Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development
Pengtao Wang, Wen-Cheng Liu, Chao Han, Situ Wang, Ming-Yi Bai, Chun-Peng Song
Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
abiotic stress / growth and development / plant / reactive oxygen species
[1] |
Abdallah, S.B., Aung, B., Amyot, L., Lalin, I., Lachaal, M., Karray-Bouraoui, N., and Hannoufa, A. (2016). Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol. Plant. 38: 72.
|
[2] |
Aichinger, E., Kornet, N., Friedrich, T., and Laux, T. (2012). Plant stem cell niches. Annu. Rev. Plant Biol. 63: 615-636.
|
[3] |
Akter, S., Fu, L., Jung, Y., Conte, M.L., Lawson, J.R., Lowther, W.T., Sun, R., Liu, K., Yang, J., and Carroll, K.S. (2018). Chemical proteomics reveals new targets of cysteine sulfinic acid reductase. Nat. Chem. Biol. 14: 995-1004.
|
[4] |
Anjum, N.A., Amreen
|
[5] |
Apel, K., and Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399.
|
[6] |
Asaeda, T., Rahman, M., Vamsi-Krishna, L., Schoelynck, J., and Rashid, M.H. (2022). Measurement of foliar H2O2 concentration can be an indicator of riparian vegetation management. Sci. Rep. 12: 13803.
|
[7] |
Babbar, R., Karpinska, B., Grover, A., and Foyer, C.H. (2021). Heat-induced oxidation of the nuclei and cytosol. Front. Plant Sci. 11: 617779.
|
[8] |
Babenko, L.M., Shcherbatiuk, M.M., Skaterna, T.D., and Kosakivska, I.V. (2017). Lipoxygenases and their metabolites in formation of plant stress tolerance. Ukr. Biochem. J. 89: 5-21.
|
[9] |
Bailly, C. (2019). The signalling role of ROS in the regulation of seed germination and dormancy. Biochem. J. 476: 3019-3032.
|
[10] |
Bajwa, V.S., Shukla, M.R., Sherif, S.M., Murch, S.J.and Saxena, P.K. (2014). Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J. Pineal Res. 56: 238-245.
|
[11] |
Barreto, P., Yassitepe, J.E.C.T., Wilson, Z.A., and Arruda, P. (2017). Mitochondrial uncoupling protein 1 overexpression increases yield in Nicotiana tabacum under drought stress by improving source and sink metabolism. Front. Plant Sci. 8: 1836.
|
[12] |
Baxter, A., Mittler, R.and Suzuki, N. (2014). ROS as key players in plant stress signalling. J. Exp. Bot. 65: 1229-1240.
|
[13] |
Ben Rejeb, K., Lefebvre-De Vos, D., Le Disquet, I., Leprince, A.S., Bordenave, M., Maldiney, R., Jdey, A., Abdelly, C., and Savouré, A. (2015). Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana. New Phytol. 208: 1138-1148.
|
[14] |
Bela, K., Horváth, E., Gallé, Á., Szabados, L., Tari, I., and Csiszár, J. (2015). Plant glutathione peroxidases: Emerging role of the antioxidant enzymes in plant development and stress responses. J. Plant Physiol. 176: 192-201.
|
[15] |
Belousov, V.V., Fradkov, A.F., Lukyanov, K.A., Staroverov, D.B., Shakhbazov, K.S., Terskikh, A.V., and Lukyanov, S. (2006). Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3: 281-286.
|
[16] |
Bewley, J.D. (1997). Seed germination and dormancy. Plant Cell 9: 1055-1066.
|
[17] |
Bi, G., Hu, M., Fu, L., Zhang, X., Zuo, J., Li, J., Yang, J., and Zhou, J.M. (2022). The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H2O2 that regulates plant immunity through a redox relay. Nat. Plants 8: 1160-1175.
|
[18] |
Bodra, N., Young, D., Rosado, L.A., Pallo, A., Wahni, K., De Proft, F., Huang, J., Van Breusegem, F., and Messens, J. (2017). Erratum: Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis. Sci. Rep. 7: 46896.
|
[19] |
Bourdais, G., Burdiak, P., Gauthier, A., Nitsch, L., Salojärvi, J., Rayapuram, C., Idänheimo, N., Hunter, K., Kimura, S., Merilo, E., et al. (2015). Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress. PLoS Genet. 11: e1005373.
|
[20] |
Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M., and Simon, R. (2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289: 617-619.
|
[21] |
Buchanan, B.B., and Balmer, Y. (2005). Redox regulation: A broadening horizon. Annu. Rev. Plant Biol. 56: 187-220.
|
[22] |
Castro, B., Citterico, M., Kimura, S., Stevens, D.M., Wrzaczek, M., and Coaker, G. (2021). Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nat. Plants 7: 403-412.
|
[23] |
Chan, K.X., Phua, S.Y., Crisp, P., McQuinn, R., and Pogson, B.J. (2016). Learning the languages of the chloroplast: Retrograde signaling and beyond. Annu. Rev. Plant Biol. 67: 25-53.
|
[24] |
Chen, D., Shao, Q., Yin, L., Younis, A., and Zheng, B. (2019). Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 9: 1945.
|
[25] |
Chen, S., Liu, A., Zhang, S., Li, C., Chang, R., Liu, D., Ahammed, G.J., and Lin, X. (2013). Overexpression of mitochondrial uncoupling protein conferred resistance to heat stress and Botrytis cinerea infection in tomato. Plant Physiol. Biochem. 73: 245-253.
|
[26] |
Choudhury, F.K., Rivero, R.M., Blumwald, E., and Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. Plant J. 90: 856-867.
|
[27] |
Chung, J.S., Zhu, J.K., Bressan, R.A., Hasegawa, P.M., and Shi, H. (2008). Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis. Plant J. 53: 554-565.
|
[28] |
Corpas, F.J. (2015). What is the role of hydrogen peroxide in plant peroxisomes? Plant Biol. 17: 1099-1103.
|
[29] |
Corpas, F.J., González-Gordo, S., and Palma, J.M. (2020). Plant peroxisomes: A factory of reactive species. Front. Plant Sci. 11: 853.
|
[30] |
Czarnocka, W., and Karpiński, S. (2018). Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic. Biol. Med. 122: 4-20.
|
[31] |
Dang, T.V.T., Lee, S., Cho, H., Choi, K., and Hwang, I. (2023). The LBD11-ROS feedback regulatory loop modulates vascular cambium proliferation and secondary growth in Arabidopsis. Mol. Plant 16: 1131-1145.
|
[32] |
Daudi, A., Cheng, Z., O'Brien, J.A., Mammarella, N., Khan, S., Ausubel, F.M., and Bolwell, G.P. (2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24: 275-287.
|
[33] |
DeLeon, E.R., Gao, Y., Huang, E., Arif, M., Arora, N., Divietro, A., Patel, S., and Olson, K.R. (2016). A case of mistaken identity: Are reactive oxygen species actually reactive sulfide species? Am. J. Physiol. Regul. Integr. Comp. Physiol. 310: R549-R560.
|
[34] |
Del Río, L.A., and López-Huertas, E. (2016). ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol. 57: 1364-1376.
|
[35] |
Deutsch, J.C. (2000). Dehydroascorbic acid. J. Chromatogr. A 881: 299-307.
|
[36] |
Dickinson, P.J., Kumar, M., Martinho, C., Yoo, S.J., Lan, H., Artavanis, G., Charoensawan, V., Schöttler, M.A., Bock, R., Jaeger, K.E., et al. (2018). Chloroplast signaling gates thermotolerance in Arabidopsis. Cell Rep. 22: 1657-1665.
