa, J., Sato,A., Mizoguchi,T., and Miura, K. (2012). Abiotic stress and role of salicylic acid in plants. In Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability. P.Ahmad, M.Prasad, eds., (New York, NY: Springer). pp. 235-251.
|
[81] |
Hashimoto,M., Negi,J., Young,J., Israelsson, M., Schroeder,J.I., and Iba,K. (2006). Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat. Cell Biol. 8: 391-U352.
|
[82] |
Hashimoto-Sugimoto,M., Negi, J., Monda,K., Higaki,T., Isogai, Y., Nakano,T., Hasezawa,S., and Iba, K. (2016). Dominant and recessive mutations in the Raf-like kinase HT1 gene completely disrupt stomatal responses to CO2 in Arabidopsis. J. Exp. Bot. 67: 3251-3261.
|
[83] |
Haubrick,L.L., Torsethaugen, G., and Assmann,S.M. (2006). Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of guard cell protoplasts. Physiol. Plant. 128: 134-143.
|
[84] |
Hayashi,M., Inoue,S.I., Ueno,Y., and Kinoshita, T. (2017). A Raf-like protein kinase BHP mediates blue light-dependent stomatal opening. Sci. Rep. 7: 45586.
|
[85] |
Hayashi,M., Sugimoto, H., Takahashi,H., Seki,M., Shinozaki, K., Sawasaki,T., Kinoshita,T., and Inoue, S.I. (2020). Raf-like kinases CBC1 and CBC2 negatively regulate stomatal opening by negatively regulating plasma membrane H+-ATPase phosphorylation in Arabidopsis. Photochem. Photobiol. Sci. 19: 88-98.
|
[86] |
He,J.J., Zhang,R.X., Kim,D.S., Sun, P., Liu,H.G., Liu,Z.M., Hetherington, A.M., and Liang,Y.K. (2020). ROS of distinct sources and salicylic acid separate elevated CO2-mediated stomatal movements in Arabidopsis. Front. Plant Sci. 11: 542.
|
[87] |
He,J.N., Duan,Y., Hua,D.P., Fan, G.J., Wang,L., Liu,Y., Chen,Z.Z., Han,L.H., Qu, L.J., and Gong,Z.Z. (2012). DEXH Box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell 24: 1815-1833.
|
[88] |
He,R., Su,H.Q., Wang,X., Ren, Z.J., Zhang,K., Feng,T.Y., Zhang,M.C., Li,Z.H., Li, L.G., Zhuang,J.H., et al. (2023). Coronatine promotes maize water uptake by directly binding to the aquaporin ZmPIP2;5 and enhancing its activity. J. Integr. Plant Biol. 65: 703-720.
|
[89] |
Hedrich,R., Busch,H., and Raschke,K. (1990). Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J. 9: 3889-3892.
|
[90] |
Hedrich,R., and Geiger, D. (2017). Biology of SLAC1-type anion channels—From nutrient uptake to stomatal closure. New Phytol. 216: 46-61.
|
[91] |
Hepler,P.K. (2005). Calcium: A central regulator of plant growth and development. Plant Cell 17: 2142-2155.
|
[92] |
Hewage,K.A.H., Yang,J.F., Wang,D., Hao, G.F., Yang,G.F., and Zhu,J.K. (2020). Chemical manipulation of abscisic acid signaling: A new approach to abiotic and biotic stress management in agriculture. Adv. Sci. 7: 2001265.
|
[93] |
Hilal,B., Khan,T.A., and Fariduddin,Q. (2023). Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants. Plant Physiol. Biochem. 196: 1065-1083.
|
[94] |
Hines,K.M., Chaudhari, V., Edgeworth,K.N., Owens,T.G., and Hanson, M.R. (2021) Absence of carbonic anhydrase in chloroplasts affects C3 plant development but not photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 118: e2107425118.
|
[95] |
Hiyama,A., Takemiya, A., Munemasa,S., Okuma,E., Sugiyama, N., Tada,Y., Murata,Y., and Shimazaki, K.I. (2017). Blue light and CO2 signals converge to regulate light-induced stomatal opening. Nat. Commun. 8: 1284.
|
[96] |
Hõrak,H., Sierla, M., Tõldsepp,K., Wang,C., Wang,Y.S., Nuhkat,M., Valk, E., Pechter,P., Merilo,E., Salojärvi, J., et al. (2016). A dominant mutation in the HT1 kinase uncovers roles of MAP kinases and GHR1 in CO2-induced stomatal closure. Plant Cell 28: 2493-2509.
|
[97] |
Hossain,M.A., Munemasa, S., Uraji,M., Nakamura,Y., Mori,I.C., and Murata,Y. (2011). Involvement of endogenous abscisic acid in methyl jasmonate-jnduced stomatal closure in Arabidopsis. Plant Physiol. 156: 430-438.
|
[98] |
Hosy,E., Vavasseur, A., Mouline,K., Dreyer,I., Gaymard, F., Porée,F., Boucherez,J., Lebaudy, A., Bouchez,D., Very,A.A., et al. (2003). The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc. Natl. Acad. Sci. U.S.A. 100: 5549-5554.
|
[99] |
Hou,C.C., Tian,W., Kleist,T., He, K., Garcia,V., Bai,F.L., Hao,Y.L., Luan,S., and Li, L.G. (2014). DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res. 24: 632-635.
|
[100] |
Hou,S.G., Shen,H.X., and Shao,H.W. (2019). PAMP-induced peptide 1 cooperates with salicylic acid to regulate stomatal immunity in Arabidopsis thaliana. Plant Signal. Behav. 14: 1666657.
|
[101] |
Hsu,P.K., Dubeaux, G., Takahashi,Y., and Schroeder,J.I. (2021). Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J. 105: 307-321.
|
[102] |
Hu,H.H., Boisson-Dernier, A., Israelsson-Nordström, M., Böhmer,M., Xue,S.W., Ries,A., Godoski,J., Kuhn, J.M., and Schroeder,J.I. (2010). Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat. Cell Biol. 12: 87-93.
|
[103] |
Hu,Y.Z., Ding,Y.X., Cai,B.Y., Qin, X.H., Wu,J.N., Yuan,M.H., Wan,S.W., Zhao,Y., and Xin, X.F. (2022). Bacterial effectors manipulate plant abscisic acid signaling for creation of an aqueous apoplast. Cell Host Microbe 30: 518-529.
|
[104] |
Hua,D.P., Wang,C., He,J.N., Liao, H., Duan,Y., Zhu,Z.Q., Guo,Y., Chen,Z.Z., and Gong, Z.Z. (2012). A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24: 2546-2561.
|
[105] |
Huang,J., Li,Z.Y., Biener,G., Xiong, E.H., Malik,S., Eaton,N., Zhao,C.Z., Raicu,V., Kong, H.Z., and Zhao,D.Z. (2017). Carbonic anhydrases function in anther cell differentiation downstream of the receptor-like kinase EMS1. Plant Cell 29: 1335-1356.
|
[106] |
Huang,J.J., and Xie, Y.J. (2023). Hydrogen sulfide signaling in plants. Antioxid. Redox Signal. 39: 40-58.
|
[107] |
Huang,S.G., Ding,M.Q., Roelfsema,M.R.G., Dreyer,I., Scherzer, S., Al-Rasheid,K.A.S., Gao,S.Q., Nagel,G., Hedrich,R., and Konrad, K.R. (2021). Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1. Sci. Adv. 7: eabg4619.
|
[108] |
Huang,S.G., Maierhofer, T., Hashimoto,K., Xu,X.Y., Karimi, S.M., Müller,H., Geringer,M.A., Wang,Y., Kudla,J., De Smet, I., et al. (2023a). The CIPK23 protein kinase represses SLAC1-type anion channels in Arabidopsis guard cells and stimulates stomatal opening. New Phytol. 238: 270-282.
|
[109] |
Huang,S.G., Shen,L.K., Roelfsema,M.R.G., Becker,D., and Hedrich, R. (2023b). Light-gated channelrhodopsin sparks proton-induced calcium release in guard cells. Science 382: 1314-1318.
|
[110] |
Huang,S.G., Waadt,R., Nuhkat,M., Kollist, H., Hedrich,R., and Roelfsema,M.R.G. (2019). Calcium signals in guard cells enhance the efficiency by which abscisic acid triggers stomatal closure. New Phytol. 224: 177-187.
|
[111] |
Huang,X.Z., Hou,L.Y., Meng,J.J., You, H.W., Li,Z., Gong,Z.Z., Yang,S.H., and Shi,Y.T. (2018). The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Mol. Plant 11: 970-982.
|
[112] |
Hudeček,M., Nožková, V., Plíhalová, L., and Plíhal,O. (2023). Plant hormone cytokinin at the crossroads of stress priming and control of photosynthesis. Front. Plant Sci. 13: 1103088.
|
[113] |
Huh,S.M., Noh,E.K., Kim,H.G., Jeon, B.W., Bae,K., Hu,H.C., Kwak,J.M., and Park,O.K. (2010). Arabidopsis annexins AnnAt1 and AnnAt4 interact with each other and regulate drought and salt stress responses. Plant Cell Physiol. 51: 1499-1514.
|
[114] |
Imes,D., Mumm,P., Böhm,J., Al-Rasheid,K.A.S., Marten, I., Geiger,D., and Hedrich,R. (2013). Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J. 74: 372-382.
|
[115] |
Inoue,S., Kinoshita, T., Matsumoto,M., Nakayama,K.I., Doi,M., and Shimazaki,K. (2008). Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc. Natl. Acad. Sci. U.S.A. 105: 5626-5631.
|
[116] |
Irigoyen,M.L., Iniesto, E., Rodriguez,L., Puga,M.I., Yanagawa, Y., Pick,E., Strickland,E., Paz-Ares, J., Wei,N., De Jaeger,G., et al. (2014). Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. Plant Cell 26: 712-728.
|
[117] |
Islam,M.M., Hossain, M.A., Jannat,R., Munemasa,S., Nakamura, Y., Mori,I.C., and Murata,Y. (2010). Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA. Plant Cell Physiol. 51: 1721-1730.
|
[118] |
Ito,T., Kondoh, Y., Yoshida,K., Umezawa,T., Shimizu, T., Shinozaki,K., and Osada,H. (2015). Novel abscisic acid antagonists identified with chemical array screening. ChemBioChem 16: 2471-2478.
|
[119] |
Jakobson,L., Vaahtera, L., Tõldsepp,K., Nuhkat,M., Wang,C., Wang,Y.S., Hõrak, H., Valk,E., Pechter,P., Sindarovska, Y., et al. (2016). Natural variation in Arabidopsis Cvi-0 accession reveals an important role of MPK12 in guard cell CO2 signaling. PLoS Biol. 14: e2000322.
|
[120] |
Jammes,F., Hu,H.C., Villiers,F., Bouten, R., and Kwak,J.M. (2011). Calcium-permeable channels in plant cells. FEBS J. 278: 4262-4276.
|
[121] |
Jammes,F., Song,C., Shin,D.J., Munemasa, S., Takeda,K., Gu,D., Cho,D., Lee,S., Giordo, R., Sritubtim,S., et al. (2009). MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc. Natl. Acad. Sci. U.S.A. 106: 20520-20525.
|
[122] |
Jin,Z.P., Xue,S.W., Luo,Y.N., Tian, B.H., Fang,H.H., Li,H., and Pei, Y.X. (2013). Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol. Biochem. 62: 41-46.
|
[123] |
Jones,J.J., Huang,S.G., Hedrich,R., Geilfus, C.M., and Roelfsema,M.R.G. (2022). The green light gap: A window of opportunity for optogenetic control of stomatal movement. New Phytol. 236: 1237-1244.
|
[124] |
Julian,J., Coego,A., Lozano-Juste,J., Lechner,E., Wu,Q., Zhang,X., Merilo, E., Belda-Palazon,B., Park,S.Y., Cutler, S.R., et al. (2019). The MATH-BTB BPM3 and BPM5 subunits of Cullin3-RING E3 ubiquitin ligases target PP2CA and other clade A PP2Cs for degradation. Proc. Natl. Acad. Sci. U.S.A. 116: 15725-15734.
|
[125] |
Katsuta,S., Masuda, G., Bak,H., Shinozawa,A., Kamiyama, Y., Umezawa,T., Takezawa,D., Yotsui, I., Taji,T., and Sakata,Y. (2020). Arabidopsis Raf-like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling. Plant J. 103: 634-644.
|
[126] |
Khokon,M.A.R., Okuma,E., Hossain,M.A., Munemasa,S., Uraji,M., Nakamura,Y., Mori, I.C., and Murata,Y. (2011). Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ. 34: 434-443.
|
[127] |
Khokon,M.A.R., Salam,M.A., Jammes,F., Ye, W.X., Hossain,M.A., Okuma,E., Nakamura, Y., Mori,I.C., Kwak,J.M., and Murata, Y. (2017). MPK9 and MPK12 function in SA-induced stomatal closure in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 81: 1394-1400.
|
[128] |
Kim,T.H., Hauser, F., Ha,T., Xue,S.W., Böhmer, M., Nishimura,N., Munemasa,S., Hubbard, K., Peine,N., Lee,B.H., et al. (2011). Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway. Curr. Biol. 21: 990-997.
|
[129] |
Kinoshita,T., and Hayashi, Y. (2011). New insights into the regulation of stomatal opening by blue light and plasma membrane H+-ATPase. Int. Rev. Cell. Mol. Biol. 289: 89-115.
|
[130] |
Kinoshita,T., Nishimura, M., and Shimazaki,K.I. (1995). Cytosolic concentration of Ca2+ regulates the plasma-membrane H+-ATPase in guard-cells of Fava-Bean. Plant Cell. 7: 1333-1342.
|
[131] |
Kollist,H., Zandalinas, S.I., Sengupta,S., Nuhkat,M., Kangasjärvi, J., and Mittler,R. (2019). Rapid responses to abiotic stress: Priming the landscape for the signal transduction network. Trends Plant Sci. 24: 25-37.
|
[132] |
Kong,L.Y., Liu,Y.N., Zhi,P.F., Wang, X.Y., Xu,B., Gong,Z.Z., and Chang, C. (2020). Origins and evolution of cuticle biosynthetic machinery in land plants. Plant Physiol. 184: 1998-2010.
|
[133] |
Kong,L.Y., Cheng,J.K., Zhu,Y.J., Ding, Y.L., Meng,J.J., Chen,Z.Z., Xie,Q., Guo,Y., Li, J.G., Yang,S.H., et al. (2015). Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nat. Commun. 6: 8630.
|
[134] |
Koo,Y.M., Heo,A.Y., and Choi,H.W. (2020). Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 36: 1-10.
|
[135] |
Kostaki,K.I., Coupel-Ledru, A., Bonnell,V.C., Gustavsson,M., Sun,P., McLaughlin,F.J., Fraser,D.P., McLachlan, D.H., Hetherington,A.M., Dodd,A.N., et al. (2020). Guard cells integrate light and temperature signals to control stomatal aperture. Plant Physiol. 182: 1404-1419.
|
[136] |
Kwak,J.M., Mori,I.C., Pei,Z.M., Leonhardt, N., Torres,M.A., Dangl,J.L., Bloom,R.E., Bodde,S., Jones, J.D.G., and Schroeder,J.I. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22: 2623-2633.
|
[137] |
Lawson,T., and Matthews, J. (2020). Guard cell metabolism and stomatal function. Annu. Rev. Plant Biol. 71: 273-302.
|
[138] |
Lee,S.C., Lan,W., Buchanan,B.B., and Luan,S. (2009). A protein kinase phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc. Natl. Acad. Sci. U.S.A. 106: 21419-21424.
|
[139] |
Lee,Y., Choi,Y.B., Suh,S., Lee, J., Assmann,S.M., Joe,C.O., Kelleher, J.F., and Crain,R.C. (1996). Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia faba. Plant Physiol. 110: 987-996.
|
[140] |
Lehner,F., Coats,S., Stocker,T.F., Pendergrass,A.G., Sanderson, B.M., Raible,C.C., and Smerdon,J.E. (2017). Projected drought risk in 1.5°C and 2°C warmer climates. Geophys. Res. Lett. 44: 7419-7428.
|
[141] |
Li,F.C., Wang,J., Wu,M.M., Fan, C.M., Li,X., and He,J.M. (2017). Mitogen-activated protein kinase phosphatases affect UV-B-induced stomatal closure via controlling NO in guard cells. Plant Physiol. 173: 760-770.
|
[142] |
Li,H.G., Zhang,D.F., Xie,K., Wang, Y., Liao,Q.S., Hong,Y.G., and Liu, Y.L. (2021a). Efficient and high-throughput pseudorecombinant-chimeric Cucumber mosaic virus-based VIGS in maize. Plant Physiol. 187: 2865-2876.