|
[37] |
Dietz, K.J. (2003). Plant peroxiredoxins. Annu. Rev. Plant Biol. 54: 93-107.
|
[38] |
Dinneny, J.R., and Benfey, P.N. (2008). Plant stem cell niches: Standing the test of time. Cell 132: 553-557.
|
[39] |
Dogra, V., Li, M., Singh, S., Li, M., and Kim, C. (2019). Oxidative post-translational modification of EXECUTER1 is required for singlet oxygen sensing in plastids. Nat. Commun. 10: 2834.
|
[40] |
Dogra, V., Rochaix, J.D., and Kim, C. (2018). Singlet oxygen-triggered chloroplast-to-nucleus retrograde signalling pathways: An emerging perspective. Plant Cell Environ. 41: 1727-1738.
|
[41] |
Dogra, V., Singh, R.M., Li, M., Li, M., Singh, S., and Kim, C. (2022). EXECUTER2 modulates the EXECUTER1 signalosome through its singlet oxygen-dependent oxidation. Mol. Plant 15: 438-453.
|
[42] |
Duan, Q., Kita, D., Johnson, E.A., Aggarwal, M., Gates, L., Wu, H.M., and Cheung, A.Y. (2014). Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 5: 3129.
|
[43] |
Duan, Q., Kita, D., Li, C., Cheung, A.Y., and Wu, H.M. (2010). FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc. Natl. Acad. Sci. U.S.A. 107: 17821-17826.
|
[44] |
Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., and Jaćević, V. (2021). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 11: 552969.
|
[45] |
Eltayeb, A.E., Kawano, N., Badawi, G.H., Kaminaka, H., Sanekata, T., Shibahara, T., Inanaga, S., and Tanaka, K. (2007). Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225: 1255-1264.
|
[46] |
Exposito-Rodriguez, M., Laissue, P.P., Yvon-Durocher, G., Smirnoff, N., and Mullineaux, P.M. (2017). Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat. Commun. 8: 49.
|
[47] |
Fichman, Y., Zandalinas, S.I., Peck, S., Luan, S., and Mittler, R. (2022). HPCA1 is required for systemic reactive oxygen species and calcium cell-to-cell signaling and plant acclimation to stress. Plant Cell 34: 4453-4471.
|
[48] |
Foyer, C.H., and Hanke, G. (2022). ROS production and signalling in chloroplasts: Cornerstones and evolving concepts. Plant J. 111: 642-661.
|
[49] |
Foyer, C.H., Bloom, A.J., Queval, G., and Noctor, G. (2009). Photorespiratory metabolism: Genes, mutants, energetics, and redox signaling. Annu. Rev. Plant Biol. 60: 455-484.
|
[50] |
Fu, H., and Yang, Y. (2023). How plants tolerate salt stress. Curr. Issues Mol. Biol. 45: 5914-5934.
|
[51] |
Fu, Z.W., Feng, Y.R., Gao, X., Ding, F., Li, J.H., Yuan, T.T., and Lu, Y.T. (2023). Salt stress-induced chloroplastic hydrogen peroxide stimulates pdTPI sulfenylation and methylglyoxal accumulation. Plant Cell 35: 1593-1616.
|
[52] |
Fujii, H., Verslues, P.E., and Zhu, J.K. (2011). Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc. Natl. Acad. Sci. U.S.A. 108: 1717-1722.
|
[53] |
Gao, H., Cui, J., Liu, S., Wang, S., Lian, Y., Bai, Y., Zhu, T., Wu, H., Wang, Y., Yang, S., et al. (2022). Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize. Mol. Plant 15: 1558-1574.
|
[54] |
Geigenberger, P., Thormählen, I., Daloso, D.M., and Fernie, A.R. (2017). The unprecedented versatility of the plant thioredoxin system. Trends Plant Sci. 22: 249-262.
|
[55] |
Giesguth, M., Sahm, A., Simon, S., and Dietz, K.J. (2015). Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS Lett. 589: 718-725.
|
[56] |
Gill, S.S., Anjum, N.A., Hasanuzzaman, M., Gill, R., Trivedi, D.K., Ahmad, I., Pereira, E., and Tuteja, N. (2013). Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 70: 204-212.
|
[57] |
Gleason, C., Huang, S., Thatcher, L.F., Foley, R.C., Anderson, C.R., Carroll, A.J., Millar, A.H., and Singh, K.B. (2011). Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense. Proc. Natl. Acad. Sci. U.S.A. 108: 10768-10773.
|
[58] |
Golldack, D., Li, C., Mohan, H., and Probst, N. (2014). Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 5: 151.
|
[59] |
Gomes, A., Fernandes, E., and Lima, J.L. (2005). Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 65: 45-80.
|
[60] |
Gomez, J.F., Talle, B., and Wilson, Z.A. (2015). Anther and pollen development: A conserved developmental pathway. J. Integr. Plant Biol. 57: 876-891.
|
[61] |
Gorpenchenko, T.Y., Veremeichik, G.N., Shkryl, Y.N., Yugay, Y.A., Grigorchuk, V.P., Bulgakov, D.V., Rusapetova, T.V., Vereshchagina, Y.V., Mironova, A.A., Subbotin, E.P., et al. (2023). Suppression of the HOS1 gene affects the level of ROS depending on light and cold. Life 13: 524.
|
[62] |
Goyer, A., Johnson, T.L., Olsen, L.J., Collakova, E., Shachar-Hill, Y., Rhodes, D., and Hanson, A.D. (2004). Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis. J. Biol. Chem. 279: 16947-16953.
|
[63] |
Graças, J.P., Ranocha, P., Vitorello, V.A., Savelli, B., Jamet, E., Dunand, C., and Burlat, V. (2020). The class III peroxidase encoding gene AtPrx62 positively and spatiotemporally regulates the low pH-induced cell death in Arabidopsis thaliana roots. Int. J. Mol. Sci. 21: 7191.
|
[64] |
Gudesblat, G.E., Schneider-Pizon, J., Betti, C., Mayerhofer, J., Vanhoutte, I., van Dongen, W., Boeren, S., Zhiponova, M., de Vries, S., Jonak, C., et al. (2012). SPEECHLESS integrates brassinosteroid and stomata signalling pathways. Nat. Cell Biol. 14: 548-554.
|
[65] |
Haider, S., Iqbal, J., Naseer, S., Yaseen, T., Shaukat, M., Bibi, H., Ahmad, Y., Daud, H., Abbasi, N.L., and Mahmood, T. (2021). Molecular mechanisms of plant tolerance to heat stress: Current landscape and future perspectives. Plant Cell Rep. 40: 2247-2271.
|
[66] |
Han, C., Liu, Y., Shi, W., Qiao, Y., Wang, L., Tian, Y., Fan, M., Deng, Z., Lau, O.S., De Jaeger, G., et al. (2020). KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor. Nat. Commun. 11: 4214.
|
[67] |
Han, Z., Liang, X., Ren, X., Shang, L., and Yin, Z. (2016). A 3,7-Dihydroxyphenoxazine-based fluorescent probe for selective detection of intracellular hydrogen peroxide. Chem. Asian J. 11: 818-822.
|
[68] |
Hao, W., Guo, H., Zhang, J., Hu, G., Yao, Y., and Dong, J. (2014). Hydrogen peroxide is involved in salicylic acid-elicited rosmarinic acid production in Salvia miltiorrhiza cell cultures. Sci. World J. 2014: 843764.
|
[69] |
Hasanuzzaman, M., Bhuyan, M.H.M.B., Parvin, K., Bhuiyan, T.F., Anee, T.I., Nahar, K., Hossen, M.S., Zulfiqar, F., Alam, M.M., and Fujita, M. (2020a). Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. Int. J. Mol. Sci. 21: 8695.