|
[143] |
Li,J.Y., Zhang,C., He,Y.B., Li, S.Y., Yan,L., Li,Y.C., Zhu,Z.W., and Xia,L.Q. (2023). Plant base editing and prime editing: The current status and future perspectives. J. Integr. Plant Biol. 65: 444-467.
|
[144] |
Li,L., Li,B., Zhu,S.R., Wang, L., Song,L.M., Chen,J., Ming,Z.H., Liu,X.M., Li, X.S., and Yu,F. (2021b). TMK4 receptor kinase negatively modulates ABA signaling by phosphorylating ABI2 and enhancing its activity. J. Integr. Plant Biol. 63: 1161-1178.
|
[145] |
Li,X.D., Gao,Y.Q., Wu,W.H., Chen, L.M., and Wang,Y. (2022a). Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. Plant Biotechnol. J. 20: 143-157.
|
[146] |
Li,X.Y., Kong,X.G., Huang,Q., Zhang, Q., Ge,H., Zhang,L., Li,G.M., Peng,L., Liu, Z.B., Wang,J.M., et al. (2019). CARK1 phosphorylates subfamily III members of ABA receptors. J. Exp. Bot. 70: 519-528.
|
[147] |
Li,Y., Wu,X., Zhang,Y., and Zhang, Q. (2022b). CRISPR/Cas genome editing improves abiotic and biotic stress tolerance of crops. Front. Genome Ed. 4: 987817.
|
[148] |
Li,Y., Zhang,L., Li,D.K., Liu, Z.B., Wang,J.M., Li,X.F., and Yang, Y. (2016a). The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signalling by facilitating ABA receptor RCAR3 degradation. Plant Cell Environ. 39: 571-582.
|
[149] |
Li,Z., and Ahammed, G.J. (2023). Salicylic acid and jasmonic acid in elevated CO(2)-induced plant defense response to pathogens. J. Plant Physiol. 286: 154019.
|
[150] |
Li,Z.X., Li,Z., Gao,X., Chinnusamy, V., Bressan,R., Wang,Z.X., Zhu,J.K., Wu,J.W., and Liu, D. (2012). ROP11 GTPase negatively regulates ABA signaling by protecting ABI1 phosphatase activity from inhibition by the ABA receptor RCAR1/PYL9 in Arabidopsis. J. Integr. Plant Biol. 54: 180-188.
|
[151] |
Li,Z.X., Takahashi, Y., Scavo,A., Brandt,B., Nguyen, D., Rieu,P., and Schroeder,J.I. (2018). Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proc. Natl. Acad. Sci. U.S.A. 115: E4522-E4531.
|
[152] |
Li,Z.X., Waadt,R., and Schroeder,J.I. (2016b). Release of GTP exchange factor mediated down-regulation of abscisic acid signal transduction through ABA-induced rapid degradation of RopGEFs. PLoS Biol. 14: e1002461.
|
[153] |
Lim,S.L., Flütsch, S., Liu,J.H., Distefano,L., Santelia, D., and Lim,B.L. (2022). Arabidopsis guard cell chloroplasts import cytosolic ATP for starch turnover and stomatal opening. Nat. Commun. 13: 652.
|
[154] |
Lin,Z., Li,Y., Wang,Y.P., Liu, X.L., Ma,L., Zhang,Z.J., Mu,C., Zhang,Y., Peng, L., Xie,S.J., et al. (2021). Initiation and amplification of SnRK2 activation in abscisic acid signaling. Nat. Commun. 12: 2456.
|
[155] |
Lin,Z., Li,Y., Zhang,Z.J., Liu, X.L., Hsu,C.C., Du,Y.Y., Sang,T., Zhu,C., Wang, Y.B., Satheesh,V., et al. (2020). A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. Nat. Commun. 11: 613.
|
[156] |
Liu,L., Ashraf, M.A., Morrow,T., and Facette,M. (2024). Stomatal closure in maize is mediated by subsidiary cells and the PAN2 receptor. New Phytol. 241: 1130.
|
[157] |
Liu,Q.B., Ding,Y.L., Shi,Y.T., Ma, L., Wang,Y., Song,C.P., Wilkins, K.A., Davies,J.M., Knight,H., Knight, M.R., et al. (2021). The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. EMBO J. 40: e104559.
|
[158] |
Liu,S.T., Liu,S.W., Wang,M., Wei, T.D., Meng,C., Wang,M., and Xia, G.M. (2014). A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity. Plant Cell 26: 164-180.
|
[159] |
Liu,W.X., Zhang,F.C., Zhang,W.Z., Song, L.F., Wu,W.H., and Chen,Y.F. (2013). Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress. Mol. Plant 6: 1487-1502.
|
[160] |
Liu,X.D., Hasan,M.M., and Fang,X.W. (2022a). Phytocytokine SCREWs increase plant immunity through actively reopening stomata. J. Plant Physiol. 279: 153832.
|
[161] |
Liu,Y., Maierhofer, T., Rybak,K., Sklenar,J., Breakspear, A., Johnston,M.G., Fliegmann,J., Huang,S.G., Roelfsema,M.R., Felix,G., et al. (2019). Anion channel SLAH3 is a regulatory target of chitin receptor-associated kinase PBL27 in microbial stomatal closure. eLife 16: e44474.
|
[162] |
Liu,Y.L., and Xiong, Y. (2022). Plant target of rapamycin signaling network: Complexes, conservations, and specificities. J. Integr. Plant Biol. 64: 342-370.
|
[163] |
Liu,Z., Hou,S., Rodrigues,O., Wang,P., Luo,D., Munemasa,S., Lei, J., Liu,J., Ortiz-Morea,F.A., Wang, X., et al. (2022b). Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 605: 332-339.
|
[164] |
Luo,X.J., Chen,Z.Z., Gao,J.P., and Gong, Z.Z. (2014). Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. Plant J. 79: 44-55.
|
[165] |
Ma,S.Y., and Wu, W.H. (2007). AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol. Biol. 65: 511-518.
|
[166] |
Ma,Y., Szostkiewicz, I., Korte,A., Moes,D., Yang,Y., Christmann,A., and Grill,E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324: 1064-1068.
|
[167] |
Mao,H.D., Jian,C., Cheng,X.X., Chen, B., Mei,F.M., Li,F.F., Zhang,Y.F., Li,S.M., Du, L.Y., Li,T., et al. (2022a). The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance and grain yield by increasing water-use efficiency. Plant Biotechnol. J. 20: 846-861.
|
[168] |
Mao,H.D., Li,S.M., Chen,B., Jian, C., Mei,F.M., Zhang,Y.F., Li,F.F., Chen,N., Li, T., Du,L.Y., et al. (2022b). Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Mol. Plant 15: 276-292.
|
[169] |
Marten,H., Hyun,T., Gomi,K., Seo, S., Hedrich,R., and Roelfsema,M.R.G. (2008). Silencing of NtMPK4 impairs CO2-induced stomatal closure, activation of anion channels and cytosolic Casignals in Nicotiana tabacum guard cells. Plant J. 55: 698-708.
|
[170] |
Matthews,J.S.A., Vialet-Chabrand, S., and Lawson,T. (2020). Role of blue and red light in stomatal dynamic behaviour. J. Exp. Bot. 71: 2253-2269.
|
[171] |
Mcelwain,J.C., and Chaloner, W.G. (1995). Stomatal density and index of fossil plants track atmospheric carbon-dioxide in the Paleozoic. Ann. Bot.-London 76: 389-395.
|
[172] |
Mega,R., Abe,F., Kim,J.S., Tsuboi, Y., Tanaka,K., Kobayashi,H., Sakata, Y., Hanada,K., Tsujimoto,H., Kikuchi, J., et al. (2019). Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors. Nat. Plants 5: 153-159.
|
[173] |
Melcher,K., Xu,Y., Ng,L.M., Zhou, X.E., Soon,F.F., Chinnusamy,V., Suino-Powell, K.M., Kovach,A., Tham,F.S., Cutler, S.R., et al. (2010). Identification and mechanism of ABA receptor antagonism. Nat. Struct. Mol. Biol. 17: 1102-1108.
|
[174] |
Melotto,M., Underwood, W., and He,S.Y. (2008). Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46: 101-122.
|
[175] |
Melotto,M., Underwood, W., Koczan,J., Nomura,K., and He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969-980.
|
[176] |
Mendes,K.R., and Marenco, R.A. (2017). Stomatal opening in response to the simultaneous increase in vapor pressure deficit and temperature over a 24-h period under constant light in a tropical rainforest of the central Amazon. Theor. Exp. Plant Phys. 29: 187-194.