|
[70] |
Hasanuzzaman, M., Bhuyan, M.H.M.B., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fujita, M., and Fotopoulos, V. (2020b). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9: 681.
|
[71] |
He, F., Niu, M.X., Feng, C.H., Li, H.G., Su, Y., Su, W.L., Pang, H., Yang, Y., Yu, X., Wang, H.L., et al. (2020). PeSTZ1 confers salt stress tolerance by scavenging the accumulation of ROS through regulating the expression of PeZAT12 and PeAPX2 in Populus. Tree Physiol. 40: 1292-1311.
|
[72] |
He, N.Y., Chen, L.S., Sun, A.Z., Zhao, Y., Yin, S.N., and Guo, F.Q. (2022). A nitric oxide burst at the shoot apex triggers a heat-responsive pathway in Arabidopsis. Nat. Plants 8: 434-450.
|
[73] |
Heyno, E., Mary, V., Schopfer, P., and Krieger-Liszkay, A. (2011). Oxygen activation at the plasma membrane: Relation between superoxide and hydroxyl radical production by isolated membranes. Planta 234: 35-45.
|
[74] |
Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., and Matsui, H. (2001). A large family of class III plant peroxidases. Plant Cell Physiol. 42: 462-468.
|
[75] |
Hu, Z., Li, J., Ding, S., Cheng, F., Li, X., Jiang, Y., Yu, J., Foyer, C.H., and Shi, K. (2021). The protein kinase CPK28 phosphorylates ascorbate peroxidase and enhances thermotolerance in tomato. Plant Physiol. 186: 1302-1317.
|
[76] |
Hua, D., Wang, C., He, J., Liao, H., Duan, Y., Zhu, Z., Guo, Y., Chen, Z., and Gong, Z. (2012). A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24: 2546-2561.
|
[77] |
Huang, J., Yang, L., Yang, L., Wu, X., Cui, X., Zhang, L., Hui, J., Zhao, Y., Yang, H., Liu, S., et al. (2023). Stigma receptors control intraspecies and interspecies barriers in Brassicaceae. Nature 614: 303-308.
|
[78] |
Huang, L., Liu, Y., Wang, X., Jiang, C., Zhao, Y., Lu, M., and Zhang, J. (2022). Peroxisome-mediated reactive oxygen species signals modulate programmed cell death in plants. Int. J. Mol. Sci. 23: 10087.
|
[79] |
Huang, X., Chen, S., Li, W., Tang, L., Zhang, Y., Yang, N., Zou, Y., Zhai, X., Xiao, N., Liu, W., et al. (2021). ROS regulated reversible protein phase separation synchronizes plant flowering. Nat. Chem. Biol. 17: 549-557.
|
[80] |
Idänheimo, N., Gauthier, A., Salojärvi, J., Siligato, R., Brosché, M., Kollist, H., Mähönen, A.P., Kangasjärvi, J., and Wrzaczek, M. (2014). The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress. Biochem. Biophys. Res. Commun. 445: 457-462.
|
[81] |
Ishibashi, Y., Aoki, N., Kasa, S., Sakamoto, M., Kai, K., Tomokiyo, R., Watabe, G., Yuasa, T., and Iwaya-Inoue, M. (2017). The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination. Front. Plant Sci. 8: 275.
|
[82] |
Jacobowitz, J.R., Doyle, W.C., and Weng, J.K. (2019). PRX9 and PRX40 are extensin peroxidases essential for maintaining tapetum and microspore cell wall integrity during Arabidopsis anther development. Plant Cell 31: 848-861.
|
[83] |
Janků, M., Luhová, L., and Petřivalský, M. (2019). On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants 8: 105.
|
[84] |
Jeevan Kumar, S.P., Rajendra Prasad, S., Banerjee, R., and Thammineni, C. (2015). Seed birth to death: Dual functions of reactive oxygen species in seed physiology. Ann. Bot. 116: 663-668.
|
[85] |
Jiang, C., Belfield, E.J., Mithani, A., Visscher, A., Ragoussis, J., Mott, R., Smith, J.A., and Harberd, N.P. (2012). ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. EMBO J. 31: 4359-4370.
|
[86] |
Jiang, M., and Zhang, J. (2001). Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol. 42: 1265-1273.
|
[87] |
Kálai, T., Hideg, E., Vass, I., and Hideg, K. (1998). Double (fluorescent and spin) sensors for detection of reactive oxygen species in the thylakoid membrane. Free Radic. Biol. Med. 24: 649-652.
|
[88] |
Kalyanaraman, B., Darley-Usmar, V., Davies, K.J., Dennery, P.A., Forman, H.J., Grisham, M.B., Mann, G.E., Moore, K., Roberts, 2nd, L.J., and Ischiropoulos, H. (2012). Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic. Biol. Med. 52: 1-6.
|
[89] |
Kaur, R., and Anastasio, C. (2017). Light absorption and the photoformation of hydroxyl radical and singlet oxygen in fog waters. Atmos. Environ. 164: 387-397.
|
[90] |
Kaya, H., Iwano, M., Takeda, S., Kanaoka, M.M., Kimura, S., Abe, M., and Kuchitsu, K. (2015). Apoplastic ROS production upon pollination by RbohH and RbohJ in Arabidopsis. Plant Signal. Behav. 10: e989050.
|
[91] |
Khorshidi, M., and Nojavan, A. (2006). The effects of abscisic acid and CaCl2 on the activities of antioxidant enzymes under cold stress in maize seedlings in the dark. Pak. J. Biol. Sci. 9: 54-59.
|
[92] |
Kim, C., Meskauskiene, R., Apel, K., and Laloi, C. (2008). No single way to understand singlet oxygen signalling in plants. EMBO Rep. 9: 435-439.
|
[93] |
Kim, S.C., Guo, L., and Wang, X. (2020). Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress. Nat. Commun. 11: 3439.
|
[94] |
Kim, T.W., Michniewicz, M., Bergmann, D.C., and Wang, Z.Y. (2012). Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482: 419-422.
|
[95] |
Kimura, S., Waszczak, C., Hunter, K., and Wrzaczek, M. (2017). Bound by fate: The role of reactive oxygen species in receptor-like kinase signaling. Plant Cell 29: 638-654.
|
[96] |
Kong, X., Tian, H., Yu, Q., Zhang, F., Wang, R., Gao, S., Xu, W., Liu, J., Shani, E., Fu, C., et al. (2018). PHB3 maintains root stem cell niche identity through ROS-responsive AP2/ERF transcription factors in Arabidopsis. Cell Rep. 22: 1350-1363.
|
[97] |
Königshofer, H., Tromballa, H.W., and Löppert, H.G. (2008). Early events in signalling high-temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production. Plant Cell Environ. 31: 1771-1780.
|
[98] |
Koornneef, M., Bentsink, L., and Hilhorst, H. (2002). Seed dormancy and germination. Curr. Opin. Plant Biol. 5: 33-36.
|
[99] |
Kopeć, P., Rapacz, M., and Arora, R. (2022). Post-translational activation of CBF for inducing freezing tolerance. Trends Plant Sci. 27: 415-417.
|
[100] |
Kovtun, Y., Chiu, W.L., Tena, G., and Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. U.S.A. 97: 2940-2945.
|
[101] |
Krasnovsky, Jr., A.A. (1998). Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies. Membr. Cell Bio. 12: 665-690.
|
[102] |
Krieger-Liszkay, A., Fufezan, C., and Trebst, A. (2008). Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 98: 551-564.