|
[177] |
Meyer,S., Mumm,P., Imes,D., Endler, A., Weder,B., Al-Rasheid,K.A.S., Geiger, D., Marten,I., Martinoia,E., and Hedrich, R. (2010). AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J. 63: 1054-1062.
|
[178] |
Miao,C.B., Xiao,L.H., Hua,K., Zou, C.S., Zhao,Y., Bressan,R.A., and Zhu, J.K. (2018). Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc. Natl. Acad. Sci. U.S.A. 115: 6058-6063.
|
[179] |
Miura,K., Okamoto, H., Okuma,E., Shiba,H., Kamada, H., Hasegawa,P.M., and Murata,Y. (2013). SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J. 73: 91-104.
|
[180] |
Montillet,J.L., Leonhardt, N., Mondy,S., Tranchimand,S., Rumeau, D., Boudsocq,M., Garcia,A.V., Douki,T., Bigeard,J., Laurière, C., et al. (2013). An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol. 11: e1001513.
|
[181] |
Mori,I.C., Murata, Y., Yang,Y.Z., Munemasa,S., Wang,Y.F., Andreoli,S., Tiriac, H., Alonso,J.M., Harper,J.F., Ecker,J.R., et al. (2006). CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol. 4: 1749-1762.
|
[182] |
Mori,I.C., Pinontoan, R., Kawano,T., and Muto,S. (2001). Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol. 42: 1383-1388.
|
[183] |
Munemasa,S., Hossain, M.A., Nakamura,Y., Mori,I.C., and Murata, Y. (2011). The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiol. 155: 553-561.
|
[184] |
Munemasa,S., Oda,K., Watanabe-Sugimoto,M., Nakamura,Y., Shimoishi, Y., and Murata,Y. (2007). The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 143: 1398-1407.
|
[185] |
Murata,Y., Pei,Z.M., Mori,I.C., and Schroeder, J. (2001). Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13: 2513-2523.
|
[186] |
Mustilli,A.C., Merlot, S., Vavasseur,A., Fenzi,F., and Giraudat, J. (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14: 3089-3099.
|
[187] |
Nedvěd,D., Hošek, P., Klima,P., and Hoyerová,K. (2021). Differential subcellular distribution of cytokinins: How does membrane transport fit into the big picture? Int. J. Mol. Sci. 22: 3428.
|
[188] |
Negi,J., Matsuda, O., Nagasawa,T., Oba,Y., Takahashi, H., Kawai-Yamada,M., Uchimiya,H., Hashimoto, M., and Iba,K. (2008). CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452: 483-U413.
|
[189] |
Nguyen,K.H., Van Ha, C., Nishiyama,R., Watanabe,Y., Leyva-González, M.A., Fujita,Y., Tran,U.T., Li,W.Q., Tanaka,M., Seki, M., et al. (2016). Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc. Natl. Acad. Sci. U.S.A. 113: 3090-3095.
|
[190] |
Nguyen,Q.T.C., Lee,S.J., Choi,S.W., Na, Y.J., Song,M.R., Hoang,Q.T.N., Sim,S.Y., Kim,M.S., Kim, J.I., Soh,M.S., et al. (2019). Arabidopsis Raf-like kinase Raf10 is a regulatory component of core ABA signaling. Mol. Cells 42: 646-660.
|
[191] |
Nieves-Cordones,M., Azeem, F., Long,Y.C., Boeglin,M., Duby,G., Mouline,K., Hosy, E., Vavasseur,A., Chérel,I., Simonneau, T., et al. (2022). Non-autonomous stomatal control by pavement cell turgor via the K+ channel subunit AtKC1. Plant Cell 34: 2019-2037.
|
[192] |
Nolan,T.M., Vukašinović, N., Liu,D.R., Russinova,E., and Yin, Y.H. (2020). Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32: 295-318.
|
[193] |
Okuma,E., Nozawa, R., Murata,Y., and Miura,K. (2014). Accumulation of endogenous salicylic acid confers drought tolerance to Arabidopsis. Plant Signal. Behav. 9: e28085.
|
[194] |
Pan,W.B., Lin,B.Y., Yang,X.Y., Liu, L.J., Xia,R., Li,J.G., Wu,Y.R., and Xie,Q. (2020). The UBC27-AIRP3 ubiquitination complex modulates ABA signaling by promoting the degradation of ABI1 in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 117: 27694-27702.
|
[195] |
Panchal,S., Chitrakar, R., Thompson,B.K., Obulareddy,N., Roy,D., Hambright,W.S., and Melotto,M. (2016). Regulation of stomatal defense by air relative humidity. Plant Physiol. 172: 2021-2032.
|
[196] |
Panchal,S., and Melotto, M. (2017). Stomate-based defense and environmental cues. Plant Signal. Behav. 12: e1362517.
|
[197] |
Papanatsiou,M., Petersen, J., Henderson,L., Wang,Y., Christie, J.M., and Blatt,M.R. (2019). Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363: 1456-1459.
|
[198] |
Park,S.Y., Fung,P., Nishimura,N., Jensen,D.R., Fujii,H., Zhao,Y., Lumba, S., Santiago,J., Rodrigues,A., Chow,T.F., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324: 1068-1071.
|
[199] |
Park,S.Y., Peterson, F.C., Mosquna,A., Yao,J., Volkman, B.F., and Cutler,S.R. (2015). Agrochemical control of plant water use using engineered abscisic acid receptors. Nature 520: 545-548.
|
[200] |
Pavlů,J., Novák, J., Koukalová,V., Luklová,M., Brzobohatý,B., and Černý, M. (2018). Cytokinin at the crossroads of abiotic stress signalling pathways. Int. J. Mol. Sci. 19: 2450.
|
[201] |
Pei,D., Hua,D.P., Deng,J.P., Wang, Z.F., Song,C.P., Wang,Y., Wang,Y., Qi,J.S., Kollist, H., Yang,S.H., et al. (2022). Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis. Plant Cell 34: 2708-2729.
|
[202] |
Pei,Z.M., Murata, Y., Benning,G., Thomine,S., Klüsener, B., Allen,G.J., Grill,E., and Schroeder, J.I. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731-734.
|
[203] |
Pospíšilová,J. (2003). Participation of phytohormones in the stomatal regulation of gas exchange during water stress. Biol. Plant. 46: 491-506.
|
[204] |
Postiglione,A.E., and Muday, G.K. (2020). The role of ROS homeostasis in ABA-induced guard cell signaling. Front. Plant Sci. 11: 968.
|
[205] |
Postiglione,A.E., and Muday, G.K. (2023). Abscisic acid increases hydrogen peroxide in mitochondria to facilitate stomatal closure. Plant Physiol. 192: 469-487.
|
[206] |
Prodhan,M.Y., Issak,M., Nakamura,T., Munemasa, S., Nakamura,Y., and Murata,Y. (2017). Chitosan signaling in guard cells requires endogenous salicylic acid. Biosci. Biotechnol. Biochem. 81: 1536-1541.
|
[207] |
Prodhan,M.Y., Munemasa, S., Nahar,M.N.E.N., Nakamura,Y., and Murata, Y. (2018). Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway. Plant Physiol. 178: 441-450.
|
[208] |
Qi,J.S., Song,C.P., Wang,B.S., Zhou, J.M., Kangasjärvi,J., Zhu,J.K., and Gong, Z.Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J. Integr. Plant Biol. 60: 805-826.
|
[209] |
Qi,L.J., Shi,Y.T., Terzaghi,W., Yang, S.H., and Li,J.G. (2022). Integration of light and temperature signaling pathways in plants. J. Integr. Plant Biol. 64: 393-411.
|
[210] |
Raghavendra,A.S., Gonugunta, V.K., Christmann,A., and Grill,E. (2010). ABA perception and signalling. Trends Plant Sci. 15: 395-401.
|
[211] |
Raghavendra,A.S., and Reddy, K.B. (1987). Action of proline on stomata differs from that of abscisic-acid, g-substances, or methyl jasmonate. Plant Physiol. 83: 732-734.
|
[212] |
Rao,S.P., Tian,Y.R., Zhang,C., Qin, Y.Z., Liu,M.Q., Niu,S.H., Li,Y., and Chen,J.H. (2023). The JASMONATE ZIM-domain-OPEN STOMATA1 cascade integrates jasmonic acid and abscisic acid signaling to regulate drought tolerance by mediating stomatal closure in poplar. J. Exp. Bot. 74: 443-457.
|
[213] |
Rodrigues,O., Reshetnyak, G., Grondin,A., Saijo,Y., Leonhardt, N., Maurel,C., and Verdoucq,L. (2017). Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. Proc. Natl. Acad. Sci. U.S.A. 114: 9200-9205.