|
[103] |
Kruk, J., and Szymańska, R. (2021). Singlet oxygen oxidation products of carotenoids, fatty acids and phenolic prenyllipids. J. Photochem. Photobiol. B 216: 112148.
|
[104] |
Lan, X., Yang, J., Abhinandan, K., Nie, Y., Li, X., Li, Y., and Samuel, M.A. (2017). Flavonoids and ROS play opposing roles in mediating pollination in ornamental kale (Brassica oleracea var. acephala). Mol. Plant 10: 1361-1364.
|
[105] |
Larkindale, J., Hall, J.D., Knight, M.R., and Vierling, E. (2005). Heat stress phenotypes of arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138: 882-897.
|
[106] |
Lassig, R., Gutermuth, T., Bey, T.D., Konrad, K.R., and Romeis, T. (2014). Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J. 78: 94-106.
|
[107] |
Lawson, T., and Matthews, J. (2020). Guard cell metabolism and stomatal function. Annu. Rev. Plant Biol. 71: 273-302.
|
[108] |
Le Deunff, E., Davoine, C., Le Dantec, C., Billard, J.P., and Huault, C. (2004). Oxidative burst and expression of germin/oxo genes during wounding of ryegrass leaf blades: Comparison with senescence of leaf sheaths. Plant J. 38: 421-431.
|
[109] |
Lee J., Nguyen H. H., Park Y., Lin J., Hwang I. (2022) Spatial regulation of RBOHD via AtECA4-mediated recycling and clathrin-mediated endocytosis contributes to ROS accumulation during salt stress response but not flg22-induced immune response. Plant J. 109: 816-830
|
[110] |
Lee, Y., Rubio, M.C., Alassimone, J., and Geldner, N. (2013). A mechanism for localized lignin deposition in the endodermis. Cell 153: 402-412.
|
[111] |
Lee, Y., Yoon, T.H., Lee, J., Jeon, S.Y., Lee, J.H., Lee, M.K., Chen, H., Yun, J., Oh, S.Y., Wen, X., et al. (2018). A lignin molecular brace controls precision processing of cell walls critical for surface integrity in Arabidopsis. Cell 173: 1468-1480.
|
[112] |
Leister, D. (2019). Piecing the puzzle together: The central role of reactive oxygen species and redox hubs in chloroplast retrograde signaling. Antioxid. Redox. Signal. 30: 1206-1219.
|
[113] |
Li, G., Li, J., Hao, R., and Guo, Y. (2017). Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6CII. J. Genet. Genomics 44: 395-404.
|
[114] |
Li, J., Liu, J., Wang, G., Cha, J.Y., Li, G., Chen, S., Li, Z., Guo, J., Zhang, C., Yang, Y., et al. (2015a). A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis. Plant Cell 27: 908-925.
|
[115] |
Li, N., Sun, L., Zhang, L., Song, Y., Hu, P., Li, C., and Hao, F.S. (2015b). AtrbohD and AtrbohF negatively regulate lateral root development by changing the localized accumulation of superoxide in primary roots of Arabidopsis. Planta 241: 591-602.
|
[116] |
Li, W., Niu, Y., Zheng, Y., and Wang, Z. (2022). Advances in the understanding of reactive oxygen species-dependent regulation on seed dormancy, germination, and deterioration in crops. Front. Plant Sci. 13: 826809.
|
[117] |
Li, Z., Wakao, S., Fischer, B.B., and Niyogi, K.K. (2009). Sensing and responding to excess light. Annu. Rev. Plant Biol. 60: 239-260.
|
[118] |
Liebthal, M., Schuetze, J., Dreyer, A., Mock, H.P., and Dietz, K.J. (2020). Redox conformation-specific protein-protein interactions of the 2-Cysteine peroxiredoxin in Arabidopsis. Antioxidants 9: 515.
|
[119] |
Liszkay, A., Kenk, B., and Schopfer, P. (2003). Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217: 658-667.
|
[120] |
Liu, C.J. (2012). Deciphering the enigma of lignification: Precursor transport, oxidation, and the topochemistry of lignin assembly. Mol. Plant 5: 304-317.
|
[121] |
Liu, C., Lin, J.Z., Wang, Y., Tian, Y., Zheng, H.P., Zhou, Z.K., Zhou, Y.B., Tang, X.D., Zhao, X.H., Wu, T., et al. (2023). The protein phosphatase PC1 dephosphorylates and deactivates CatC to negatively regulate H2O2 homeostasis and salt tolerance in rice. Plant Cell 35: 3604-3625.
|
[122] |
Liu, J., Shabala, S., Zhang, J., Ma, G., Chen, D., Shabala, L., Zeng, F., Chen, Z.H., Zhou, M., Venkataraman, G., et al. (2020). Melatonin improves rice salinity stress tolerance by NADPH oxidase-dependent control of the plasma membrane K+ transporters and K+ homeostasis. Plant Cell Environ. 43: 2591-2605.
|
[123] |
Liu, S., Ju, J., and Xia, G. (2014). Identification of the flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes from Antarctic moss and their regulation during abiotic stress. Gene 543: 145-152.
|
[124] |
Liu, W.C., Han, T.T., Yuan, H.M., Yu, Z.D., Zhang, L.Y., Zhang, B.L., Zhai, S., Zheng, S.Q., and Lu, Y.T. (2017). CATALASE2 functions for seedling postgerminative growth by scavenging H2O2 and stimulating ACX2/3 activity in Arabidopsis. Plant Cell Environ. 40: 2720-2728.
|
[125] |
Liu, W.C., Song, R.F., Qiu, Y.M., Zheng, S.Q., Li, T.T., Wu, Y., Song, C.P., Lu, Y.T., and Yuan, H.M. (2022a). Sulfenylation of ENOLASE2 facilitates H2O2-conferred freezing tolerance in Arabidopsis. Dev. Cell 57: 1883-1898.e5.
|
[126] |
Liu, W.C., Song, R.F., Zheng, S.Q., Li, T.T., Zhang, B.L., Gao, X., and Lu, Y.T. (2022b). Coordination of plant growth and abiotic stress responses by tryptophan synthase β subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis. Mol. Plant 15: 973-990.
|
[127] |
Løvdal, T., Olsen, K.M., Slimestad, R., Verheul, M., and Lillo, C. (2010). Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71: 605-613.
|
[128] |
Lu, K.K., Song, R.F., Guo, J.X., Zhang, Y., Zuo, J.X., Chen, H.H., Liao, C.Y., Hu, X.Y., Ren, F., Lu, Y.T., et al. (2023). CycC1;1-WRKY75 complex-mediated transcriptional regulation of SOS1 controls salt stress tolerance in Arabidopsis. Plant Cell 35: 2570-2591.
|
[129] |
Lu, Q., Houbaert, A., Ma, Q., Huang, J., Sterck, L., Zhang, C., Benjamins, R., Coppens, F., Van Breusegem, F., and Russinova, E. (2022). Adenosine monophosphate deaminase modulates BIN2 activity through hydrogen peroxide-induced oligomerization. Plant Cell 34: 3844-3859.
|
[130] |
Ma, W., Guan, X., Li, J., Pan, R., Wang, L., Liu, F., Ma, H., Zhu, S., Hu, J., Ruan, Y.L., et al. (2019). Mitochondrial small heat shock protein mediates seed germination via thermal sensing. Proc. Natl. Acad. Sci. U.S.A. 116: 4716-4721.
|
[131] |
MacAlister, C.A., Ohashi-Ito, K., and Bergmann, D.C. (2007). Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature 445: 537-540.