|
[214] |
Roelfsema,M.R., Hanstein, S., Felle,H.H., and Hedrich,R. (2002). CO2 provides an intermediate link in the red light response of guard cells. Plant J. 32: 65-75.
|
[215] |
Roelfsema,M.R., and Hedrich, R. (2002). Studying guard cells in the intact plant: Modulation of stomatal movement by apoplastic factors. New Phytol. 153: 425-431.
|
[216] |
Roelfsema,M.R., Hedrich, R., and Geiger,D. (2012). Anion channels: Master switches of stress responses. Trends Plant Sci. 17: 221-229.
|
[217] |
Ronzier,E., Corratgé-Faillie, C., Sanchez,F., Prado,K., Brière, C., Leonhardt,N., Thibaud,J.B., and Xiong, T.C. (2014). CPK13, a noncanonical Ca2+-dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening. Plant Physiol. 166: 314-U467.
|
[218] |
Roussin-Léveillée,C., Lajeunesse,G., St-Amand, M., Veerapen,V.P., Silva-Martins,G., Nomura, K., Brassard,S., Bolaji,A., He,S.Y., and Moffett,P. (2022). Evolutionarily conserved bacterial effectors hijack abscisic acid signaling to induce an aqueous environment in the apoplast. Cell Host Microbe 30: 489-501.e484.
|
[219] |
Saito,N., Munemasa, S., Nakamura,Y., Shimoishi,Y., Mori,I.C., and Murata,Y. (2008). Roles of RCN1, regulatory a subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant Cell Physiol. 49: 1396-1401.
|
[220] |
Saito,N., Nakamura, Y., Mori,I.C., and Murata,Y. (2009). Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal. Behav. 4: 119-120.
|
[221] |
Sakakibara,H. (2006). Cytokinins: Activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57: 431-449.
|
[222] |
Saleem,M., Fariduddin, Q., and Castroverde,C.D.M. (2021). Salicylic acid: A key regulator of redox signalling and plant immunity. Plant Physiol. Biochem. 168: 381-397.
|
[223] |
Sánchez-Martín,J., Heald,J., Kingston-Smith, A., Winters,A., Rubiales,D., Sanz,M., Mur,L.A., and Prats, E. (2015). A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant Cell Environ. 38: 1434-1452.
|
[224] |
Saruhashi,M., Ghosh,T.K., Arai,K., Ishizaki, Y., Hagiwara,K., Komatsu,K., Shiwa,Y., Izumikawa,K., Yoshikawa,H., Umezawa, T., et al. (2015). Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proc. Natl. Acad. Sci. U.S.A. 112: E6388-E6396.
|
[225] |
Sasaki,T., Mori,I.C., Furuichi,T., Munemasa, S., Toyooka,K., Matsuoka,K., Murata, Y., and Yamamoto,Y. (2010). Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol. 51: 354-365.
|
[226] |
Sato,A., Sato,Y., Fukao,Y., Fujiwara, M., Umezawa,T., Shinozaki,K., Hibi,T., Taniguchi,M., Miyake,H., Goto,D.B., et al. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem. J. 424: 439-448.
|
[227] |
Savchenko,T., Kolla,V.A., Wang,C.Q., Nasafi, Z., Hicks,D.R., Phadungchob,B., Chehab, W.E., Brandizzi,F., Froehlich,J., and Dehesh, K. (2014). Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol. 164: 1151-1160.
|
[228] |
Scherzer,S., Maierhofer, T., Al-Rasheid,K.A.S., Geiger,D., and Hedrich, R. (2012). Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels. Mol. Plant 5: 1409-1412.
|
[229] |
Schroeder,J.I., and Hagiwara, S. (1989). Cytosolic calcium regulates ion channels in the plasma-membrane of Vicia-Faba guard-cells. Nature 338: 427-430.
|
[230] |
Schurer,A., Hegerl, G., Ribes,A., Polson,D., Morice, C., and Tett,S. (2018). Estimating the transient climate response from observed warming. J. Climate 31: 8645-8663.
|
[231] |
Seller,C.A., and Schroeder, J.I. (2023). Distinct guard cell-specific remodeling of chromatin accessibility during abscisic acid- and CO2-dependent stomatal regulation. Proc. Natl. Acad. Sci. U.S.A. 120: e2310670120.
|
[232] |
Seo,J.S., Joo,J., Kim,M.J., Kim, Y.K., Nahm,B.H., Song,S.I., Cheong, J.J., Lee,J.S., Kim,J.K., and Do Choi, Y. (2011). OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J. 65: 907-921.
|
[233] |
Shen,J., Zhang,J., Zhou,M.J., Zhou, H., Cui,B.M., Gotor,C., Romero, L.C., Fu,L., Yang,J., Foyer,C.H., et al. (2020). Persulfidation-based modification of cysteine desulfhydrase and the NADPH Oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell 32: 1000-1017.
|
[234] |
Sheteiwy,M.S., Shao,H., Qi,W., Daly, P., Sharma,A., Shaghaleh,H., Hamoud, Y.A., El-Esawi,M.A., Pan,R., Wan,Q., et al. (2021). Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. J. Sci. Food Agric. 101: 2027-2041.
|
[235] |
Shi,J.R., Gao,H.R., Wang,H.Y., Lafitte, H.R., Archibald,R.L., Yang,M.Z., Hakimi, S.M., Mo,H., and Habben,J.E. (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 15: 207-216.
|
[236] |
Shi,Y., Liu,X.N., Zhao,S.S., and Guo, Y. (2022). The PYR-PP2C-CKL2 module regulates ABA-mediated actin reorganization during stomatal closure. New Phytol. 233: 2168-2184.
|
[237] |
Shields,A., Shivnauth, V., and Castroverde,C.D.M. (2022). Salicylic acid and N-hydroxypipecolic acid at the fulcrum of the plant immunity-growth equilibrium. Front Plant Sci. 13: 841688.
|
[238] |
Siegel,R.S., Xue,S., Murata,Y., Yang, Y., Nishimura,N., Wang,A., and Schroeder, J.I. (2009). Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K channels in Arabidopsis guard cells. Plant J. 59: 207-220.
|
[239] |
Sierla,M., Hõrak, H., Overmyer,K., Waszczak,C., Yarmolinsky, D., Maierhofer,T., Vainonen,J.P., Salojärvi, J., Denessiouk,K., Laanemets,K., et al. (2018). The receptor-like pseudokinase GHR1 is required for stomatal closure. Plant Cell 30: 2813-2837.
|
[240] |
Soma,F., Takahashi, F., Kidokoro,S., Kameoka,H., Suzuki, T., Uga,Y., Shinozaki,K., and Yamaguchi-Shinozaki, K. (2023). Constitutively active B2 Raf-like kinases are required for drought-responsive gene expression upstream of ABA-activated SnRK2 kinases. Proc. Natl. Acad. Sci. U.S.A. 120: e2221863120.
|
[241] |
Soma,F., Takahashi, F., Suzuki,T., Shinozaki,K., and Yamaguchi-Shinozaki, K. (2020). Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress. Nat. Commun. 11: 1373.
|
[242] |
Song,X.G., She,X.P., He,J.M., Huang, C., and Song,T.S. (2006). Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba. Funct. Plant Biol. 33: 573-583.
|
[243] |
Su,J.B., Zhang,M.M., Zhang,L., Sun, T.F., Liu,Y.D., Lukowitz,W., Xu,J., and Zhang,S.Q. (2017). Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell 29: 526-542.
|
[244] |
Suhita,D., Raghavendra, A.S., Kwak,J.M., and Vavasseur,A. (2004). Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 134: 1536-1545.
|
[245] |
Sun,G.L., Xia,M.Z., Li,J.P., Ma, W., Li,Q.Z., Xie,J.J., Bai,S.L., Fang,S.S., Sun, T., Feng,X.L., et al. (2022a). The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. Plant Cell 34: 1890-1911.
|
[246] |
Sun,Z.H., Feng,Z.K., Ding,Y.L., Qi, Y.P., Jiang,S., Li,Z., Wang,Y., Qi,J.S., Song, C.P., Yang,S.H., et al. (2022b). RAF22, ABI1 and OST1 form a dynamic interactive network that optimizes plant growth and responses to drought stress in Arabidopsis. Mol. Plant 15: 1192-1210.
|
[247] |
Sussmilch,F.C., Brodribb, T.J., and McAdam,S.A. (2017). What are the evolutionary origins of stomatal responses to abscisic acid in land plants? J. Integr. Plant Biol. 59: 240-260.