|
[132] |
MacAlister, C.A., Park, S.J., Jiang, K., Marcel, F., Bendahmane, A., Izkovich, Y., Eshed, Y., and Lippman, Z.B. (2012). Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene. Nat. Genet. 44: 1393-1398.
|
[133] |
Makrigiorgos, G.M., Baranowska-Kortylewicz, J., Bump, E., Sahu, S.K., Berman, R.M., and Kassis, A.I. (1993). A method for detection of hydroxyl radicals in the vicinity of biomolecules using radiation-induced fluorescence of coumarin. Int. J. Radiat. Biol. 63: 445-458.
|
[134] |
Mantel, C.R., O'Leary, H.A., Chitteti, B.R., Huang, X., Cooper, S., Hangoc, G., Brustovetsky, N., Srour, E.F., Lee, M.R., Messina-Graham, S., et al. (2015). Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161: 1553-1565.
|
[135] |
Manzano, C., Pallero-Baena, M., Casimiro, I., De Rybel, B., Orman-Ligeza, B., Van Isterdael, G., Beeckman, T., Draye, X., Casero, P., and Del Pozo, J.C. (2014). The emerging role of reactive oxygen species signaling during lateral root development. Plant Physiol. 165: 1105-1119.
|
[136] |
Martin, M.V., Distefano, A.M., Zabaleta, E.J., and Pagnussat, G.C. (2013a). New insights into the functional roles of reactive oxygen species during embryo sac development and fertilization in Arabidopsis thaliana. Plant Signal. Behav. 8: 4161.
|
[137] |
Martin, M.V., Fiol, D.F., Sundaresan, V., Zabaleta, E.J., and Pagnussat, G.C. (2013b). oiwa, a female gametophytic mutant impaired in a mitochondrial manganese-superoxide dismutase, reveals crucial roles for reactive oxygen species during embryo sac development and fertilization in Arabidopsis. Plant Cell 25: 1573-1591.
|
[138] |
Martins, L., Knuesting, J., Bariat, L., Dard, A., Freibert, S.A., Marchand, C.H., Young, D., Dung, N.H.T., Voth, W., Debures, A., et al. (2020). Redox modification of the iron-sulfur glutaredoxin GRXS17 activates holdase activity and protects plants from heat stress. Plant Physiol. 184: 676-692.
|
[139] |
Mhamdi, A., and Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development 145: dev164376.
|
[140] |
Miao, Y., Lv, D., Wang, P., Wang, X.C., Chen, J., Miao, C., and Song, C.P. (2006). An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18: 2749-2766.
|
[141] |
Michels, P.A., Moyersoen, J., Krazy, H., Galland, N., Herman, M., and Hannaert, V. (2005). Peroxisomes, glyoxysomes and glycosomes (review). Mol. Membr. Biol. 22: 133-145.
|
[142] |
Michaeli, A., and Feitelson, J. (1994). Reactivity of singlet oxygen toward amino acids and peptides. Photochem. Photobiol. 59: 284-289.
|
[143] |
Mignolet-Spruyt, L., Xu, E., Idänheimo, N., Hoeberichts, F.A., Mühlenbock, P., Brosché, M., Van Breusegem, F., and Kangasjärvi, J. (2016). Spreading the news: Subcellular and organellar reactive oxygen species production and signalling. J. Exp. Bot. 67: 3831-3844.
|
[144] |
Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M.A., Shulaev, V., Dangl, J.L., and Mittler, R. (2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal. 2: ra45.
|
[145] |
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410.
|
[146] |
Mittler, R. (2017). ROS are good. Trends Plant Sci. 22: 11-19.
|
[147] |
Mittler, R., Zandalinas, S.I., Fichman, Y., and Van Breusegem, F. (2022). Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 23: 663-679.
|
[148] |
Motte, H., Vanneste, S., and Beeckman, T. (2019). Molecular and environmental regulation of root development. Annu. Rev. Plant Biol. 70: 465-488.
|
[149] |
Muller, B., Guedon, Y., Passot, S., Lobet, G., Nacry, P., Pages, L., Wissuwa, M., and Draye, X. (2019). Lateral roots: Random diversity in adversity. Trends Plant Sci. 24: 810-825.
|
[150] |
Naing, A.H., and Kim, C.K. (2021). Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiol. Plant. 172: 1711-1723.
|
[151] |
Noctor, G., and Foyer, C.H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249-279.
|
[152] |
Nordzieke, D.E., and Medraño-Fernandez, I. (2018). The plasma membrane: A platform for intra- and intercellular redox signaling. Antioxidants 7: 168.
|
[153] |
Nowogórska, A., and Patykowski, J. (2015). Selected reactive oxygen species and antioxidant enzymes in common bean after Pseudomonas syringae pv. Phaseolicola and Botrytis cinerea infection. Acta Physiol. Plant. 37: 1725.
|
[154] |
O'Brien, J.A., Daudi, A., Butt, V.S., and Bolwell, G.P. (2012). Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236: 765-779.
|
[155] |
Ohama, N., Sato, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 22: 53-65.
|
[156] |
Olate, E., Jiménez-Gómez, J.M., Holuigue, L., and Salinas, J. (2018). NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors. Nat. Plants 4: 811-823.
|
[157] |
Ono, M., Isono, K., Sakata, Y., and Taji, T. (2021). CATALASE2 plays a crucial role in long-term heat tolerance of Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 534: 747-751.
|
[158] |
Ortega-Villasante, C., Burén, S., Blázquez-Castro, A., Barón-Sola, Á., and Hernández, L.E. (2018). Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic. Biol. Med. 122: 202-220.
|
[159] |
Oshino, N., Jamieson, D., Sugano, T., and Chance, B. (1975). Optical measurement of the catalase-hydrogen peroxide intermediate (Compound I) in the liver of anaesthetized rats and its implication to hydrogen peroxide production in situ. Biochem. J. 146: 67-77.
|
[160] |
Ou, Y., Lu, X., Zi, Q., Xun, Q., Zhang, J., Wu, Y., Shi, H., Wei, Z., Zhao, B., Zhang, X., et al. (2016). RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res. 26: 686-698.
|
[161] |
Owusu-Ansah, E., and Banerjee, U. (2009). Reactive oxygen species prime drosophila haematopoietic progenitors for differentiation. Nature 461: 537-541.
|
[162] |
Palma, J.M., Mateos, R.M., López-Jaramillo, J., Rodríguez-Ruiz, M., González-Gordo, S., Lechuga-Sancho, A.M., and Corpas, F.J. (2020). Plant catalases as NO and H2S targets. Redox Biol. 34: 101525.
|
[163] |
Park, S.J., Eshed, Y., and Lippman, Z.B. (2014). Meristem maturation and inflorescence architecture—Lessons from the Solanaceae. Curr. Opin. Plant Biol. 17: 70-77.
|
[164] |
Pei, D., Hua, D., Deng, J., Wang, Z., Song, C., Wang, Y., Wang, Y., Qi, J., Kollist, H., Yang, S., et al. (2022). Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis. Plant Cell 34: 2708-2729.
|
[165] |
Pei, Z.M., Murata, Y., Benning, G., Thomine, S., Klüsener, B., Allen, G.J., Grill, E., and Schroeder, J.I. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731-734.
|
[166] |
Petridis, A., Therios, I., Samouris, G., and Tananaki, C. (2012). Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environ. Exp. Bot. 79: 37-43.
|
[167] |
Planas-Portell, J., Gallart, M., Tiburcio, A.F., and Altabella, T. (2013). Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biol. 13: 109.