|
[248] |
Takahashi,F., Suzuki, T., Osakabe,Y., Betsuyaku,S., Kondo,Y., Dohmae,N., Fukuda, H., Yamaguchi-Shinozaki,K., and Shinozaki,K. (2018). A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556: 235-238.
|
[249] |
Takahashi,Y., Bosmans, K.C., Hsu,P.K., Paul,K., Seitz,C., Yeh,C.Y., Wang, Y.S., Yarmolinsky,D., Sierla,M., Vahisalu, T., et al. (2022). Stomatal CO2/bicarbonate sensor consists of two interacting protein kinases, Raf-like HT1 and non-kinase-activity activity requiring MPK12/MPK4. Sci. Adv. 8: eabq6161.
|
[250] |
Takahashi,Y., Zhang,J.B., Hsu,P.K., Ceciliato, P.H.O., Zhang,L., Dubeaux,G., Munemasa, S., Ge,C.N., Zhao,Y.D., Hauser, F., et al. (2020). MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nat. Commun. 11: 12.
|
[251] |
Takemiya,A., and Shimazaki, K. (2016). Arabidopsis phot1 and phot2 phosphorylate BLUS1 kinase with different efficiencies in stomatal opening. J. Plant Res. 129: 167-174.
|
[252] |
Takemiya,A., Sugiyama, N., Fujimoto,H., Tsutsumi,T., Yamauchi, S., Hiyama,A., Tada,Y., Christie, J.M., and Shimazaki,K. (2013a). Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat. Commun. 4: 2094.
|
[253] |
Takemiya,A., Yamauchi, S., Yano,T., Ariyoshi,C., and Shimazaki, K. (2013b). Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening. Plant Cell Physiol. 54: 24-35.
|
[254] |
Tan,Y.Q., Yang,Y., Shen,X., Zhu, M.J., Shen,J.L., Zhang,W., Hu,H.H., and Wang,Y.F. (2023). Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. Plant Cell 35: 239-259.
|
[255] |
Tanaka,Y., Sano,T., Tamaoki,M., Nakajima, N., Kondo,N., and Hasezawa,S. (2005). Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 138: 2337-2343.
|
[256] |
Tanaka,Y., Sano,T., Tamaoki,M., Nakajima, N., Kondo,N., and Hasezawa,S. (2006). Cytokinin and auxin inhibit abscisic acid-induced stornatal closure by enhancing ethylene production in Arabidopsis. J. Exp. Bot. 57: 2259-2266.
|
[257] |
Tang,Q., Zheng,X.D., Guo,J., and Yu, T. (2022). Tomato SlPti5 plays a regulative role in the plant immune response against Botrytis cinerea through modulation of ROS system and hormone pathways. J. Integr. Agr. 21: 697-709.
|
[258] |
Thor,K., Jiang,S., Michard,E., George, J., Scherzer,S., Huang,S., Dindas, J., Derbyshire,P., Leitão,N., DeFalco, T.A., et al. (2020). The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 585: 569-573.
|
[259] |
Tian,T., Wang,S.H., Yang,S.P., Yang, Z.R., Liu,S.X., Wang,Y.J., Gao,H.J., Zhang,S.S., Yang, X.H., Jiang,C.F., et al. (2023). Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm. Nat. Genet. 55: 496-506.
|
[260] |
Tian,W., Hou,C.C., Ren,Z.J., Pan, Y.J., Jia,J.J., Zhang,H.W., Bai,F.L., Zhang,P., Zhu, H.F., He,Y.K., et al. (2015). A molecular pathway for CO2 response in Arabidopsis guard cells. Nat. Commun. 6: 6057.
|
[261] |
Tischer,S.V., Wunschel, C., Papacek,M., Kleigrewe,K., Hofmann, T., Christmann,A., and Grill,E. (2017). Combinatorial interaction network of abscisic acid receptors and coreceptors from Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 114: 10280-10285.
|
[262] |
Tõldsepp,K., Zhang, J.B., Takahashi,Y., Sindarovska,Y., Hõrak, H., Ceciliato,P.H.O., Koolmeister,K., Wang,Y.S., Vaahtera,L., Jakobson, L., et al. (2018). Mitogen-activated protein kinases MPK4 and MPK12 are key components mediating CO2-induced stomatal movements. Plant J. 96: 1018-1035.
|
[263] |
Tossi,V., Lamattina, L., Jenkins,G.I., and Cassia,R.O. (2014). Ultraviolet-B-induced stomatal closure in Arabidopsis is regulated by the UV RESISTANCE LOCUS8 photoreceptor in a nitric oxide-dependent mechanism. Plant Physiol. 164: 2220-2230.
|
[264] |
Tran,L.S.P., Urao,T., Qin,F., Maruyama, K., Kakimoto,T., Shinozaki,K., and Yamaguchi-Shinozaki, K. (2007). Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 104: 20623-20628.
|
[265] |
Tsonev,T.D., Lazova, G.N., Stoinova,Z.G., and Popova,L.P. (1998). A possible role for jasmonic acid in adaptation of barley seedlings to salinity stress. J. Plant Growth Regul. 17: 153-159.
|
[266] |
Umezawa,T., Sugiyama, N., Takahashi,F., Anderson,J.C., Ishihama, Y., Peck,S.C., and Shinozaki,K. (2013). Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci. Signal. 6: rs8.
|
[267] |
Urban,J., Ingwers, M.W., McGuire,M.A., and Teskey,R.O. (2017). Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. J. Exp. Bot. 68: 1757-1767.
|
[268] |
Vahisalu,T., Kollist, H., Wang,Y.F., Nishimura,N., Chan,W.Y., Valerio,G., Lamminmäki, A., Brosché,M., Moldau,H., Desikan, R., et al. (2008). SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452: 487-U415.
|
[269] |
Vaidya,A.S., Helander, J.D.M., Peterson,F.C., Elzinga,D., Dejonghe, W., Kaundal,A., Park,S.Y., Xing,Z.N., Mega,R., Takeuchi, J., et al. (2019). Dynamic control of plant water use using designed ABA receptor agonists. Science 366: eaaw8848.
|
[270] |
Vaidya,A.S., Peterson, F.C., Eckhardt,J., Xing,Z.N., Park,S.Y., Dejonghe,W., Takeuchi, J., Pri-Tal,O., Faria,J., Elzinga, D., et al. (2021). Click-to-lead design of a picomolar ABA receptor antagonist with potent activity in vivo. Proc. Natl. Acad. Sci. U.S.A. 118: e2108281118.
|
[271] |
van Butselaar,T., and Van den Ackerveken,G. (2020). Salicylic acid steers the growth-immunity tradeoff. Trends Plant Sci. 25: 566-576.
|
[272] |
van Kleeff,P.J.M., Gao, J., Mol,S., Zwart,N., Zhang,H., Li,K.W., and de Boer, A.H. (2018). The Arabidopsis GORK K+ -channel is phosphorylated by calcium-dependent protein kinase 21 (CPK21), which in turn is activated by 14-3-3 proteins. Plant Physiol. Biochem. 125: 219-231.
|
[273] |
Verslues,P.E., Bailey-Serres, J., Brodersen,C., Buckley,T.N., Conti,L., Christmann,A., Dinneny,J.R., Grill,E., Hayes,S., Heckman, R.W., et al. (2023). Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. Plant Cell 35: 67-108.
|
[274] |
Veselova,S.V., Farkhutdinov, R.G., Veselov,D.S., and Kudoyarova,G.R. (2006). Role of cytokinins in the regulation of stomatal conductance of wheat seedlings under conditions of rapidly changing local temperature. Russ. J. Plant Physiol. 53: 756-761.
|
[275] |
Vicente,M.R.S., and Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. J. Exp. Bot. 62: 3321-3338.
|
[276] |
Vlad,F., Rubio,S., Rodrigues,A., Sirichandra,C., Belin,C., Robert,N., Leung, J., Rodriguez,P.L., Laurière,C., and Merlot, S. (2009). Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21: 3170-3184.
|
[277] |
Vlot,A.C., Dempsey, D.A., and Klessig,D.F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47: 177-206.
|
[278] |
Waadt,R., Hitomi, K., Nishimura,N., Hitomi,C., Adams,S.R., Getzoff,E.D., and Schroeder,J.I. (2014). FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eLife 3: e01739.
|
[279] |
Waadt,R., Seller, C.A., Hsu,P.K., Takahashi,Y., Munemasa, S., and Schroeder,J.I. (2022). Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 23: 680-694.
|
[280] |
Wang,C., Hu,H.H., Qin,X., Zeise, B., Xu,D.Y., Rappel,W.J., Boron,W.F., and Schroeder,J.I. (2016a). Reconstitution of CO2 regulation of SLAC1 anion channel and function of CO2-permeable PIP2;1 aquaporin as CARBONIC ANHYDRASE4 interactor. Plant Cell 28: 568-582.
|
[281] |
Wang,H.L., Wang,Y.B., Sang,T., Lin, Z., Li,R.X., Ren,W.W., Shen,X., Zhao,B., Wang, X., Zhang,X.B., et al. (2023a). Cell type-specific proteomics uncovers a RAF15-SnRK2.6/OST1 kinase cascade in guard cells. J. Integr. Plant Biol. 65: 2122-2137.
|
[282] |
Wang,H.J., Tang,J., Liu,J., Hu, J., Liu,J.J., Chen,Y.X., Cai,Z.Y., and Wang,X.L. (2018a). Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Mol. Plant 11: 315-325.
|
[283] |
Wang,J.Y., Li,C.A., Li,L., Gao, L.F., Hu,G., Zhang,Y.F., Reynolds, M.P., Zhang,X.Y., Jia,J.Z., Mao,X.G., et al. (2023b). DIW1 encoding a clade I PP2C phosphatase negatively regulates drought tolerance by de-phosphorylating TaSnRK1.1 in wheat. J. Integr. Plant Biol. 65: 1918-1936.
|
[284] |
Wang,K., He,J.N., Zhao,Y., Wu, T., Zhou,X.F., Ding,Y.L., Kong,L.Y., Wang,X.J., Wang, Y., Li,J.G., et al. (2018b). EAR1 negatively regulates ABA signaling by enhancing 2C protein phosphatase activity. Plant Cell 30: 815-834.
|
[285] |
Wang,P., Qi,S.J., Wang,X.H., Dou, L.R., Jia,M.A., Mao,T.L., Guo,Y., and Wang,X.F. (2023c). The OPEN STOMATA1-SPIRAL1 module regulates microtubule stability during abscisic acid-induced stomatal closure in Arabidopsis. Plant Cell 35: 260-278.
|
[286] |
Wang,P.C., Du,Y.Y., Hou,Y.J., Zhao, Y., Hsu,C.C., Yuan,F.J., Zhu,X.H., Tao,W.A., Song, C.P., and Zhu,J.K. (2015). Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc. Natl. Acad. Sci. U.S.A. 112: 613-618.
|
[287] |
Wang,P.C., Xue,L., Batelli,G., Lee, S., Hou,Y.J., Van Oosten,M.J., Zhang,H.M., Tao,W.A., and Zhu, J.K. (2013). Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl. Acad. Sci. U.S.A. 110: 11205-11210.
|
[288] |
Wang,P.C., Zhao,Y., Li,Z.P., Hsu, C.C., Liu,X., Fu,L.W., Hou,Y.J., Du,Y., Xie, S.J., Zhang,C.G., et al. (2018c). Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol. Cell 69: 100-112.
|
[289] |
Wang,X.L., Wang,H.W., Liu,S.X., Ferjani, A., Li,J., Yan,J.B., Yang,X.H., and Qin,F. (2016b). Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 48: 1233-1241.
|
[290] |
Wang,X.N., Lv,S., Han,X.Y., Guan, X.J., Shi,X., Kang,J.K., Zhang,L.S., Cao,B., Li, C., Zhang,W., et al. (2019). The calcium-dependent protein kinase CPK33 mediates strigolactone-induced stomatal closure in Arabidopsis thaliana. Front. Plant Sci. 10: 1630.
|
[291] |
Weyers,J.D.B., Fitzsimons, P.J., Mansey,G.M., and Martin,E.S. (1983). Guard-cell protoplasts—Aspects of work with an important new research tool. Physiol. Plant. 58: 331-339.
|
[292] |
Wildermuth,M.C., Dewdney, J., Wu,G., and Ausubel,F.M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562-565.
|
[293] |
Wu,F.H., Chi,Y., Jiang,Z.H., Xu, Y.Y., Xie,L., Huang,F.F., Wan,D., Ni,J., Yuan, F., Wu,X.M., et al. (2020). Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 578: 577-581.
|
[294] |
Wu,J.N., Mei,X., Zhang,J.Y., Ye, L.H., Hu,Y.Z., Chen,T., Wang,Y.P., Liu,M.H., Zhang, Y.J., and Xin,X.F. (2023). CURLY LEAF modulates apoplast liquid water status in Arabidopsis leaves. Plant Physiol. 193: 792-808.
|
[295] |
Wu,Q., Zhang,X., Peirats-Llobet,M., Belda-Palazon,B., Wang, X.F., Cui,S., Yu,X.C., Rodriguez, P.L., and An,C.C. (2016). Ubiquitin ligases RGLG1 and RGLG5 regulate abscisic acid signaling by controlling the turnover of phosphatase PP2CA. Plant Cell 28: 2178-2196.
|
[296] |
Xia,L.Q., Wang,K.J., and Zhu,J.K. (2021). The power and versatility of genome editing tools in crop improvement. J. Integr. Plant Biol. 63: 1591-1594.
|
[297] |
Xin,X.F., Nomura, K., Aung,K., Velásquez,A.C., Yao, J., Boutrot,F., Chang,J.H., Zipfel, C., and He,S.Y. (2016). Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539: 524-529.
|
[298] |
Xing,Q.J., Liao,J.J., Cao,S.X., Li, M., Lv,T.H., and Qi,H.Y. (2020). CmLOX10 positively regulates drought tolerance through jasmonic acid-mediated stomatal closure in oriental melon (Cucumis melo var. makuwa Makino). Sci. Rep. 10: 17452.
|
[299] |
Xue,S.W., Hu,H.H., Ries,A., Merilo, E., Kollist,H., and Schroeder,J.I. (2011). Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J. 30: 1645-1658.
|
[300] |
Yamamoto,Y., Negi,J., Wang,C., Isogai, Y., Schroeder,J.I., and Iba,K. (2016). The transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis. Plant Cell 28: 557-567.
|
[301] |
Yamanaka,T., Nakagawa, Y., Mori,K., Nakano,M., Imamura, T., Kataoka,H., Terashima,A., Iida,K., Kojima,I., Katagiri, T., et al. (2010). MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiol. 152: 1284-1296.
|
[302] |
Yan,S.L., McLamore, E.S., Dong,S.S., Gao,H.B., Taguchi, M., Wang,N.N., Zhang,T., Su,X.H., and Shen,Y.B. (2015). The role of plasma membrane H(+) -ATPase in jasmonate-induced ion fluxes and stomatal closure in Arabidopsis thaliana. Plant J. 83: 638-649.
|
[303] |
Yang,J., He,H., He,Y.M., Zheng, Q.Z., Li,Q.Z., Feng,X., Wang,P.C., Qin,G.C., Gu, Y.T., Wu,P., et al. (2021). TMK1-based auxin signaling regulates abscisic acid responses via phosphorylating ABI1/2 in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 118: e2102544118.
|
[304] |
Yang,J.C., Fei,K.Q., Chen,J., Wang, Z.Q., Zhang,W.Y., and Zhang,J.H. (2020). Jasmonates alleviate spikelet-opening impairment caused by high temperature stress during anthesis of photo-thermo-sensitive genic male sterile rice lines. Food Energy Secur. 9: e233.
|
[305] |
Yang,W.Q., Zhang,W., and Wang,X.X. (2017). Post-translational control of ABA signalling: The roles of protein phosphorylation and ubiquitination. Plant Biotechnol. J. 15: 4-14.
|
[306] |
Yang,Z.R., Cao,Y.B., Shi,Y.T., Qin, F., Jiang,C.F., and Yang,S.H. (2023). Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture. Mol. Plant 16: 1496-1517.
|
[307] |
Yang,Z.R., and Qin, F. (2023). The battle of crops against drought: Genetic dissection and improvement. J. Integr. Plant Biol. 65: 496-525.
|
[308] |
Ye,W.X., Munemasa, S., Shinya,T., Wu,W., Ma,T., Lu,J., Kinoshita, T., Kaku,H., Shibuya,N., and Murata, Y. (2020). Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosan-induced guard cell death. Proc. Natl. Acad. Sci. U.S.A. 117: 20932-20942.
|
[309] |
Ye,Y.J., Zhou,L.J., Liu,X., Liu, H., Li,D.Q., Cao,M.J., Chen,H.F., Xu,L., Zhu, J.K., and Zhao,Y. (2017). A novel chemical inhibitor of ABA signaling targets all ABA receptors. Plant Physiol. 173: 2356-2369.