|
[168] |
Prasad, A., Sedlářová, M., Kale, R.S., and Pospíšil, P. (2017). Lipoxygenase in singlet oxygen generation as a response to wounding: In vivo imaging in Arabidopsis thaliana. Sci. Rep. 7: 9831.
|
[169] |
Pratibha, P., Singh, S.K., Srinivasan, R., Bhat, S.R., and Sreenivasulu, Y. (2017). Gametophyte development needs mitochondrial coproporphyrinogen III oxidase function. Plant Physiol. 174: 258-275.
|
[170] |
Puerto-Galán, L., Pérez-Ruiz, J.M., Guinea, M., and Cejudo, F.J. (2015). The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts. J. Exp. Bot. 66: 2957-2966.
|
[171] |
Qari, S.H., Hassan, M.U., Chattha, M.U., Mahmood, A., Naqve, M., Nawaz, M., Barbanti, L., Alahdal, M.A., and Aljabri, M. (2022). Melatonin induced cold tolerance in plants: Physiological and molecular responses. Front. Plant Sci. 13: 843071.
|
[172] |
Qi, J., Song, C.P., Wang, B., Zhou, J., Kangasjarvi, J., Zhu, J.K., and Gong, Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J. Integr. Plant Biol. 60: 805-826.
|
[173] |
Qi, J., Wang, J., Gong, Z., and Zhou, J.M. (2017). Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol. 38: 92-100.
|
[174] |
Qin, X., Duan, Z., Zheng, Y., Liu, W.C., Guo, S., Botella, J.R., and Song, C.P. (2020). ABC1K10a, an atypical kinase, functions in plant salt stress tolerance. BMC Plant Biol. 20: 270.
|
[175] |
Qu, Y., Yan, M., and Zhang, Q. (2017). Functional regulation of plant NADPH oxidase and its role in signaling. Plant Signal. Behav. 12: e1356970.
|
[176] |
Radwan, D.E.M., Mohamed, A.K., Fayez, K.A., and Abdelrahman, A.M. (2019). Oxidative stress caused by Basagran® herbicide is altered by salicylic acid treatments in peanut plants. Heliyon 5: e01791.
|
[177] |
Rajput, V.D., Harish
|
[178] |
Ramel, F., Birtic, S., Ginies, C., Soubigou-Taconnat, L., Triantaphylidès, C., and Havaux, M. (2012). Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc. Natl. Acad. Sci. U.S.A. 109: 5535-5540.
|
[179] |
Reyt, G., Boudouf, S., Boucherez, J., Gaymard, F., and Briat, J.F. (2015). Iron- and ferritin-dependent reactive oxygen species distribution: Impact on Arabidopsis root system architecture. Mol. Plant 8: 439-453.
|
[180] |
Ribeiro, A.B., Berto, A., Chisté, R.C., Freitas, M., Visentainer, J.V., and Fernandes, E. (2015). Bioactive compounds and scavenging capacity of extracts from different parts of Vismia cauliflora against reactive oxygen and nitrogen species. Pharm. Biol. 53: 1267-1276.
|
[181] |
Richards, S.L., Wilkins, K.A., Swarbreck, S.M., Anderson, A.A., Habib, N., Smith, A.G., McAinsh, M., and Davies, J.M. (2015). The hydroxyl radical in plants: From seed to seed. J. Exp. Bot. 66: 37-46.
|
[182] |
Robertson, D., and Earle, E.D. (1987). Nitro-blue tetrazolium: A specific stain for photosynthetic activity in protoplasts. Plant Cell Rep. 6: 70-73.
|
[183] |
Royall, J.A., and Ischiropoulos, H. (1993). Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys. 302: 348-355.
|
[184] |
Sachdev, S., Ansari, S.A., Ansari, M.I., Fujita, M., and Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 10: 277.
|
[185] |
Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H., and Kanazawa, K. (2003). Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem. 51: 571-581.
|
[186] |
Sandalio, L.M., Collado-Arenal, A.M., and Romero-Puertas, M.C. (2023). Deciphering peroxisomal reactive species interactome and redox signalling networks. Free Radic. Biol. Med. 197: 58-70.
|
[187] |
Sankaranarayanan, S., Ju, Y., and Kessler, S.A. (2020). Reactive oxygen species as mediators of gametophyte development and double fertilization in flowering plants. Front. Plant Sci. 11: 1199.
|
[188] |
Schertl, P., and Braun, H.P. (2014). Respiratory electron transfer pathways in plant mitochondria. Front. Plant Sci. 5: 163.
|
[189] |
Schmid-Siegert, E., Stepushenko, O., Glauser, G., and Farmer, E.E. (2016). Membranes as structural antioxidants: Recycling of malondialdehyde to its source in oxidation-sensitive chloroplast fatty acids. J. Biol. Chem. 291: 13005-13013.
|
[190] |
Schneider, M., Knuesting, J., Birkholz, O., Heinisch, J.J., and Scheibe, R. (2018). Cytosolic GAPDH as a redox-dependent regulator of energy metabolism. BMC Plant Biol. 18: 184.
|
[191] |
Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jurgens, G., and Laux, T. (2000). The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100: 635-644.
|
[192] |
Segal, L.M., and Wilson, R.A. (2018). Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genet. Biol. 110: 1-9.
|
[193] |
Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H.J., and Nagano, T. (2003). Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biochem. Physiol. 278: 3170-3175.
|
[194] |
Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012: 217037.
|
[195] |
Shen, J., Zhang, J., Zhou, M., Zhou, H., Cui, B., Gotor, C., Romero, L.C., Fu, L., Yang, J., Foyer, C.H., et al. (2020). Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell 32: 1000-1017.
|
[196] |
Shi, W., Wang, L., Yao, L., Hao, W., Han, C., Fan, M., Wang, W., and Bai, M.Y. (2022). Spatially patterned hydrogen peroxide orchestrates stomatal development in Arabidopsis. Nat. Commun. 13: 5040.
|
[197] |
Singh, A., Mehta, S., Yadav, S., Nagar, G., Ghosh, R., Roy, A., Chakraborty, A., and Singh, I.K. (2022). How to cope with the challenges of environmental stresses in the era of global climate change: An update on ROS stave off in plants. Int. J. Mol. Sci. 23: 1995.
|
[198] |
Singh, S.K., and Husain, S.M. (2018). A redox-based superoxide generation system using quinone/quinone reductase. ChemBioChem 19: 1657-1663.
|
[199] |
Smirnoff, N., and Arnaud, D. (2019). Hydrogen peroxide metabolism and functions in plants. New Phytol. 221: 1197-1214.
|
[200] |
Smolyarova, D.D., Podgorny, O.V., Bilan, D.S., and Belousov, V.V. (2022). A guide to genetically encoded tools for the study of H2O2. FEBS J. 289: 5382-5395.
|
[201] |
Song, R.F., Li, T.T., and Liu, W.C. (2021). Jasmonic acid impairs Arabidopsis seedling salt stress tolerance through MYC2-mediated repression of CAT2 expression. Front. Plant Sci. 12: 730228.
|
[202] |
Song, S., Wang, H., Sun, M., Tang, J., Zheng, B., Wang, X., and Tan, Y.W. (2019). Reactive oxygen species-mediated BIN2 activity revealed by single-molecule analysis. New Phytol. 223: 692-704.
|
[203] |
Sprague, S.A., Tamang, T.M., Steiner, T., Wu, Q., Hu, Y., Kakeshpour, T., Park, J., Yang, J., Peng, Z., Bergkamp, B., et al. (2022). Redox-engineering enhances maize thermotolerance and grain yield in the field. Plant Biotechnol. J. 20: 1819-1832.