|
[310] |
Yoshida,R., Hobo,T., Ichimura,K., Mizoguchi, T., Takahashi,F., Aronso,J., Ecker,J.R., and Shinozaki,K. (2002). ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol. 43: 1473-1483.
|
[311] |
Yoshida,R., Umezawa, T., Mizoguchi,T., Takahashi,S., Takahashi, F., and Shinozaki,K. (2006). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281: 5310-5318.
|
[312] |
You,Z., Guo,S.Y., Li,Q., Fang, Y.J., Huang,P.P., Ju,C.F., and Wang, C. (2023). The CBL1/9-CIPK1 calcium sensor negatively regulates drought stress by phosphorylating the PYLs ABA receptor. Nat. Commun. 14: 5886.
|
[313] |
Yu,B., Liu,N., Tang,S.Q., Qin, T., and Huang,J.L. (2022). Roles of glutamate receptor-like channels (GLRs) in plant growth and response to environmental stimuli. Plants 11: 3450.
|
[314] |
Yu,F., Qian,L.C., Nibau,C., Duan, Q.H., Kita,D., Levasseur,K., Li,X.Q., Lu,C.Q., Li, H., Hou,C.C., et al. (2012). FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc. Natl. Acad. Sci. U.S.A. 109: 14693-14698.
|
[315] |
Yu,F.F., Lou,L.J., Tian,M.M., Li, Q.L., Ding,Y.L., Cao,X.Q., Wu,Y.R., Belda-Palazon,B., Rodriguez,P.L., Yang,S.H., et al. (2016). ESCRT-I component VPS23A affects ABA signaling by recognizing ABA receptors for endosomal degradation. Mol. Plant 9: 1570-1582.
|
[316] |
Yuan,F., Yang,H.M., Xue,Y., Kong, D.D., Ye,R., Li,C.J., Zhang,J.Y., Theprungsirikul,L., Shrift,T., Krichilsky, B., et al. (2014). OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514: 367-371.
|
[317] |
Zhan,X.Q., Lu,Y.M., Zhu,J.K., and Botella, J.R. (2021). Genome editing for plant research and crop improvement. J. Integr. Plant Biol. 63: 3-33.
|
[318] |
Zhang,A., Ren,H.M., Tan,Y.Q., Qi, G.N., Yao,F.Y., Wu,G.L., Yang,L.W., Hussain,J., Sun, S.J., and Wang,Y.F. (2016). S-type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis. Plant Cell 28: 949-955.
|
[319] |
Zhang,C., Song,Z.Q., Jin,P.Y., Zhou, X.H., and Zhang,H.J. (2021a). Xylooligosaccharides induce stomatal closure via salicylic acid signaling-regulated reactive oxygen species and nitric oxide production in Arabidopsis. Physiol Plant. 172: 1908-1918.
|
[320] |
Zhang,H.F., Liu,D.Y., Yang,B., Liu, W.Z., Mu,B.B., Song,H.X., Chen,B.Y., Li,Y., Ren, D.T., Deng,H.Q., et al. (2020a). Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABA-responsive element-binding factors. J. Exp. Bot. 71: 188-203.
|
[321] |
Zhang,H.M., Zhu,J.H., Gong,Z.Z., and Zhu, J.K. (2022a). Abiotic stress responses in plants. Nat. Rev. Genet. 23: 104-119.
|
[322] |
Zhang,J., Zhou,M.J., Ge,Z.L., Shen, J., Zhou,C., Gotor,C., Romero, L.C., Duan,X.L., Liu,X., Wu,D.L., et al. (2020b). Abscisic acid-triggered guard cell l-cysteine desulfhydrase function and in situ hydrogen sulfide production contributes to heme oxygenase-modulated stomatal closure. Plant Cell Environ. 43: 624-636.
|
[323] |
Zhang,J.B., De-Oliveira-Ceciliato, P., Takahashi,Y., Schulze,S., Dubeaux, G., Hauser,F., Azoulay-Shemer,T., Tõldsepp, K., Kollist,H., Rappel,W.J., et al. (2018a). Insights into the molecular mechanisms of CO2-mediated regulation of stomatal movements. Curr. Biol. 28: R1356-R13634.
|
[324] |
Zhang,J.B., Wang,N., Miao,Y.L., Hauser, F., McCammon,J.A., Rappel,W.J., and Schroeder, J.I. (2018b). Identification of SLAC1 anion channel residues required for CO2/bicarbonate sensing and regulation of stomatal movements. Proc. Natl. Acad. Sci. U.S.A. 115: 11129-11137.
|
[325] |
Zhang,L., Li,X.Y., Li,D.K., Sun, Y.N., Li,Y., Luo,Q., Liu,Z.B., Wang,J.M., Li, X.F., Zhang,H., et al. (2018c). CARK1 mediates ABA signaling by phosphorylation of ABA receptors. Cell Discov. 4: 30.
|
[326] |
Zhang,M., Zhu,C., Duan,Y.Y., Liu, T.B., Liu,H.P., Su,C., and Lu, Y. (2022b). Theintrinsically disordered region from PP2C phosphatases functions as a conserved CO2 sensor. Nat. Cell Biol. 24: 1029-1037.
|
[327] |
Zhang,M.X., Wang,Y., Chen,X., Xu, F.Y., Ding,M., Ye,W.X., Kawai,Y., Toda,Y., Hayashi, Y., Suzuki,T., et al. (2021b). Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis. Nat. Commun. 12: 735.
|
[328] |
Zhang,S.S., Cai,Z.Y., Wang,X.L. (2009a). The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl. Acad. Sci. U.S.A. 106: 4543-4548.
|
[329] |
Zhang,Y.L., and Li, X. (2019). Salicylic acid: Biosynthesis, perception, and contributions to plant immunity. Curr. Opin. Plant Biol. 50: 29-36.
|
[330] |
Zhang,Y.Q., Berman, A., and Shani,E. (2023). Plant hormone transport and localization: Signaling molecules on the move. Annu. Rev. Plant Biol. 74: 453-479.
|
[331] |
Zhang,Y.Y., Zhu,H.Y., Zhang,Q., Li, M.Y., Yan,M., Wang,R., Wang,L.L., Welti,R., Zhang, W.H., and Wang,X.M. (2009b). Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21: 2357-2377.
|
[332] |
Zhao,J.F., Zhao,L.L., Zhang,M., Zafar, S.A., Fang,J.J., Li,M., Zhang,W.H., and Li,X.Y. (2017). Arabidopsis E3 ubiquitin ligases PUB22 and PUB23 negatively regulate drought tolerance by targeting ABA receptor PYL9 for degradation. Int. J. Mol. Sci. 18: 1841.
|
[333] |
Zhao,M.C., Zhang,Q., Liu,H., Tang, S., Shang,C.Y., Zhang,W., Sui,Y., Zhang,Y.X., Zheng, C.Y., Zhang,H., et al. (2023). The osmotic stress-activated receptor-like kinase DPY1 mediates SnRK2 kinase activation and drought tolerance in Setaria. Plant Cell 35: 3782-3808.
|
[334] |
Zheng,Z.L., Nafisi, M., Tam,A., Li,H., Crowell, D.N., Chary,S.N., Schroeder,J.I., Shen,J.J., and Yang,Z.B. (2002). Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell 14: 2787-2797.
|
[335] |
Zhou,M.J., Zhang,J., Shen,J., Zhou, H., Zhao,D.D., Gotor,C., Romero, L.C., Fu,L., Li,Z.M., Yang,J., et al. (2021). Hydrogen sulfide-linked persulfidation of ABI4 controls ABA responses through the transactivation of MAPKKK18 in Arabidopsis. Mol. Plant 14: 921-936.
|
[336] |
Zhu,S.Y., Yu,X.C., Wang,X.J., Zhao, R., Li,Y., Fan,R.C., Shang,Y., Du,S.Y., Wang, X.F., Wu,F.Q., et al. (2007). Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19: 3019-3036.
|
[337] |
Zou,J.J., Li,X.D., Ratnasekera,D., Wang,C., Liu,W.X., Song,L.F., Zhang, W.Z., and Wu,W.H. (2015). Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27: 1445-1460.
|
[338] |
Zou,J.J., Wei,F.J., Wang,C., Wu, J.J., Ratnasekera,D., Liu,W.X., and Wu, W.H. (2010). Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol. 154: 1232-1243.
|
/
〈 | 〉 |