|
[204] |
Su, T., Li, W., Wang, P., and Ma, C. (2019). Dynamics of peroxisome homeostasis and its role in stress response and signaling in plants. Front. Plant Sci. 10: 705.
|
[205] |
Sun, Y., Liang, W., Cheng, H., Wang, H., Lv, D., Wang, W., Liang, M., and Miao, C. (2021). NADPH Oxidase-derived ROS promote mitochondrial alkalization under salt stress in Arabidopsis root cells. Plant Signal. Behav. 16: 1856546.
|
[206] |
Suzuki, N., Bajad, S., Shuman, J., Shulaev, V., and Mittler, R. (2008). The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J. Biol. Chem. 283: 9269-9275.
|
[207] |
Suzuki, N., Miller, G., Salazar, C., Mondal, H.A., Shulaev, E., Cortes, D.F., Shuman, J.L., Luo, X., Shah, J., Schlauch, K., et al. (2013a). Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25: 3553-3569.
|
[208] |
Suzuki, N., Miller, G., Sejima, H., Harper, J., and Mittler, R. (2013b). Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2. J. Exp. Bot. 64: 253-263.
|
[209] |
Suzuki, N., Sejima, H., Tam, R., Schlauch, K., and Mittler, R. (2011). Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J. 66: 844-851.
|
[210] |
Szechyńska-Hebda, M., Ghalami, R.Z., Kamran, M., Van Breusegem, F., and Karpiński, S. (2022a). To be or not to be? Are reactive oxygen species, antioxidants, and stress signalling universal determinants of life or death? Cells 11: 4105.
|
[211] |
Szechyńska-Hebda, M., Kruk, J., Górecka, M., Karpińska, B., and Karpiński, S. (2010). Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis. Plant Cell 22: 2201-2218.
|
[212] |
Szechyńska-Hebda, M., Lewandowska, M., Witoń, D., Fichman, Y., Mittler, R., and Karpiński, S.M. (2022b). Aboveground plant-to-plant electrical signaling mediates network acquired acclimation. Plant Cell 34: 3047-3065.
|
[213] |
Thordal-Christensen, H., Zhang, Z., Wei, Y., and Collinge, D.B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11: 1187-1194.
|
[214] |
Tian, G., Wang, S., Wu, J., Wang, Y., Wang, X., Liu, S., Han, D., Xia, G., and Wang, M. (2023). Allelic variation of TaWD40-4B.1 contributes to drought tolerance by modulating catalase activity in wheat. Nat. Commun. 14: 1200.
|
[215] |
Tian, Y., Fan, M., Qin, Z., Lv, H., Wang, M., Zhang, Z., Zhou, W., Zhao, N., Li, X., Han, C., et al. (2018). Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat. Commun. 9: 1063.
|
[216] |
Titus, D.E., and Becker, W.M. (1985). Investigation of the glyoxysome-peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy. J. Cell Biol. 101: 1288-1299.
|
[217] |
Tossounian, M.A., Van, Molle, I., Wahni, K., Jacques, S., Gevaert, K., Van, Breusegem, F., Vertommen, D., Young, D., et al. (2018). Disulfide bond formation protects Arabidopsis thaliana glutathione transferase tau 23 from oxidative damage. Biochim. Biophys. Acta Gen. Subj. 1862: 775-789.
|
[218] |
Towne, V., Will, M., Oswald, B., and Zhao, Q. (2004). Complexities in horseradish peroxidase-catalyzed oxidation of dihydroxyphenoxazine derivatives: Appropriate ranges for pH values and hydrogen peroxide concentrations in quantitative analysis. Anal. Biochem. 334: 290-296.
|
[219] |
Tsukagoshi, H., Busch, W., and Benfey, P.N. (2010). Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143: 606-616.
|
[220] |
Turrens, J.F. (2003). Mitochondrial formation of reactive oxygen species. J. Physiol. 552: 335-344.
|
[221] |
Van Breusegem, F., Bailey-Serres, J., and Mittler, R. (2008). Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol. 147: 978-984.
|
[222] |
Vanlerberghe, G.C. (2013). Alternative oxidase: A mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int. J. Mol. Sci. 14: 6805-6847.
|
[223] |
Vescovi, M., Zaffagnini, M., Festa, M., Trost, P., Lo Schiavo, F., and Costa, A. (2013). Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots. Plant Physiol. 162: 333-346.
|
[224] |
Vieira Dos Santos, C., and Rey, P. (2006). Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci. 11: 329-334.
|
[225] |
Wagner, D., Przybyla, D., Op den Camp, R., Kim, C., Landgraf, F., Lee, K.P., Würsch, M., Laloi, C., Nater, M., Hideg, E., et al. (2004). The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306: 1183-1185.
|
[226] |
Wang, L., Kim, C., Xu, X., Piskurewicz, U., Dogra, V., Singh, S., Mahler, H., and Apel, K. (2016). Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. Proc. Natl. Acad. Sci. U.S.A. 113: E3792-E3800.
|
[227] |
Wang, L.F., Li, T.T., Zhang, Y., Guo, J.X., Lu, K.K., and Liu, W.C. (2021). CAND2/PMTR1 is required for melatonin-conferred osmotic stress tolerance in Arabidopsis. Int. J. Mol. Sci. 22: 4014.
|
[228] |
Wang, N., Liu, W., Yu, L., Guo, Z., Chen, Z., Jiang, S., Xu, H., Fang, H., Wang, Y., Zhang, Z., et al. (2020). HEAT SHOCK FACTOR A8a modulates flavonoid synthesis and drought tolerance. Plant Physiol. 184: 1273-1290.
|
[229] |
Wang, Q., Shen, T., Ni, L., Chen, C., Jiang, J., Cui, Z., Wang, S., Xu, F., Yan, R., and Jiang, M. (2023). Phosphorylation of OsRbohB by the protein kinase OsDMI3 promotes H2O2 production to potentiate ABA responses in rice. Mol. Plant 16: 882-902.
|
[230] |
Wang, W., Fang, H., Groom, L., Cheng, A., Zhang, W., Liu, J., Wang, X., Li, K., Han, P., Zheng, M., et al. (2008). Superoxide flashes in single mitochondria. Cell 134: 279-290.
|
[231] |
Waszczak, C., Carmody, M., and Kangasjärvi, J. (2018). Reactive oxygen species in plant signaling. Annu. Rev. Plant Biol. 69: 209-236.
|
[232] |
Wi, S.D., Lee, E.S., Park, J.H., Chae, H.B., Paeng, S.K., Bae, S.B., Phan, T.K.A., Kim, W.Y., Yun, D.J., and Lee, S.Y. (2022). Redox-mediated structural and functional switching of C-repeat binding factors enhances plant cold tolerance. New Phytol. 233: 1067-1073.
|
[233] |
Wojtyla, L., Lechowska, K., Kubala, S., and Garnczarska, M. (2016). Different modes of hydrogen peroxide action during seed germination. Front. Plant Sci. 7: 66.
|
[234] |
Wu, F., Chi, Y., Jiang, Z., Xu, Y., Xie, L., Huang, F., Wan, D., Ni, J., Yuan, F., Wu, X., et al. (2020). Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 578: 577-581.
|
[235] |
Xiang, F., Liu, W.C., Liu, X., Song, Y., Zhang, Y., Zhu, X., Wang, P., Guo, S., and Song, C.P. (2023). Direct balancing of lipid mobilization and reactive oxygen species production by the epoxidation of fatty acid catalyzed by a cytochrome P450 protein during seed germination. New Phytol. 237: 2104-2117.
|
[236] |
Xie, H.T., Wan, Z.Y., Li, S., and Zhang, Y. (2014). Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in Arabidopsis. Plant Cell 26: 2007-2023.
|
[237] |
Yachandra, V.K., Sauer, K., and Klein, M.P. (1996). Manganese cluster in photosynthesis: Where plants oxidize water to dioxygen. Chem. Rev. 96: 2927-2950.
|
[238] |
Yadegari, R., and Drews, G.N. (2004). Female gametophyte development. Plant Cell 16: S133-S141.
|
[239] |
Yamada, M., Han, X., and Benfey, P.N. (2020). RGF1 controls root meristem size through ROS signalling. Nature 577: 85-88.
|
[240] |
Yamane, K., Taniguchi, M., and Miyake, H. (2012). Salinity-induced subcellular accumulation of H2O2 in leaves of rice. Protoplasma 249: 301-308.
|
[241] |
Yang, F., Liu, Y., Zhang, X., Liu, X., Wang, G., Jing, X., Wang, X.F., Zhang, Z., Hao, G.F., Zhang, S., et al. (2023). Oxidative post-translational modification of catalase confers salt stress acclimatization by regulating H2O2 homeostasis in Malus hupehensis. J. Plant Physiol. 287: 154037.
|
[242] |
Yang, R.S., Xu, F., Wang, Y.M., Zhong, W.S., Dong, L., Shi, Y.N., Tang, T.J., Sheng, H.J., Jackson, D., and Yang, F. (2021). Glutaredoxins regulate maize inflorescence meristem development via redox control of TGA transcriptional activity. Nat. Plants 7: 1589-1601.
|
[243] |
Yang, X., Gavya, S.L., Zhou, Z., Urano, D., and Lau, O.S. (2022). Abscisic acid regulates stomatal production by imprinting a SnRK2 kinase-mediated phosphocode on the master regulator SPEECHLESS. Sci. Adv. 8: eadd2063.
|
[244] |
Yang, Y., and Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 217: 523-539.
|
[245] |
Yeh, H.L., Lin, T.H., Chen, C.C., Cheng, T.X., Chang, H.Y., and Lee, T.M. (2019). Monodehydroascorbate reductase plays a role in the tolerance of chlamydomonas reinhardtii to photooxidative stress. Plant Cell Physiol. 60: 2167-2179.
|
[246] |
Yesbergenova, Z., Yang, G., Oron, E., Soffer, D., Fluhr, R., and Sagi, M. (2005). The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J. 42: 862-876.
|
[247] |
Yoshida, K., Hara, A., Sugiura, K., Fukaya, Y., and Hisabori, T. (2018). Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation in chloroplasts. Proc. Natl. Acad. Sci. U.S.A. 115: E8296-E8304.
|
[248] |
Yu, J., Cang, J., Lu, Q., Fan, B., Xu, Q., Li, W., and Wang, X. (2020). ABA enhanced cold tolerance of wheat ‘dn1’ via increasing ROS scavenging system. Plant Signal. Behav. 15: 1780403.
|
[249] |
Yu, Q., Tian, H., Yue, K., Liu, J., Zhang, B., Li, X., and Ding, Z. (2016). A P-Loop NTPase regulates quiescent center cell division and distal stem cell identity through the regulation of ROS homeostasis in Arabidopsis root. PLoS Genet. 12: e1006175.
|
[250] |
Yuan, H.M., Liu, W.C., and Lu, Y.T. (2017). CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses. Cell Host Microbe 21: 143-155.
|
[251] |
Zaffagnini, M., Fermani, S., Calvaresi, M., Orrù, R., Iommarini, L., Sparla, F., Falini, G., Bottoni, A., and Trost, P. (2016). Tuning cysteine reactivity and sulfenic acid stability by protein microenvironment in glyceraldehyde-3-phosphate dehydrogenases of Arabidopsis thaliana. Antioxid. Redox. Signal. 24: 502-517.
|
[252] |
Zafra, A., Rejon, J.D., Hiscock, S.J., and Alche Jde, D. (2016). Patterns of ROS accumulation in the stigmas of angiosperms and visions into their multi-functionality in plant reproduction. Front. Plant Sci. 7: 1112.
|
[253] |
Zeng, J., Dong, Z., Wu, H., Tian, Z., and Zhao, Z. (2017). Redox regulation of plant stem cell fate. EMBO J. 36: 2844-2855.
|
[254] |
Zeeshan, H.M., Lee, G.H., Kim, H.R., and Chae, H.J. (2016). Endoplasmic reticulum stress and associated ROS. Int. J. Mol. Sci. 17: 327.
|
[255] |
Zhang, H., Zhou, J.F., Kan, Y., Shan, J.X., Ye, W.W., Dong, N.Q., Guo, T., Xiang, Y.H., Yang, Y.B., Li, Y.C., et al. (2022). A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science 376: 1293-1300.
|
[256] |
Zhang, H., Yu, F., Xie, P., Sun, S., Qiao, X., Tang, S., Chen, C., Yang, S., Mei, C., Yang, D., et al. (2023a). A Gγ protein regulates alkaline sensitivity in crops. Science 379: eade8416.
|
[257] |
Zhang, M.J., Zhang, X.S., and Gao, X.Q. (2020a). ROS in the male-female interactions during pollination: Function and regulation. Front. Plant Sci. 11: 177.
|
[258] |
Zhang, W., Zhi, W., Qiao, H., Huang, J., Li, S., Lu, Q., Wang, N., Li, Q., Zhou, Q., Sun, J., et al. (2023b). H2O2-dependent oxidation of the transcription factor GmNTL1 promotes salt tolerance in soybean. Plant Cell 36: 112-135.
|
[259] |
Zhang, Y., Ji, T.T., Li, T.T., Tian, Y.Y., Wang, L.F., and Liu, W.C. (2020b). Jasmonic acid promotes leaf senescence through MYC2-mediated repression of CATALASE2 expression in Arabidopsis. Plant Sci. 299: 110604.
|
[260] |
Zhang, Y., Wang, L.F., Li, T.T., and Liu, W.C. (2021). Mutual promotion of LAP2 and CAT2 synergistically regulates plant salt and osmotic stress tolerance. Front. Plant Sci. 12: 672672.
|
[261] |
Zhou, H., Zhang, F., Zhai, F., Su, Y., Zhou, Y., Ge, Z., Tilak, P., Eirich, J., Finkemeier, I., Fu, L., et al. (2022). Rice GLUTATHIONE PEROXIDASE1-mediated oxidation of bZIP68 positively regulates ABA-independent osmotic stress signaling. Mol. Plant 15: 651-670.
|
[262] |
Zhou, M., Zhang, J., Shen, J., Zhou, H., Zhao, D., Gotor, C., Romero, L.C., Fu, L., Li, Z., Yang, J., et al. (2021). Hydrogen sulfide-linked persulfidation of ABI4 controls ABA responses through the transactivation of MAPKKK18 in Arabidopsis. Mol. Plant 14: 921-936.
|
[263] |
Zhou, Y.B., Liu, C., Tang, D.Y., Yan, L., Wang, D., Yang, Y.Z., Gui, J.S., Zhao, X.Y., Li, L.G., Tang, X.D., et al. (2018). The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. Plant Cell 30: 1100-1118.
|
[264] |
Zhuang, Y., Wei, M., Ling, C., Liu, Y., Amin, A.K., Li, P., Li, P., Hu, X., Bao, H., Huo, H., et al. (2021). EGY3 mediates chloroplastic ROS homeostasis and promotes retrograde signaling in response to salt stress in Arabidopsis. Cell Rep. 36: 109384.
|
/
〈 | 〉 |